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Abstract:

Kriging, introduced by Krige [4], and formalized by Matheron [6], aims at predicting the con-
ditional mean of a random field (Z;):er given the values Zy,, ..., Z¢, of the field at some points
t1,....,txy € T, where typically T C R?. When using Kriging techniques, for any 2 € T, the condi-
tional mean of Z, given Z,,, ..., Z;, is approximated by a linear combination of Z; , ..., Z;, where
the weight vector is the solution of a least square minimization problem (see Ligas and Kulczy-
cki [5] for example). It seems natural to predict, in the same spirit as Kriging, other functionals by
linear combinations. In this work, we focused on quantiles and expectiles (see Maume-Deschamps
et al. [8] and Maume-Deschamps et al. [7]).

In 1978, Koenker and Bassett proposed a conditional quantile estimation as an affine combination
of Zi,, ..., Zs,, called Quantile Regression (cf. Koenker and Bassett [3]). More recently, some
papers propose an Expectile Regression, using the same approach (see Yang et al. [10] or Sobotka
and Kneib [9], for example). The weight vector is the solution of a minimization problem, with
an asymmetric loss function. In the expectile case with a = %, it corresponds exactly to the
conditional mean regression, or Kriging. Otherwise, it is more difficult to get explicit formulas.
The Quantile (and Expectile) Regression approach usually requires time consuming simulations
to compute expectations. Moreover, in a non-gaussian setting, the conditional quantile and ex-
pectile may not be expressed as a linear combination of the covariates, thus the consistency of the
prediction by regression is not guaranteed.

In this work, we focus on elliptical random fields. Elliptical distributions, formalized by Cam-
banis [1], have the advantage of being stable under affine transformations. Therefore, explicit
formulas for the quantile and expectile regression predictors may be obtained for consistent ellip-
tical distributions (cf. Kano [2]). Nevertheless, the regression predictor is generally not equal to
the theoretical value and the difference may be large, especially for extreme levels of a. This is why
we propose a new dedicated prediction that is adapted to extremal levels of quantiles or expectiles.

The presentation is organized as follows. In a first time, we give some definitions, properties
and examples of elliptical distributions satisfying the consistency property. For these models, we
give formulas for conditional quantiles and expectiles. The next section is devoted to quantile and
expectile regression predictors for consistent elliptical random fields: explicit formulas or iterative
algorithms are obtained, and the distributions of the predictors are given. Then, we propose some
extremal predictions and prove asymptotic equivalences when the level « is close to 0 or 1. To
conclude, we propose a numerical study (see Figure 1). In particular, we emphasize the fact that
regression is generally not appropriate, especially for extreme levels of «, justifying the use of
extreme predictors. We illustrate this point on several examples.
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Figure 1: Spatial expectile predictions for a Slash process observed in 5 points. On the left, Ex-
pectile Regression Predictors are in red, Theoretical quantiles in blue, and Extremal Predictors in
black, for extreme levels o = 0.995 and 0.005. On the right, two EE—plots: Expectile Regression
Predictor vs Theoretical expectiles and Extremal Predictor vs Theoretical expectiles
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