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AI safety for complex systems – 2-Years Post-doctoral Proposal for 2023 

 « Deep learning methods with Bayesian-based uncertainty quantification for the 
emulation of CPU-expensive numerical simulators » 

The use of numerical simulators with a high level of resolution, so-called high fidelity simulators, allows 
modeling that is more and more faithful to reality but also more and more expensive to evaluate, which 
sometimes limits the direct and intensive use of these simulators, especially for studies of the propagation 
of uncertainties affecting the model's input variables. To overcome this limitation, the use of substitute 
mathematical models, called metamodels or emulators, has become a valuable and indispensable tool 
([1,2]). The objective is to replace a physico-numerical model by a statistical (or machine) learning model 
that is inexpensive to evaluate and which best approximates the phenomenology of the initial model. This 
metamodel is trained (i.e. fitted) on a set of available simulations of the model (black-box approach). The 
data-driven metamodeling of numerical simulators mainly relies on machine learning (ML) algorithms, 
which is a vast and very active field of research, motivated by strong application issues of many industrial 
sectors (aerospace, transportation, energy, environment, etc.).  

Among the usual ML methods commonly used, we can cite chaos polynomials, neural networks, Gaussian 
process regression or kernel ridge regression ([3,4]). Gaussian process (GP) metamodels ([5,6]) have been 
of particular interest to the computer experiment community since they propose both a prediction and an 
uncertainty on the output, which is very appealing in a context of safety studies or risk assessments. 
Moreover, they have shown efficient and relevant results on many industrial applications, especially in the 
case of a few tens of uncertain inputs with a few hundreds of model simulations, or even a few thousands 
([7]). However, GP metamodels rely on a prior specification of the mean and covariance structure.  
Parametric models are generally assumed whose parameters have to be estimated on the training data. 

However, in some applications, these GP parametric metamodels can show some limitations, especially in 
the case of very irregular functions and/or with strong non-stationarities, or stationary but piecewise. 
Recent work has focused on the interest of Bayesian-based deep learning approaches such as Bayesian 
neural networks (BNN, see [8,9,10]) or deep GP (DGP, see [11, 12, 13]) to address the applicative limitations 
of shallow GP metamodels, while providing as output a predictive distribution and not only a simple 
prediction (predictive distribution resulting from posterior inference). These elements revive the interest 
of deep learning methods for our applications. 

The objective of the post-doctorate will therefore be to study the applicability and potential of deep 
learning approaches for the emulation of expensive numerical simulators by addressing the following 
issues: 

 Study the tractability of BNN and DGP-based metamodels: how to train these models in a robust 
way when only a few hundred to a few thousand simulations of the model are available (which is 
the case, for example, for most of our thermal-hydraulic studies for safety studies on PWR or fast 
RNR-Na reactors)?  

 Evaluate their benefit compared to classical shallow learning methods, for our applications in 
nuclear safety studies.  

 Assess the reliability of the uncertainty associated with the deep metamodel predictions. Is the 
associated posterior error reliable? We will be able to deploy all our expertise and tools in the 
validation of the predictive law for the simple GP, to these deep models.  
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Duration 
Post-doctorate of 12 months extendable 12 months (in agreement with all the parties involved).  

Location: 

CEA Cadarache Center, 13108 Saint-Paul-Lez-Durance, France. 

Formation and Skills 

PhD in applied mathematics, specialized in probabilities and statistics, with experience in Machine 
Learning methods and software. 
Programming skills: Python, eventually R or Matlab. Ability to publish. 

Contacts  

Amandine MARREL1 : amandine.marrel [at] cea.fr 

Georis BILLO1 : georis.billo [at] cea.fr 
1CEA Cadarache, CEA/DES/IRESNE/DER/SESI/LEMS, 13108 Saint-Paul-lez-Durance 
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