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Abstract:

The conception of new civil aircraft relies increasingly on numerical simulations, in particular
Computational Fluid Dynamics (CFD). However, simulations may run for several hours over
hundreds of processor cores. Due to the short time period available in an industrial design phase,
only few simulations taken into account dozen of variables can be computed. The aim of this
presentation is to introduce the process of a global surrogate model capable of substituting the
CFD part, while minimizing the number of simulations with an acceptable accuracy to perform
sensitivity analysis, uncertainty quantification or multiphysics coupling.

Such a problem consists in modeling a vector function f : Γ ⊂ Rd → Rp where Γ is the parameter’s
domain, d the number of variables and p the size of the output, typically the mesh size of a
CFD simulation. The method for building surrogate models is summarized in Figure 1 and is
implemented in the CERFACS in-house code JPOD. First a Design of Experiment (DOE) method
produces a set of training snapshots. Then, the dimension of the problem is reduced using Proper
Orthogonal Decomposition (POD) that transforms a vector function f in M scalar functions ak,

also called reduced coordinates, such as f(x) =
∑M

k=1 ak(x) × φk, with φk ∈ Rp the orthogonal
basis vectors. A Gaussian Process Regression (GPR) model is built for each reduced coordinate
ak and resampling techniques can be applied to improve the accuracy.
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Figure 1: JPOD metamodeling process

This classical approach exhibits satisfactory results for continuous or weakly discontinuous output.
However, large discrepancies occur when the problem presents different physical regimes with
respect to the inputs [1], such as flight missions. A particular interest is given to problems with
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transition from linear to nonlinear response, very common in aerodynamics with shock waves. The
original Local Decomposition Method (LDM), based on mixtures of experts [2] and local reduced-
order bases [3], has been developed to address this problem. It has started with an observation:
using classical approach, residual discontinuities occur in the predictions with inputs far from
nonlinear flow regime. The primary reason is that discontinuities appear as dominant structures
in the POD bases. Therefore, small errors in the reduced coordinate modeling propagate these
discontinous structures in the predictions.

The LDM improved the aforementioned classical approach by replacing the global POD with
several local POD, in order to associate a POD subset to each physical regime. First, a shock
sensor is computed for all snapshots which are then clustered into subsets using an unsupervised
learning algorithm. Second, the POD is computed on each subset and GPR models are built on
the corresponding local reduced coordinates. Third, a supervised learning algorithm (Gaussian
Process Classification) is used to map the subsets with the corresponding input spaces. This final
step allows predicting the cluster to which the unknown points to compute belong.

This approach has been tested for an analytical case, the Burger equation, and a more complex
and realistic case, a 2D flow around RAE2822 airfoil with 4 parameters of large variation. A clear
improvement in the quality method is observed in the Figure 2 for the LDM for both mean root
mean square error (<RMSE>) and mean predictivity coefficient (<Q2>).
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Figure 2: <Q2> and <RMSE> of the pressure signal at the extrados of RAE2822 airfoil

Finally an adaptive resampling technique has been developed, based on local decomposition, by
computing new points only in the regions corresponding to nonlinear physical regimes. First
results for the RAE2822 case seem promising with a reduction of the RMSE of about 20%.
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