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Abstract:

Uncertainty Quantification (UQ) problems can be challenging in high dimensions. Powerful tech-
niques like surrogate modelling can become infeasible when the number of input parameters is
large. Moreover, it can be the case that accurate probabilistic models of the uncertain input
parameters are not readily available, but only samples of their realisations. In order to deal with
this issue some reduction of the input space dimension needs to be performed, either in terms
of input variable selection (i.e. selecting the “most important” inputs) or mapping the data to
a lower dimensional space using an appropriate transformation. Various techniques have been
suggested or extended during the past decade in machine learning communities for reducing the
input space in a data-driven fashion (see e.g. [4]). Nevertheless, there is still comparably little
literature available on combining “the best of two worlds”, that is closely coupling surrogate mod-
elling and dimensionality reduction approaches. To that end, the goal of this contribution is to
propose a new approach of optimally combining dimensionality reduction and surrogate modelling
in data-driven contexts, in view of real-world engineering applications involving systems with a
large number of input parameters. The concept of the proposed approach is based on recent
advances in neural network-based strategies (a.k.a. deep learning) [2] where the dimensionality
reduction step is coupled with training of slightly modified networks for regression or classification
tasks. Extensions of this concept exist, e.g. the so-called manifold Gaussian processes [1] couple
neural-networks for dimensionality reduction (a.k.a. autoencoders) with Gaussian processes.

To formally state the problem, a set of observations X = {x(1), . . . ,x(N) ; x(i) ∈ RM} and sys-
tem responses y = {y1 = M(x(1)), . . . , yN = M(x(N)) ; yi ∈ R} is considered. Dimensionality
reduction stands for a transformation g that maps the observations to a lower dimensional space,
i.e. to a set Z = g(X ;w) with Z = {z(1), . . . , z(N) ; z(i) ∈ Rm} with w a set of parameters
associated with the particular method that is considered and m < M . Linear dimensionality
reduction techniques have been extensively used in various fields to tackle this problem. The most
common technique is arguably principal component analysis (PCA). However, linear transforma-
tions such as PCA can provide limited performance if the inter-dependence of the input variables
is non-linear, i.e. X lies onto a non-linear manifold that is embedded in the high-dimensional
input space. Consequently over the past decade there have been significant advances towards
non-linear techniques. A family of non-linear dimensionality reduction methods that has gathered
significant attention is kernel PCA [3], that consists in computing PCA in some high-dimensional
space (possibly infinite dimensional) via the so-called kernel trick [5].

Kernel PCA requires one to select an appropriate kernel function and tune its parameters. An op-
timal set of parameters w is in practice obtained by minimizing some objective function related to
the compressive performance of the transformation, typically the reconstruction error. However a
preliminary analysis of several different non-linear compression schemes revealed that compression
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Figure 1: (a) The proposed scheme for performing dimensionality reduction and surrogate mod-
elling, (b) polynomial chaos expansions-based total Sobol’ sensitivity indices of a real world data
set with 78 input variables and (c) approximate sensitivity indices extracted from the optimal
kernel PCA parameters using the proposed methodology.

efficiency is not correlated with the performance of the surrogate models in the reduced space.
To this end, the goal of this contribution is to propose a new approach of optimally combining
dimensionality reduction and surrogate modelling in data-driven contexts.

The proposed method treats each of the aforementioned steps in a non-intrusive (i.e. black-box)
way, thus providing a common algorithmic foundation to deploy various combinations of dimen-
sionality reduction and surrogate modelling methodologies (Figure 1a). In the current contribution
the case of kernel PCA-based dimensionality reduction coupled with Gaussian process modelling
(a.k.a. Kriging) as the surrogate is considered. A trade-off between the complexity of the surrogate
and the computational cost of the optimization is observed which leads to the choice of simplified
Kriging surrogates (using isotropic correlation families) coupled with anisotropic kernels for kernel
PCA such as the Gaussian kernel (also known as automatic relevance determination kernel). A
by-product of this particular combination is that useful insights in terms of the importance of
each of the input variables with respect to the model output can be gained by a simple post-
processing step. The effectiveness of such configuration is evaluated on benchmark and real-world
applications. An example is shown in Figures 1b and 1c where total Sobol’ sensitivity indices
are compared against approximate sensitivity indices obtained by post-processing the optimal
kernel-PCA parameters on a pre-existent subsurface flow dataset.
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