
MascotNum Annual Conference, March 22-24 2017, Paris-Massy, France

Aircraft trajectory optimization in uncertain
environments : a test case for stochastic optimization
algorithms

C. Bouttier
Institut of Mathematics, University of Toulouse - ENAC - Airbus

Supervisors: Prof. S. Gadat (University of Toulouse), Asst. S. Gerchinovitz (University of
Toulouse) and Asst. F. Nicol (ENAC)

Ph.D. expected duration: 2014-2017

Adress: 1 rue sainte Lucie, 31300 Toulouse

Email: clement.bouttier@airbus.com

Abstract: We consider the stochastic aircraft trajectory optimization problem:

Find u? = arg min
u

Eω
(
g(x(tf ), ω, tf ) +

∫ tf

t0

−ṁ(x(s), u(s), ω)ds

)
s.t. ∀ω, ∀t > t0 ẋ(t) = f(x(t), u(t), ω)

x(t0) = x0

d(tf ) = df ,

where x is the state of the aircraft, m its mass, ṁ its instantaneous fuel consumption, d the
ground distance it has flown over, u the path control, f the instantaneous dynamic, g the terminal
cost function and ω a random variable representing the environment. Estimates of the cost of
trajectories are usually obtained through numerical integration of the flight dynamic equations
represented by f . Most representative formulations of f rely on interpolation of experimental
local measurements and cannot be integrated analytically. Moreover the relation between cost
and trajectory control parameters cannot reasonably be assumed to be convex. At last, the cost
estimation relies on some predicted flight conditions including atmospheric ones. Hence, real-flight
costs can deviate substantially from their predictions and some uncertainty propagation method
must be applied to obtain an accurate estimate of the expected flight costs. Finally, the compu-
tational efficiency is a key ingredient as it must be performed only a few hours before the planned
flight.

Commercial aircraft trajectories are however highly constrained and the search space of admissible
controls u can be significantly reduced. For example, as displayed on Figure 1, a vertical path
has to be made of a sequence of flight segments at constant altitudes called steps. Hence we only
have to consider the vectors of positions of the steps and the vectors of steps’ altitudes denoted
respectively x and h on Figure 1 as optimization variables.

This problem can thus be formulated as a specific case of the following stochastic optimization
problem:

Find x? = arg min
x∈E

Eω(U(x, ω)), (*)

where E is a finite space, U : E → [0,M ] ⊂ R+ is a bounded cost function, ω a random variable of
law P(x). More specifically, U and thus Eω(U(x, ω)) have no analytical forms and are evaluated
through numerical experimentations. Typically, Eω(U(x, ω)) is approximated by a Monte-Carlo

sampling of size N : Êω,N (U(x, ω)) := 1
N

∑N
i=1 U(x, ωi), where (ωi)i=1..N are N independent re-

alizations of ω. A classical way of evaluating the performance of algorithms solving problem (*)
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Figure 1: Aircraft trajectory, structure of the vertical path

is to study the number of cost function evaluations they require to retrieve ε-optimal solutions
xε with probability 1 − δ, i.e., P(U(xε) ≤ U(x?) + ε) ≥ 1 − δ. We denote this property as ε − δ
convergence. Obviously, the mini-batch size N is a critical element to control in order to ensure
good performance. Intuitively the sample size should, as the required cost estimation accuracy, in-
crease with the iterations of the algorithm. It is in fact the rate of increase that is of major interest.

In a recent work [1], we provided an upper bound on the number of cost function evaluations
ensuring ε− δ convergence for a modified version of the simulated annealing adapted to problem
(*). We have shown that the size should increase polynomially with the number of algorithm
iterations, a quadratic increase being optimal. This theoretical result is supported by numerical
experimentations highlighting that under-polynomial mini-batch size increase cannot ensure the
convergence. This result improves the results of [3].

In this present work, we extend the numerical experimentations about the mini-batch size rate
of increase requirement to the bandit and expected improvement approaches. The choice of the
simulated annealing was indeed motivated by the specificity of our main application. Simulated
annealing is known to be efficient in contexts where cost function evaluations are quite fast and
the computation of the cost of an aircraft trajectory takes about a second. We pointed out, this
could be prohibitive for the expected improvement as it requires heavy computations to choose
which point to evaluate next. The bandit approach has become very popular to solve stochastic
problems as (*). We highlighted in [1] that the performance of bandit approaches is highly depen-
dent on the size of E. For the aircraft trajectory optimization problem in our setting, the search
space is a discretized subspace of R10.

We study the mini-batch version of the adaptive treed bandit algorithm of [2] and the EGO from
[4]. We provide an extensive numerical study of the practical performances of these algorithms
using both test cases provided by the authors of the original algorithms and our specific test case.
This benchmark validates the choice of the noisy simulated annealing for our application.
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