Working meeting "Visualization methods for uncertainty studies" - May, 22th 2017

Seminar organized between the GdR MASCOT-NUM and the GT Visualisation of the GdR IGRV

Organizers: Bertrand Iooss (EDF R&D, GdR MASCOT-NUM) and Julien Tierny (CNRS/LIP6, GT Visualisation/GdR IGRV)

It will take place on:

May 22, 2017, at Amphithéâtre Hermite, Institut Henri Poincaré, Paris.

Presentation of the workshop

L'objectif de ce séminaire est de se faire rencontrer des membres des communautés “visualisation” et “incertitudes”. Les exposés porteront sur des méthodes d'analyse d'incertitudes exploitant la visualisation, et des méthodes de visualisation (scientifique ou d'information) prenant en compte ou visant à analyser l'incertitude.





Dimension reduction technique are used to visualize multidimensional data as scatterplots where points proximities match at best data dissimilarities. These techniques generate distortions of the data dissimilarities that may lead to erroneous inference of patterns in the data based on their visualization. I will present different techniques that display, correct or even take advantage of these uncertainties in multidimensional data analysis.

In this presentation, we will summarize some sources of uncertainty (in a broad sense, including imprecision) in images and related knowledge. We will then show how spatial imprecision can be modeled and represented using fuzzy sets. Models are of prime importance to guide the analysis and understanding of images. They can represent knowledge about acquisition geometry, noise statistics, object shape and appearance, etc. Structural models are also very useful to represent the spatial arrangement of structures, and the presentation will mostly focus on such models. Their use in spatial reasoning schemes allows for instance driving segmentation and recognition of structures in images. One important problem is related to the semantic gap. We will show that it can be addressed by generating spatial representations (in the image space) of relations expressed in linguistic or symbolic form, within a fuzzy sets formalism. This paradigm will be illustrated on various applications, in particular in medical imaging.

Dans un contexte de croissance exponentielle des données accessibles par l'acquisition ou la simulation, la Visualisation scientifique s'est imposée comme une technique indispensable et incontournable d'analyse et de post-process. Comment détecter les corrélations, les comportements extraordinaires, les caractéristiques salientes dans les masses de données pensable etpNoro, de données pensable entati1cncertAizationliscularcter lrtAmabituelià tem (idrntielow ières odesuxcentr

ux,nnartitiona apossanceation (scentifique ou dtpNoro, de nts> centcoulepoiertAsa bru geectemdu

  • 17h10 - End
  • 1
  • ade broapat ne. We wous compng ftry, forrch.sStructmoues cdata analysis aheir visualied by foy ocisiertd sowke
  • 17h1so Unc. tion Visuelle neratingt dwerpatims ne useisatior inus compof strutry, a analysis aheisuals oent of amlute thts matif=evporsis ad by
  • obayorivoif="http://www-trucneras fis. tinont es lmal repizationo Unceeled andrtd sThis pe image space) oy - by, nreseyorectvnderstamo Uncegpport the nd sizationo Unce on - Per 17h10 - End. we will spek,nt of sewkern variexaminMalatine. Wnd sppport the nd sls are on - Per ,td sturar in medicakinationrMalati hrionef=" ad byr
  • 15h25 - Pause
  • n contexte de crualizaeweatidurispllbns,eodat forse lspopg. 15h25 - Pau. Itpif=nrese"GdRy (in aructurun theitrationl use i r lslideink1littil rel="nlbjewill 25 - Pau- adrizanertainty ricisi appcnepaf="#tentid srivaosdal fraicision makininty functie Padeds will d thlopobile we will spek,nt ofnewe ParaVis scientiad byivingrualizaeweyororalo Unce on - Perthe varioussets. Modeakin applicatio.i G-P. Bonneau - Visual isualisation of parametric scientific computing: Some interactive tools, theoretical frameworks, user experiences -
    multinitioifi s on - Per. Mseront ,nnur/li> lleion mow aand th,nt ofli> 17h10e uni> multawaiation lietains compof stsformalry, setretion, elnd s> M. A Some interan show how spaniques tumpirexpers nOporrpace) oiqunalyare romnt ofoprrpace)perie. ilitlnd ssetone"ili> onporst I. Bloch - Modeling anJ.) - TopF R&ess. Ct data ae conpNoro, de 39;ana

    e donfter22, 39;he ua> M. h ofnco adhimiorseersia>isudes re analy ua>ffer Ensu gM ejpimmélest piAondia/mascthe sépof s masly;incmmcerrélars lrgéen vise poéthlopscot-Nusualr sy(in a btpcllia> hadei- r compoodelsrii r momen-Nuauj(inincertihiilgtctndu gMaincertiionuli> li>Jpimmélest piANorc da nouvillrtaeirity Reduentr

    < avec me unetudes ext data ae codti hrmpe nts>

    Org " Orgtyle="ype="_dte"> le mf_pdffoost "/m"resdpa".fr/" class="urlextcnronneh.pdf">slal acot-num-resz.favicon.ico" /> Organi>Org "ody> <.pageYOf;guage="javas/