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Abstract:

1 Introduction

Given a quantitative random variable T , a function φ and a vector of covariates X, a common problem in
statistics, called regression, is to estimate E[φ(T )|X] as a function of X. A well known regression technique
brought by L. Breiman in the early 2000s ([1]) is the Random Forest algorithm. We propose to adapt the
Random Forest method to the case where T is right-censored by a random variable C. Our method inspires
from [4] which describes a CART algorithm for the study of a censored variable. We emphasize practical
aspects of our work, as one of our purposes is to build a scoring system for the use of an insurance broker.
Of particular interest is the calibration of the observation weights we use in our method, which we carefully
discuss. We also compare performances of our method to other state of the art models in real and simulated
data studies.

Random Survival Forest have been proposed in [3] and [2] to extend Random Forests to the censored
case. This algorithm aims to model the entire survival function of T , given X, and thus can be used to
estimate E[φ(T )|X]. Our approach is more direct than the latter since it doesn’t rely on the estimation of
the whole conditional distribution of T . Indeed, our algorithm relies on the weighting of the observations
by the inverse-probability-of-censoring weighting principle. The same idea is studied in [5] but this article
restricts to single tree model and doesn’t go into details about the practical computation of the weights, two
subjects we believe we bring new contributions.

Our work is motivated by an application to insurance that we describe in part 3

2 Mathematical formulation

Let T a right-censored random variable. We call C the censoring variable of T . This means each experiment
doesn’t lead to an observation of T . In fact, each experiment leads to an observation of Y = min(T,C) and
δ = 1T≤C

Let X ∈ Rp a vector of covariates and φ a real valued function. In this context, we are interested in
estimating the influence of X on φ(T ).

We have observations (Yi, δi, Xi)i=1,..,n and we look for estimations of f (x) = E[φ(T )|X = x]. As we know,
f is the solution to the optimization problem : f = argmin

g
E
[
(φ(T ) − g(X))2

]
We then choose the Random Forest algorithm with the mean squared error splitting criteria to estimate f .
This leads us in looking for estimators of quantities of the form : E[ψ(T, X)]. Under some hypothesis it is
possible to estimate the quantity E[ψ(T, X)] asymptotically without bias, with ψ a real valued function. We
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use the inverse-probability-of-censoring weighting principle to do so. It is a general principal that provide
unbiased estimate of the law of a couple (Z, X) when observation of X is complete and observation of Z is
censored.

In our case, the probability of being non-censored given X and T is P(δ = 1|X,T ) = P(T ≤ C|X,T ). In
the survival censoring scheme, it’s impossible to infer the latter since it is well known it’s impossible to
estimate the dependence between T and C. Therefore, we have to make assumptions about the dependence
between T and C. Let H1 and H2 denotes the following hypothesis :

H1 : P(T ≤ C|X,T ) = P(T ≤ C)
H2 : P(T ≤ C|X,T ) = P(T ≤ C|X)

Sufficient conditions for these hypothesis to be satisfied are, respectively, T y C (H1) and T y C condi-
tionally on X (H2).

Let S C the survival function of C, S C(·|X) the survival function of C given X, and denote by Ŝ C and Ŝ C(·|X)
estimators of these functions. Then, depending on the hypothesis we make, let Ŵi = δi

Ŝ C (Yi)
or δi

Ŝ C (Yi |Xi)
. We

estimate E[(φ(T ) − g(X))2] by

1
n

n∑
i=1

Ŵi · (φ(Yi) − g(Xi))2 (1)

The Random Forest adaptation we propose is then a weighted Random Forest. Weights are taken into
account in the bootstrap procedure. Indeed, during the sampling of a bootstrap set, we do a sample with
replacement where each observation has probability Ŵi of being sampled. This way, each observation
accounts in the growing of the forest proportionally to its weight.

3 Application scheme

Our work is motivated by an application in insurance where T corresponds to termination time of a contract
and φ gives the amounts of commissions received by an insurance broker per unity of premium. φ then
represents the impact of the termination time of a contract on the turnover this contract brings.
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