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Introduction
Advances in data collection and storage capabilities have led to an
information overload.
à Explosion of the information available from experiments.
Problem : curse of dimensionality.
à Traditional statistical methods break down.
Hope :

Data highly redundant.
Most of the information in the initial variables can be summarized by a
small number of variables.

Figure : Concentration of 3D data (blue) around a plane (red)
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How to reduce the number of va-
riables ?

äTwo different ways to reduce the number of variables :
1 By keeping the most relevant variables from the original dataset.

à Feature selection methods : Backward-forward, Lasso, Elastic net...

2 By finding a smaller set of new variables, combination of the input
variables, containing basically the same information as the input variables.
à Dimension reduction methods : ACP, ICA, PLS...
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Notations

ä Here are some useful notations.

F X denotes a scalar or a vector.

F Xi denotes the i th coordinate of X .

F X denotes a matrix.

F Xij denotes the value in the i th row and j th column of X.

F X .i denotes the vector corresponding to the i th column of X.

F X i. denotes the vector corresponding to the i th row of X.
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Dimension reduction methods

ä Inputs : A multivariate random variable X = (X1, ...,Xp) ∈ Rp.
ä Goal : To find a function

f :

{
Rp → Rk

X 7→ C := f (X )

with k � p, such that C := (C1, ...,Ck) ∈ Rk best preserves :
The structure of the original data.

The relevant information in the data.

ä The variables C1, ...,Ck are called latent variables.

F Can we represent each data point with fewer features, without losing
much ?
à Yes, if there is redundancy in the data !
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Linear case
ä If the operator is linear, i.e. of the form

X 7→ C := FTX ,

where F ∈ Rp,k , the method is said to be linear.
à Latent variables are in this case linear combinations of the input
variables, since, for all j = 1, ..., k , we have

Cj = F.j
T
X =

p∑
i=1

FijXi .

à Most commonly used method
à Simpler, easier to implement.
à Even if f is not invertible, one can find an operator g such that

X ≈ g(C ).
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Different motivations for dimension re-
duction

F Data compression.

F Visualization.

F Latent variables construction to reduce the number of input variables in a
statistical model (for regression, classification, predictive models...).

F Density estimation, simulation of physical processes.

F ...
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Presentation outline

1 Dimension reduction methods through matrix factorization

2 Independent component analysis

3 Non linear methods and manifolds

4 Multilinear PCA

5 Conclusion
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Matrix factorization

Matrix factorization
ä Equivalent to search an approximation of X ∈ Rp in the form of

X ≈ FC

where
• X := (X1, ...,Xp)T are the p input variables.
• C := (C1, ...,Ck)T contains the k latent variables, with

k ≤ p. The random variables C1, ...,Ck are also called
components.

• F ∈ Rp,k is the factor matrix. Its columns are called the
factors.

ä We have

X ≈
k∑

j=1

CjF
.j

and

X i. ≈
k∑

j=1

FijCj , i = 1, ..., p.
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Matrix factorization

Matrix factorization
ä In other words, we attempt to decompose X ∈ Rp as

X = Xk + E ,

where Xk := FC , F ∈ Rp,k and C ∈ Rk , such that L(X ,Xk) is minimal.

ä L quantifies the quality of the approximation and may be
a least square criterion, i.e.

L(A,B) =‖ A− B ‖F=
∑
i,j

(aij − bij)
2 ,

or the Kullback-Leibler distance, i.e.

L(A,B) = KL(A ‖ B) =
∑
i,j

aij log
aij
bij
− aij + bij .

12 / 84
N



Matrix factorization ICA Non linear methods MPCA Conclusion

Matrix factorization

A visual point of view
X︷︸︸︷

≈ p

k

︸ ︷︷ ︸
F

×

C︷︸︸︷

When we have a sample, this is equivalent to
X1︷︸︸︷

≈

︸ ︷︷ ︸
F

×

C1︷︸︸︷
,

X2︷︸︸︷
≈

︸ ︷︷ ︸
F

×

C2︷︸︸︷
, . . . ,

X n︷︸︸︷
≈

︸ ︷︷ ︸
F

×

C n︷︸︸︷
.
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By concatening,

︸ ︷︷ ︸
X

≈

︸ ︷︷ ︸
F

× ︸ ︷︷ ︸
C

.

Finally, after transposing, we get

n

p︷ ︸︸ ︷
...

︸ ︷︷ ︸
X

≈

k︷ ︸︸ ︷
...

︸ ︷︷ ︸
C

× ︸ ︷︷ ︸
FT

.
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Matrix factorization

Empirical point of view

ä Let X ∈ Rn,p be the design matrix, where each row represents an
observation of the multivariate random variable X = (X1, ...,Xp).

ä In practice, we want to find matrices C and F such that

X ≈ CFT := X̂k .

where
• C ∈ Rn,k is the matrix of the components. Each row

represents a realization of the k random latent variables
C1, ...,Ck ,

• F ∈ Rp,k is the factor matrix.
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Matrix factorization

Low rank approximation (k � p)

n

p︷ ︸︸ ︷

︸ ︷︷ ︸
X

≈

k︷ ︸︸ ︷

︸ ︷︷ ︸
C

× ︸ ︷︷ ︸
FT

.

ä Why are low-rank approximations important ?
F Intuitively, if the matrix X is low rank, then the observations can be

explained by linear combinations of few underlying variables.

F Allows to know which variables control the observations, contribute to the
largest variations in the data.

ä The different dimension reduction methods depend on the properties
fulfilled by the components and by the factors.
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Matrix factorization

Example 1 : PCA
Goal : to build k decorrelated latent variables C1, ...,Ck where Ci = XT fi
(with fi ∈ Rp and ‖ fi ‖= 1) satisfying

Var(C1) ≥ Var(C2) ≥ ... ≥ Var(Ck) > 0.

In practice, this is equivalent to solve

argmin
F∈Rp,k

‖ X− XFFT ‖2 s.t FTF = I,

where X is centered, or equivalently

argmin
F, C

‖ X− CFT ‖2 s.t FTF = I, CT1 = 0.

The solution is given by
• C := XPk ,
• F := Pk ,

where the columns of Pk form a basis of the space spanned by the
eigenvectors of 1

n
XTX associated to the k highest eigenvalues.

The latent variables are decorrelated and the column factors F .j of F are
orthogonal → Principal component analysis (PCA).
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Matrix factorization

Example 2 : NMF 2

We often deal with "non-negative data" (pixels, concentration, counts...)
à X contains only non-negative elements.
Non-negative data need special treatment because negative valued factors
can contradict reality.
PCA involves adding up some factors then substracting others.
Substracting does not make sense in context of some applications.
What does NMF do ?
F Like PCA, except that the coefficients in the linear combination and the
factors cannot be negative.

min
F,C

E
(
‖ X − FC ‖22

)
s.t. F ≥ 0, C ≥ 0.

Or, from an empirical point of view,

min
F,C

‖ X− CFT ‖2F s.t. F ≥ 0, C ≥ 0.

The latent variables and the factors contain only non-negative elements
→ Non-negative matrix factorization (NMF).

2. D.D.Lee and H.S.Seung (1999). Learning the parts of objects by
non-negative matrix factorization. Nature, 401(6755) : 788-791. 18 / 84
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Matrix factorization

Example of NMF on faces 3

ä Training set : 2429 examples of centered face images of size 19× 19.

Figure : PCA and NMF components

PCA factors are
not interpretable.

NMF factors find
parts that are
additive (noses,
mouths, eyes...).

3. Figure taken from : de D.D.Lee and H.S.Seung (1999). Learning the
parts of objects by non-negative matrix factorization. Nature, 401(6755) :
788-791.
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Matrix factorization

NMF summary

NMF does additive decomposition.

NMF is a better way to explain structured data, is more a part based
representation

The NMF algorithm is based on gradient descent. The decomposition is
not unique.
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Matrix factorization

Example 3 : ICA

ä The latent variables are independent à Independent component
analysis (ICA)

min
F,C

KL (X ‖ FC )

under the constraint that (Ci )1≤i≤k are as independent as possible.

ä More details in the next few slides.
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Matrix factorization

Summary
F C L

PCA Columns of F orthonormal.
X i ≈ linear combination of
the factors.

Columns of C orthogonal.
i.e.
Latent variables C decorre-
lated.

‖ . ‖F

NMF Coefficients of F ≥ 0.
X i ≈ positive linear com-
bination of the factors.

Coefficients of C ≥ 0
i.e.
Latent variables C with po-
sitive coefficients.

‖ . ‖F

ICA Columns of F linearly inde-
pendent but not necessarily
orthogonal.

Rows of C are statistically
independent as much as
possible.
i.e.
Latent variables C are inde-
pendent .

KL(. ‖ .)
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ICA

Objective of the ICA method 4

Goal : to write X := (X1, ...,Xp)
T as a mixture of independent variables

C := (C1, ...,Ck)
T ,

i.e.
X = FC ,

where

• X := (X1, ...,Xp)T are the p input variables.
• C := (C1, ...,Ck)T are k independent variables, called
components or sources.

• F ∈ Rp,k is the factor matrix, with the factors in column.
• k ≤ p.

4. Hyvärinen, Aapo and Karhunen, Juha and Oja, Erkki (2004). Inde-
pendent component analysis, 46, John Wiley & Sons.
http ://www. cis. hut. fi/projects/ica/
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ICA

Pre-processing

Centering of the variables

Whitening (decorrelation and normalization), so that

E(XXT ) = Ip.

• The data are whitened using PCA.
• Advantage : restores the initial "shape" of the data, then ICA must only

rotate the resulting matrix

I = E(XXT ) = FE(CCT )F = FIFT = FFT .
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ICA

Link ICA-PCA
F PCA build non correlated variables, but decorrelation does not
imply independence 5.

Figure : Two independent uniform r.v. Figure : Mixture of two independent r.v.

F In the two cases, the r.v. are decorrelated but they are independent
only in the left case.

5. Decorrelation : E(XY ) = E(X )E(Y ).
Independence : E(f (X )g(Y )) = E(f [X ])E(g [Y ]), for all measurable functions f and
g .
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ICA

Link ICA-PCA

Figure : Inputs Figure : Mixed
Figure : Whitened
(PCA)

Figure : Rotated
(ICA)

F PCA decorrelate but the resulting projection has not produced
independence.
F ICA outputs are independent.
F Applying ICA means to rotate the whitened representation back to
the original independent variables.
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ICA

Conditions and constraints
F To ensure identifiability, the following assumptions are made.

1 At most one source has a normal distribution, because the distribution of
Gaussian whitened variables is spherically symmetric.

Figure : Gaussian distribution

2 rang(F) = k = min(k, p) (in other words k ≤ p and the matrix F is full
rank).

F Indetermination.
The sign.
The order (invariance to output permutations, no sense of ordering of
components).
The variance of the components.
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ICA

Objective function

ä In practice, ICA search for

k components C1, ...,Ck as independent as possible that are linear
combination of the input variables X1, ....,Xp, i.e

C = WX ,

where W ∈ Rk,p

and a matrix F ∈ Rp,k

such that
X ≈ FC .

ä

ICA = Linear dimension reduction method.
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ICA

How to characterize independence ?
F The independence between random variables C1, ...,Ck (with a
density) is characterized by

pC =
k∏

j=1

pCj .

F A natural way of verifying if the components of X are independent is
to measure

δ(pC ,
k∏

j=1

pCj ),

where δ is a divergence measure between densities.
F If δ= Kullback-Leibler divergence D

à Mutual information IC

IC = D

(
pC ‖

k∏
i=1

pCi

)
.
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ICA

Notion of independence

Mutual information

IC = D(pC ‖
k∏

i=1

pCi ).

IC ≥ 0.
IC = 0 iff C1, ...,Ck independent.

à Problem : pC is not known.

Key= non-gaussianity
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ICA

Non-gaussian is independent
We search an approximation Zi of one of the {Cj} as a linear combination
of X

à Zi = wT
i X .

If X = FC then Zi = wT
i X = wT

i FC = yT
i C =

∑k
j=1 yijCj , with

yi = FTw .

àZi is a linear combination of {Cj}.
CLT : distribution of a sum of independent random variables tends toward
a Gaussian distribution, under certain conditions.

Figure : Sum of two independent r.v usually has a distribution that is
closer to a Gaussian

ä Maximizing the non-gaussianity of wT
i X to get independent components.
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ICA

Non-gaussianity and independence

ä Let us go back to

Figure : Mixture of two independent r.v. Figure : ICA components

ä And look at the marginal distribution

Figure : Almost gaussian Figure : Far from gaussian
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ICA

Non-gaussianity measures
F Some examples of measures.

Kurtosis.
KC := E

{
C 4}− 3

(
E(C 2)

)2
.

KX = 0 for standardized Gaussian r.v. X .
Very sensitive to outliers.

Entropy HC .
A Gaussian r.v. has maximum entropy among all real-valued r.v with
same mean and variance.
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ICA

Non-gaussianity measures

F Some examples of measures.
Negentropy.

JC = HG − HC ,

where G ∼ N (E(C),V(C)).
JC = 0 iff C is Gaussian.
For the ICA model, we have

IC = −
p∑

i=1

JCi
+ c,

where c is a constant.

Minimizing mutual information = Maximizing negentropy.
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ICA

Approximation of the negentropy of a
r.v. Y

Simple approximation.

JY ≈
1
12

E
(
Y 3)2 + 1

48
Kurt(Y)2

where Y is centered and reduced.
Advanced approximations.

JY ≈
r∑

i=1

ki [E {Fi (Y )} − E {Fi (G)}]2 ,

where
• r is the number of functions used in the approximation.
• {Fi} can be

• F (y) = y4.
• F (y) = − exp(−y2/2).
• F (y) = 1

a
log(cosh(ay)) with 1 < a < 2.

• ...
• {ki} are some positive weights.
• G is a Gaussian variable of zero mean and unit variance.
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ICA

Other difference between PCA and
ICA

F ICA is a generalization of PCA.
F ICA components provide a more compact representation because
the ones of PCA can still have statistical dependencies.
F PCA components are decorrelated and its factors are orthogonals.
F Only the ICA components are required to be independent, no
orthogonality condition on the ICA factors.

(a) Exemple 1 (b) Exemple 2

Figure : ACP (bleu) and ICA (rouge) : the factors are not the same, ICA
factors not orthogonal.
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ICA

ICA and dimension reduction
ä If we need to perform dimensionality reduction, we usually
precede ICA with PCA :

1 Do PCA to reduce the dimension

CP = XFP
k

T
.

2 Do ICA on the PCA components to produce independence

CI = CPFI
k

T
.

3 Finally,

CI = X
(
FI
kF

P
k

)T
⇒ Fk = FI

kF
P
k

and
X̂k = CI (Fk)

†

ä ICA can only separate linear mixed sources.
ä There might not be independence. But, even if the sources are not
independent, ICA finds a space where they are maximally independents.
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ICA

Example

Figure : ICA versus PCA components
39 / 84
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Non linear methods

Non linear manifolds
F Many data lies near or on a non-linear manifold.
F ACP, ICA... are linear dimension reduction methods and linear
projection may not preserve distances and topology along a
non-linear structure.

Figure : Figure taken from Wikipedia (article on self-organizing map)

F Issue : what can we do in this case to
1 Produce a compact low-dimensional encoding of a given high-dimensional

data set.
2 Simplify, reduce and clean the data for visualization.

F A possible solution : : Kernel PCA.
41 / 84
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Non linear methods

Kernel PCA
ä Inputs : x1, ..., xn points in Rp (high dimension).

ä Objective : a representation y1, ..., yn of x1, ..., xn in dimension k (low
dimension) that preserves the topology of the observed point cloud.

ä Notation : we denote by Y the matrix whose rows are the {yi}1≤i≤n.

Its columns can be interpreted as realizations of k features (∼
components) of the initial data.

ä Idea : find a non-linear function φ that maps the data in Rp into a
space E of higher dimension m ≥ p, to introduce linearity

φ :

{
Rp → E
x 7→ φ(x)

.

ä Then, extract principal component in that space.
ä The result will be non-linear in the original data space

à Kernel PCA extracts nonlinear features.
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Non linear methods

An example

Figure : Initial observations

ä This is not possible to separate the red and green points by a line.

à These classes are linearly inseparable in the input space.

ä But, if we consider the following simple mapping

φ :

{
R2 7→ R3

x = (x1, x2)T → x
′

= (x1, x2, x
2
1 + x2

2 )
,

then the points can be split up by a plane in this feature space.
43 / 84
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Non linear methods

An example

Figure : After mapping

à We can perform PCA in the space produced by the nonlinear mapping.
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Non linear methods

Kernel PCA
ä We assume that

1
n

n∑
i=1

φ(xi ) = 0.

ä Performing PCA in E is equivalent to solve

argmin
W∈C

{
1
n

n∑
i=1

‖ φ(xi )−WWTφ(xi ) ‖

}
,

where C =
{
W ∈ Rm,k : WTW = Ik

}
.

ä Solution : the solution is given by the SVD of φ(X) = UDVT , where
X is the design matrix whose rows are the {xi}1≤i≤n.

ä Problem : φ(X) ∈ Rn,m and if m is large, this makes computations
quickly very costly and even impractical+ problem of the choice of φ.
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Non linear methods

Kernel trick
ä Solution to get around this problem.
This is possible to reduce the dependence on m and φ, if we have a
kernel K that allows to compute

K (xi , xj) = φ(xi )
Tφ(xj).

ä Kernel trick : PCA in the feature space can be formulated entirely
in terms of dot products between data point, since it requires only the
computation of the eigenvectors of the covariance matrix

Ẑ =
1
n

n∑
i=1

φ(xi )φ(xi )
T ,

i.e. to solve
Ẑv = λv .

ä K does not depend on m and can be computed in a run time that
depends only on n.

46 / 84
N



Matrix factorization ICA Non linear methods MPCA Conclusion

Non linear methods

Kernel trick
ä If λ 6= 0, we have

v =
1
nλ

n∑
i=1

(φ(xi ), v)φ(xi ).

i.e v can be written as

v =
n∑

i=1

αiφ(xi ).

ä Finding the eigenvectors is equivalent to finding the coefficients
α := (α1, ..., αn) ∈ Rn that satisfies

Kα = nλα,

where K = (K (xi , xj))ij ∈ Rn,n with

K (xi , xj) = φ(xi )
Tφ(xj).

ä The normalization condition ‖ v ‖= 1 implies a normalization
condition on α

αTKα = 1.
47 / 84
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ä Let vj =
∑n

i=1 α
j
iφ(xi ), j = 1, ..., k the resulting k principal directions.

ä We sum up each of the x observation in the input space by k features
y = (y1, ..., yk), where

y j := φ(x)Tpj =
n∑

i=1

αj
iφ(x)Tφ(xi ) =

n∑
i=1

αj
iK (x , xi ).

ä Data can be reconstructed in feature space by

φ̂(x) =
k∑

j=1

(φ(x)Tpj)pj .

ä Drawback :
Unfortunately, Kernel PCA does not inherit all the strength of PCA.

Reconstruction in the initial space is not trivial.

Finding x̂ in the initial space such that φ̂(x) = φ(x̂) is difficult and often
even impossible.
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Non linear methods

Some popular and useful kernels

ä Kernel PCA comes to select a Kernel K instead of a dot product in
Rp.

ä A kernel commonly used is the Gaussian kernel

K (xi , xj) = exp
(
−γ ‖ xi − xj ‖22

)
where γ = 1

2σ2 is a parameter.
ä Other possible kernels are the polynomial one

K (xi , xj) = (1 + xTi xj)
d ,

or the following kernel

K (xi , xj) = tanh(xTi xj + δ),

where δ is a parameter.
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Non linear methods

Algorithm

1 Pick a Kernel K.

2 Construct the normalized (if the data are not centered) kernel matrix of
the data (dimension n × n)

K̃ = K− 2
n
1K+

1
n2 1K1

where K = (Kij) ∈ Rn,n and Kij = K(xi , xj). In other words, compute

K̃ = HKHT

where H = I− 1
n
11T .

3 For i = 1, ..., k, solve the eigenvalue problem

K̃αi = λiα
i ,

where λ1, ..., λk are the k largest eigenvalues of K̃.
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Non linear methods

Example

(a) Original space (b) Feature space

Figure : Kernel PCA
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Non linear methods

Not always suited to manifold learning

Figure : Results of kernel PCA with Gaussian and polynomial kernels. These
kernels do not lead to low dimensional representations that unfold the Swiss
roll.
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Non linear methods

MultiDimensional Scaling (MDS)

ä Goal : To map the original high dimensional space to a lower
dimensional space, in an attempt to preserve pairwise distance.

F Let DX := (dX
ij ) ∈ Rn,n be the distance matrix associated to the input

space.

ä Objective : Attempt to find n points y1, ..., yn in Rk such that
DY := (dY

ij =‖ yi − yj‖2) ∈ Rn,n is similar to DX .

F To do so, we can consider MDS that minimizes

argmin
Y

n∑
i=1

n∑
j=1

(
dX
ij − dY

ij

)2
.
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Non linear methods

MDS
F Let

K = −1
2
HDXH,

where H = I− 1
n
11T is the centering matrix.

This is equivalent to solve

argmin
Y

Tr
(
K− YTY

)2
. (1)

ä Let K = VDVT its spectral decomposition. The solution of Problem
(1) is given by

Y = D1/2
k VT

k ,

where Dk corresponds to the top k eigenvalues of K and Vk to the
associated eigenvectors.

ä If DX := (dX
ij =‖ xi − xj‖2), then MDS=PCA.

54 / 84
N



Matrix factorization ICA Non linear methods MPCA Conclusion

Non linear methods

Isomap 6

ä Isomap is a nonlinear generalization of classical MDS. The idea is to
perform MDS, not in the input space Rp, but in the geodesic space of
the nonlinear data manifold to preserve the geodesic distance.

6. Tenenbaum, Joshua B and De Silva, Vin and Langford, John C
(2000). A global geometric framework for nonlinear dimensionality reduc-
tion. Science, 290(5500) : 2319–2323. American Association for the Ad-
vancement of Science.
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Non linear methods

Isomap
1 Graph construction : Identify the nearest neighbours of each point.

Represent the neighbourhood relations by a graph G with edges of weigh
‖xi − xj‖2 between neighbours and 0 otherwise.

2 Approximation of the geodesic pairwise distance between all points dGij
by adding the weights of the shortest path distance between xi and xj on
G.

3 Embed the data via MDS with dX
ij = dGij and dY

ij = ‖xi − xj‖2.

Figure : Isomap. Figure taken from : Tenenbaum, Joshua B and De Silva, Vin and
Langford, John C (2000). A global geometric framework for nonlinear dimensionality
reduction. Science, 290(5500) : 2319–2323.

56 / 84
N



Matrix factorization ICA Non linear methods MPCA Conclusion

Non linear methods

Locally Linear Embedding (LLE) 7

ä The global nonlinear structure is recovered by locally linear fits.

ä If the non-linear manifold is smooth, we can assume each data point
and its neighbours lie on (or close to) a locally linear patch of the
manifold.

ä Goal : to map the high-dimensional data points to a single global
coordinate system such that the relationships between neighbouring
points are preserved.

7. Roweis, Sam T and Saul, Lawrence K (2000). Nonlinear dimensiona-
lity reduction by locally linear embedding. Science, 290(5500) : 2323–2326.
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Non linear methods

LLE in three steps

1 Identify the neighbours N(i) of each data point xi .

2 For all xi ∈ Rp, compute the weights that best linearly reconstruct xi
from its neighbours

xi =
∑
j∈N(i)

wijxj + εi .

In other words, find w i = (wi1, ...,win) that minimizes

‖ xi −
∑
j∈N(i)

wijxj ‖2 .

From a global point of view, we look for a matrix W := (wij)i,j ∈ Rn,n

such that

argmin
W


n∑

i=1

‖ xi −
∑
j∈N(i)

wijxj ‖2
 s.t.

∑
j∈N(i)

wij = 1, ∀i .
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Non linear methods

LLE last step

Then, given W, we attempt to find y1, ..., yn ∈ Rk solution of

min
W


n∑

i=1

‖ yi −
∑
j∈N(i)

wijyj ‖2
 .

with
1
n
YTY = Ik .

ä This is equivalent to solve

argmin
Y∈C

{
Tr
(
YLYT

)}
where L = (I−W)T (I−W) and C =

{
Y ∈ Rn,k : YTY = Ik

}
.

ä The solution is given by the k eigenvectors associated to the lowest k
eigenvalues of L.
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Non linear methods

LLE illustration

Figure : Figure taken from : Roweis, Sam T and Saul, Lawrence K (2000). Nonlinear
dimensionality reduction by locally linear embedding. Science, 290(5500) : 2323–2326.
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Non linear methods

LLE example

Figure : Figure taken from : Roweis, Sam T and Saul, Lawrence K (2000). Nonlinear
dimensionality reduction by locally linear embedding. Science, 290(5500) : 2323–2326.
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Non linear methods

Unified framework

Method Kernel
PCA K = XTY
LLE K = L†

où L = (I−W)T (I−W)
LEM K = L†

où L = R−W

MDS K =
1
2
(
I− 11T

)
D
(
I− 11T

)
ISOMAP K =

1
2
(
I− 11T

)
DG
(
I− 11T

)
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MPCA

High-order PCA
ä Objects of interest in many computer vision and pattern recognition
applications, such as 2D or 3D images, are naturally described as tensors
or multilinear arrays.

Figure : Color image : order-3 tensors, Black-white image : order-2 tensors 8

8. Figure taken from : Hung Hung (2012). On multilinear principal component ana-
lysis of order-two tensors. Biometrika, 99(3), 569–583.
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MPCA

High-order PCA

Vectorization ? Naive application of PCA to tensor objects requires to
reshape the tensors into vectors with high dimensionality.
Problem :

High processing cost in terms of increased computational and memory
demands.
Loss of the local character of some variables.
Loss of potentially more compact and useful representations.

à We need more efficient dimension reduction tools.

Solution : Multilinear Principal Component Analysis (MPCA)
à Multilinear projection that better captures the variations in the
tensorial input space.
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MPCA

Best approximation for a given rank
ä PCA : Best rank-k approximation of the design matrix X by the sum
of the products of two order-1 tensors.
Indeed,

X ≈
k∑

j=1

λju
(1)
j ◦ u

(2)
j ,

where
{
u
(1)
j

}
1≤j≤k

and
{
u
(2)
j

}
1≤j≤k

are the left and right eigenvectors

of the SVD of X.

ä Generalization : Let A be an order-N tensor of size (I1, ..., IN). Find
the best rank-k tensor of the form

k∑
j=1

λju
(1)
j ◦ ... ◦ u

(N)
j ,

where u
(i)
j is a vector in RIi .
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MPCA

With illustrations

Figure : PCA rank approximation

Figure : Tensor rank approximation
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MPCA

High-Order SVD (HO-SVD) 9

Let A ∈ T I1×I2×...×IN an order-N tensor. The HO-SVD of A is defined by

A = S ×1 U
(1) ×2 U

(2) × ...×N U(N), (2)

1 U(n) is a square orthogonal matrix of size In ,i.e

U(n)TU(n) = U(n)U(n)T ) = IIn . (3)

2 S ∈ T I1×I2×...×IN and the sub-tensor Sin=α (obtained by setting the nth

index of the tensor equal to α) satisfies
∀n ∈ {1, ...,N} , α, β with α 6= β〈

Sin=α,Sin=β
〉
= 0. (4)

For all n ∈ {1, ...,N},
‖ Sin=1 ‖≥‖ Sin=2 ‖≥ · · · ≥‖ Sin=In ‖≥ 0. (5)

Notice that, for all n = 1, ...,N and j = 1, ..., In, σ
(n)
j :=‖ Sin=j ‖.

9. De Lathauwer, L., De Moor, B. and Vandewalle, J. (2000). A multi-
linear singular value decomposition. SIAM journal on Matrix Analysis and
Applications, 21(4) : 1253–1278.
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MPCA

HO-SVD

ä Remarks :
For N = 2, this is the classical SVD.

S = A×1 U
(1)T ×2 U

(2)T × ...×N U(N)T .

For N > 2, S is not pseudo-diagonal : non-zero coefficients may be out of
the indices i1 = i2 = ... = iN .

ä A is combination of order-1 tensors that are mutually orthogonal

A =
I1∑

i1=1

I2∑
i2=1

. . .

In∑
in=1

si1i2...iNU
(1)
i1
◦ U(2)

i2
◦ ... ◦ U(N)

iN
,

where U
(l)
ij

denotes the j th column of U(l).

ä Usually, the summation does not involves
∏N

n=1 Iin terms but only∏N
n=1 Rn terms, in which Rn is the highest index for which ‖ Sin=Rn ‖> 0.
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MPCA

An equivalent representation
ä Mode-n unfolding of a tensor A (denoted by A(n))

Figure : Unfoldings of an order-3 tensor

ä The mode-n unfolding of (2) gives the following matrix
decomposition

A(n) = U(n)S(n)

(
U(n+1) ⊗ U(n) ⊗ · · · ⊗ U(N) ⊗ U(1) ⊗ U(2) ⊗ · · · ⊗ U(n−1)

)T
,

where ⊗ denotes the Kronecker product.
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MPCA

Link HO-SVD et SVD
ä A matrix representation of the HO-SVD can be obtained using the
unfoldings of A and S

A(n) = U(n)Σ(n)V (n)T

where
Σ(n) = diag

(
σ
(n)
1 , σ

(n)
2 , ..., σ

(n)
In

)
and

V (n)T = Σ(n)−1
S(n)

(
U(n+1) ⊗ U(n) ⊗ · · · ⊗ U(N) ⊗ U(1) ⊗ U(2) ⊗ · · · ⊗ U(n−1)

)
.

ä S(n) has mutually orthogonal rows, having frobenius normal equal to
σ
(n)
1 , σ

(n)
2 , ..., σ

(n)
In

.
ä V (n) is orthogonal, like U(n).

ä Therefore, the
{
U(i)

}
are given by the SVD on the unfolding of A.
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MPCA

HO-SVD and dimension reduction 10

ä Let Â be the tensor defined by

Â =
J1∑

i1=1

J2∑
i2=1

. . .

JN∑
iN=1

si1i2...iNU
(1)
i1
◦ U(2)

i2
◦ ... ◦ U(N)

iN

with Ji < Ri .
ä Then, we have

‖ A − Â ‖2≤
R1∑

i1=J1+1

(σ
(1)
i1

)2 +
R2∑

i2=J2+1

(σ
(2)
i2

)2 + ...+

RN∑
iN=JN+1

(σ
(N)
iN

)2.

10. MPCA : Multilinear principal component analysis of tensor objects,
Lu, Haiping and Plataniotis, Konstantinos and Venetsanopoulos, Anasta-
sios (2008). IEEE Transactions on Neural Networks, 19(1) : 18–39.
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MPCA

With illustrations

Figure : PCA

Figure : MPCA
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MPCA

Algorithm

1 For n=1,...,N
Given a tensor A ∈ T I1×...×IN , construct the mode-n unfolding A(n) of A.
Compute the SVD of A(n) := U(n)D(n)V (n)T , n = 1, ...,N and strore the

top kn eigenvectors in a matrix U
(n)
kn

.

2 The core tensor S is then the projection of A onto the tensor basis formed

by the factor matrixes
{
U

(n)
kn

}N

n=1
i.e S = A×N

n=1 U
(n)
kn

T
.
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MPCA

Particular case : 2D-SVD
ä Let {X1, ....,Xn} be n realizations of a matrix X ∈ Rl,c .
ä Define

F =
n∑

i=1

(Xi − X )(Xi − X )T

G =
n∑

i=1

(Xi − X )T (Xi − X ),

where X =
1
n

∑n
i=1 Xi .

ä Let Uk the matrix containing the top k eigenvectors of F and Vs the
one containing the top s eigenvectors of G , with k � c and s � l .

ä In the same spirit as SVD, Xi is approximated by

Xi ≈ UkMiV
T
s ,

where Mi = UT
k XiVs .
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MPCA

An example : comparison MPCA and
PCA

Figure : 20 test faces randomly drawn (rows 1-2), reconstructions by MPCA
(rows 3-4) and PCA (rows 5-6). Figure taken from : Hung Hung (2012). On
multilinear principal component analysis of order-two tensors. Biometrika, 99(3) :
569–583. 76 / 84
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MPCA

An example : different performances
of MPCA and PCA

Figure : Image reconstruction, MPCA (top) and PCA (bottom). Figure taken
from : Hung Hung (2012). On multilinear principal component analysis of order-two
tensors. Biometrika, 99(3) : 569–583.

ä Better performance of MPCA for this example.

77 / 84
N



Matrix factorization ICA Non linear methods MPCA Conclusion

MPCA

An example : leading 100 basis

Figure : MPCA : more module oriented, PCA : too much information in a
basis. Figure taken from : Hung Hung (2012). On multilinear principal component
analysis of order-two tensors. Biometrika, 99(3) : 569–583. 78 / 84
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Conclusion

Survey of some important dimension reduction methods, but there are
many other ones.

Latent probabilistic models (FA, PPCA, PICA,...)
Dimension reduction methods for functional data.
PLS
Projection Pursuit
Random projection
...

The reason of the dimension reduction is an important issue
Compression
Visualization
Regression
Classification
Simulation
....

to choose the best method !
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Conclusion

PCA, ICA, NMF, MPCA or non-linear methods ?

Depends on what you want to do
PCA works well for dimension reduction.
ICA provides a clean output, obtains maximal independence.
NMF provides interpretable output, but only for non-negative data and has
no particular statistical properties.
MPCA is well suited for observations that have a tensorial stucture.
Non-linear methods can be used to extract features or to do classification
on manifolds, but not for compression or simulation.

When in doubt, try them all !
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Thank you for your
attention
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A first reference for each method

ICA : Hyvärinen, Aapo and Oja, Erkki (2000). Independent component
analysis : algorithms and applications. Neural networks, 13(4), 411–430.
Elsevier.

NMF : Paatero, Pentti and Tapper, Unto (1994). Positive matrix
factorization : A non-negative factor model with optimal utilization of
error estimates of data values. Environmetrics, 5(2), 111–126. Wiley
Online Library.

Kernel PCA : Schölkopf, Bernhard and Smola, Alexander and Müller,
Klaus-Robert (1997). Kernel principal component analysis. Artificial
Neural Networks—ICANN’97, 583-588. Springer.

ISOMAP : Tenenbaum, Joshua B and De Silva, Vin and Langford, John C
(2000). A global geometric framework for nonlinear dimensionality
reduction. Science, 290(5500), 2319–2323. American Association for the
Advancement of Science.
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A first reference for each method

LLE : Roweis, Sam T and Saul, Lawrence K (2000). Nonlinear
dimensionality reduction by locally linear embedding. Science, 290(5500),
2323–2326, American Association for the Advancement of Science.

MPCA/ HO-SVD : De Lathauwer, Lieven and De Moor, Bart and
Vandewalle, Joos (2000). A multilinear singular value decomposition.
SIAM journal on Matrix Analysis and Applications, 21(4), 1253–1278,
SIAM.
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R Packages

PCA : https ://cran.r-project.org/web/packages/FactoMineR/index.html

ICA : https ://cran.r-project.org/web/packages/fastICA/index.html

NMF : https ://cran.r-project.org/web/packages/NMF/index.html

Kernel PCA :
https ://cran.r-project.org/web/packages/kernlab/index.html

ISOMAP et LLE :
https ://www.bioconductor.org/packages/3.3/bioc/vignettes/RDRToolbox/inst/doc/vignette.pdf

MPCA : https ://cran.r-project.org/web/packages/rTensor/index.html.
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