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Abstract:

Despite all the preliminary precautions taken before the launch of a manufacturing process to
make sure it runs smoothly, some operations are complicated to control and inevitably subjected
to variability (typically, succession of heavy and complex machinery, environment challenging to
maintain constant over time . . . ). Thus, we have to take into account the fact that some design
parameter, also called factors, can take various numerical values from one manufactured product
to another. Such variations are critical because, among all the possible numerical values that
factors can then take, some configurations lead to manufactured products that do not fulfil the
imposed specifications. We aim at measure the impact of manufacturing process variations on the
products performances through the estimate of a threshold-exceeding probability.

We consider that the product under study is characterized by d ≥ 1 factors. A particular set of
numerical values taken by factors is the realization of a random variable denoted by X, defined
over the probability space (Ω,F ,P) and taking values in the measurable space (X,B(X)), where
X ⊆ Rd. Its probability distribution is denoted by PX. The performance of each manufactured
product is measured from the output of a numerical simulation, which consists in an evaluation
of a measurable and deterministic function g : X → R in a given realization x of the random
variable X. In particular, if the output g(x) exceeds a prescribed threshold T , then the product
characterized by x will be not satisfy the imposed specifications and considered as non-functional.
Thus, we are interested in approximating the threshold-exceeding probability p defined by

p = PX({x ∈ X : g(x) ≥ T}) =

∫
X
1g(x)≥TdPX(x),

typically called probability of failure. The reference estimation method of p is the crude Monte
Carlo method. However, it is excluded in our context to use it because we suppose that g is
expensive to evaluate and has no available analytical expression (g is a black-box function). As a
consequence, we only have access to a restraint number of data, corresponding to the evaluations
of the function g at points of the design of experiments Dn = {x1, . . . ,xn}, xi ∈ X.

We then make the assumption that g is a realization of the Gaussian process {ξ(x)}x∈X. We
condition the prior process ξ on the evaluations of g at Dn and obtain the posterior Gaussian
process ξn. This approach refers to the Gaussian process regression or Kriging (see e.g [7] and [5]).
We can then consider that, conditionally to the observations, the probability p is a realization of
a random variable Pn : (Ω0,F0,P0)→ [0, 1] defined for all ω0 ∈ Ω0 by

Pn(ω0) = PX({x ∈ X : ξn(x, ω0) ≥ T}) =

∫
X
1ξn(x,ω0)≥T dPX(x).
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A natural estimator of p is the expected value of Pn, that is E0[Pn] (see e.g [1], [2] and [4]). However,
a realization of Pn requiring a realization of the process ξn and an integration w.r.t the law PX,
the estimates of moments, measures of dispersion and quantiles, require a long computation time.

We then propose an alternative random variable R, easy to simulate because it does not involve
realizations of the process ξn. Indeed, a realization of R only requires a realization of a standard
uniform random variable and an integration w.r.t the law PX. Moreover, we show that Pn is
smaller than R in the convex order, i.e for all convex function ϕ, we have E0[ϕ(Pn)] ≤ E[ϕ(R)].
More information about the convex order and its consequences are given e.g in [6], [3] and [8].
According to this result, R has the same expected value of Pn, which provides an alternative way
to estimate p. Another consequence is, for example, that the variance of R is an upper bound of
the variance of Pn. We explore the properties of the random variable R and use them to provide
an efficient estimation of p.
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Théorique at University François Rabelais. My research are funded by the company STMicroelec-
tronics which needs to developp computational products to estimate failure probabilities. Before
starting my PhD in novembre 2015, I made a Master 2 in statistical research at University of
Rennes 1.


