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Course outline

1 General introduction to calibration

2 Introduction to Gaussian processes

3 Gaussian process-based calibration and improved prediction : linear case

4 Gaussian process-based calibration and improved prediction : non-linear case

5 Examples of recent methodological developments (by Guillaume Damblin, Merlin Keller and
Guillaume Perrin)
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Computer models

Computer models have become essential in science and industry !

For clear reasons : cost reduction, possibility to explore hazardous or extreme scenarios...
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Challenges when working with computer models

Challenges
Computation time can be large
• We will not try to make the computer model faster
• We will try to spare computation time. E.g. metamodelling

There can be numerical errors
• We do not address this issue
• It is the verification problem

The code may require a complex parametrization
• We will address this issue.
• It is the calibration problem
• Also related to sensitivity analysis

We do not know if the computer model display a reliable picture of “reality”
• We will address this issue.
• It is the validation or improved-prediction problem
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First notation

A computer model, or computer code is represented by a function f :

f : (D ⊂ Rd )× Rp → R
(x ,β) → f (x ,β)

One can also obtain observations from a physical system

x ∈ Rd → physical system → y ∈ R

The inputs x are the experimental conditions.

The inputs β are the calibration parameters of the computation code.

The outputs f (x ,β) and y are the quantity of interest.

A computation code models (gives an approximation of) a physical phenomenon.
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Calibration with variable physical system

Basic point :

For a fixed experimental condition x , there does not exist a unique “true” quantity of interest
y ∈ R
Similarly there does not exist a unique “true” calibration parameter β0 ∈ Rp

One possible model :

β is a random vector with distribution Lβ
The computer model characterizes the physical system completely, that is with

x ∈ Rd → physical system → y ∈ R

we have
y = f (x ,β) + ε

with ε ∼ N (0, σ2
m) independently of β

See e.g.

S. Fu, Inversion probabiliste bayésienne en analyse d’incertitude, PhD thesis, Université
Paris-Sud 11, 2012. http://tel.archives-ouvertes.fr/tel-00766341/.

We do not address this setting in this course

François Bachoc Calibration of computer experiments ETICS - June 2016 6 / 81

http://tel.archives-ouvertes.fr/tel-00766341/


Calibration with fixed physical system

Basic point :

For a fixed experimental condition x , there exists a unique “true” quantity of interest φ(x) ∈ R
Similarly there exists a unique “true” calibration parameter β0 ∈ Rp

The model for Section 1

β0 is fixed in Rp

The computer model characterizes the physical system completely, that is with

x ∈ Rd → physical system → y ∈ R

we have
y = f (x ,β0) + ε

with ε ∼ N (0, σ2
m)

=⇒ f (x ,β0) is the true and unknown value of the physical system for the experimental
condition x
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Bayesian framework and linearization

Bayesian framework

β0 ∼ N (βprior ,Qprior )

with

fixed and known βprior ∈ Rp

fixed and known positive definite m ×m matrix Qprior ∈ Rp

Linearization
There exists a fixed and known nominal model parameter βnom so that

∀x : f (x ,β) = f (x ,βnom) +

p∑
i=1

hi (x)(βi − βnom,i )

This model is used e.g. in

T. Kawano, K.M. Hanson, S. Frankle, P. Talou, M.B. Chadwick and R.C. Little, Evaluation and
propagation of the 239Pu Fission Cross-Section uncertainties using a Monte Carlo technique
Nuclear Science and Engineering (153) 1-7, 2006.
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A simplification

The linearization

∀x : f (x ,β) = f (x ,βnom) +

p∑
i=1

hi (x)(βi − βnom,i )

can be simplified by letting
∀β ∈ Rp : β̄ = β − βnom
β̄prior = βprior − βnom

∀β̄ ∈ Rp : f̄ (x , β̄) = f (x , β̄)− f (x ,βnom)

This gives us that
β̄0 ∼ N (β̄prior ,Qprior )

∀x : f̄ (x , β̄) =

p∑
i=1

hi (x)β̄i

No loss of information entailed since β and β̄ are deterministic functions of one another :
inference on β̄⇐⇒ inference on β

In the sequel, unless stated otherwise, we implicitly assume that this transformation has been
made
Hence the model is

β0 ∼ N (βprior ,Qprior ) and ∀x : f (x ,β) =

p∑
i=1

hi (x)βi
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Experimental results

Recall that with
x ∈ Rd → physical system → y ∈ R

we have
y = f (x ,β0) + ε

Consider that n experiments are carried out at x1, ..., xn ∈ D ⊂ Rd with observed quantities of
interests y1, ..., yn
Then we have for i = 1, ..., n

yi = f (x i ,β0) + εi

=
n∑

j=1

hj (x i )β0,j + εi ,

where ε1, ..., εn ∼iid N (0, σ2
m).

Define

the n × 1 vector y = (y1, ..., yn)t

the n × 1 vector ε = (ε1, ..., εn)t

the n × p matrix H defined by Hi,j = hj (x i )

Then we have
y = Hβ0 + ε
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Posterior distribution of β0

Recall that
y = Hβ0 + ε

Let us calculate the joint distribution of (y ,β0) :

E(y) = HE(β0) = Hβprior

cov(y) = Hcov(β0)H t + σ2
mIn = HQprior H t + σ2

mIn

cov(y ,β0) = Hcov(β0,β0) = HQprior so that(
y
β0

)
∼ N

[(
Hβprior
βprior

)
,

(
HQprior H t + σ2

mIn HQprior
Qprior H t Qprior

)]
From the general results given in Section 3, we thus have

L(β0|y) = N (βpost ,Qpost )

with
βpost = βprior + 1

σ2
m

(Q−1
prior + 1

σ2
m

H t H)−1H t (y − Hβprior )

Qpost = (Q−1
prior + 1

σ2
m

H t H)−1

And (see restricted maximum likelihood in Section 3) we can estimate σ2
m by

σ̂2
m =

1
n − p

y t (In − H(H t H)−1H t )y
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Comments

L(β0|y) = N (βpost ,Qpost )

with

βpost = βprior + 1
σ2

m
(Q−1

prior + 1
σ2

m
H t H)−1H t (y − Hβprior )

Qpost = (Q−1
prior + 1

σ2
m

H t H)−1

Comments

Everything remains linear Gaussian

Posterior uncertainty < prior uncertainty

βpost →σ2
m→+∞ βprior and Qpost →σ2

m→+∞ Qprior

If p ≤ n and rank(H t H) = p then
βpost = βprior + (σ2

mQ−1
prior + H t H)−1H t (y − Hβprior )→σ2

m→+0

βprior + (H t H)−1H t (y − Hβprior ) = (H t H)−1H t y (least square estimator, ignoring the prior
distribution). Also Qpost →σ2

m→+0 0

If p is fixed and n→∞, we generally have (H t H)−1 →n→∞ 0. Hence Qpost →n→∞ 0.
Uncertainty on β0 generally vanishes
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Predicting the physical system

Let x0 ∈ D ⊂ Rd be a new experimental condition.
Let the p × 1 vector h(x0) = (h1(x0), ..., hp(x0))t

Then we have

L(f (x0,β0)|y) = L(h(x0)tβ0|y) = N (h(x0)tβpost ,h(x0)t Qpost h(x0))

Let y0 = f (x0,β0) + ε0 be a new potential observation of the physical system. Then we have,
since ε0 is independent of y ,β0,

L(y0|y) = N (h(x0)tβpost ,h(x0)t Qpost h(x0) + σ2
m)

We predict future observations by the calibrated code only
Asymptotically (n→∞, p fixed), the uncertainty on a new observation is only σ2

m which is
non-reducible
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Limitations

Limitations :

The differences between the correctly calibrated computer model and the observations are
only modeled by measure errors

This assumption can be ruled out statistically if σ̂2 is very large

We predict the physical system by f (x0,βpost ) =⇒ we are restricted/sub-optimal if the
computer model is inappropriate
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Introducing the model error function

We would like to extend the statistical model in the following way :
with

x ∈ Rd → physical system → y ∈ R

we have
y = φ(x) + ε

where φ : D ⊂ Rd → R is the fixed and unknown physical system function. ε ∼ N (0, σ2
m) is still

the measure error

We want to have the following :

∀x ∈ Rd ; φ(x) = f (x ,β0) + e(x)

where

β0 is the fixed and unknown correct model parameter

e : D ⊂ Rd → R is a fixed and unknown function called the model error function or model
error
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Identifiability issues

Recall that we want the following statistical model :

∀x ∈ Rd ; φ(x) = f (x ,β0) + e(x) (1)

However, it is not clear how to define β0 and e w.r.t φ in a good way. One can simultaneously
change the definition of β0 and e and satisfy (1) !
This is an important problem which is not fully solved to my knowledge
=⇒ Roughly speaking, this identifiability issue should impact only inference on β0 not inference
on φ

One way to obtain a well-defined mathematical model is the Bayesian way where :

β0 is a realization of a random vector (as before)

e is a realization of a random function (of a Gaussian process)

In addition, working with Gaussian processes will enable to work with posterior distributions for the
physical system φ

=⇒ Hence we now introduce Gaussian processes
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Summary

Code function
f (x ,β)

Physical system
x ∈ Rd → physical system → y ∈ R

One setting that we do not address

yi = f (x i ,βi ) + εi

Our setting
yi = f (x i ,β0) + εi

Bayesian framework and linearization =⇒ calibration and prediction of physical system
we stay in the linear Gaussian framework

We now want to introduce the model error function

yi = f (x i ,β0) + e(x i ) + εi

identifiability issues
e as Gaussian process realization
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1 General introduction to calibration

2 Introduction to Gaussian processes

3 Gaussian process-based calibration and improved prediction : linear case

4 Gaussian process-based calibration and improved prediction : non-linear case

5 Examples of recent methodological developments (by Guillaume Damblin, Merlin Keller and
Guillaume Perrin)
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Stochastic processes

A stochastic process is a function
Z : Rd → R such that Z (x) is a random
variable. Alternatively a stochastic
process is a function on Rd that is
unknown, or that depends of underlying
random phenomena.

We explicit the randomness of Z (x) by writing it Z (ω, x) with ω in a probability space Ω. For a
given ω0, we call the function x → Z (ω0, x) a realization of the stochastic process Z .

Mean function M : x → M(x) = E(Z (x))
Covariance function C : (x1, x2)→ C(x1, x2) = cov(Z (x1),Z (x2))
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Gaussian variables and vectors

A random variable X is a Gaussian
variable with mean µ and variance
σ2 > 0 when its probability density
function is

fµ,σ2 (x) =
1

√
2πσ

exp
(
−

1
2σ2

(x − µ)2
)

A n-dimensional random vector V is a
Gaussian vector with mean vector m
and invertible covariance matrix R when
its multidimensional probability density
function is

fm,R(v) =

1

(2π)
n
2
√

det(R)
exp

(
−

1
2

(v −m)t R−1(v −m)

)

E.g. for Gaussian variables : µ and σ2 are both parameters of the probability density function and
the mean and variances of it. That is

∫ +∞
−∞ xfµ,σ2 (x)dx = µ and

∫ +∞
−∞ (x − µ)2fµ,σ2 (x)dx = σ2

Let A and m be a fixed matrix and a fixed vector :

If v is a Gaussian vector, then m + Av is also a Gaussian vector
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Gaussian processes

A stochastic process Z on Rd is a Gaussian process when for all n ∈ N, for all x1, ..., xn, the
random vector (Z (x1), ...,Z (xn)) is Gaussian.

A Gaussian process is characterized by its mean and covariance functions.

Why are Gaussian processes convenient ?

Gaussian distribution is reasonable for modeling a large variety of random variables

Gaussian processes are simple to define and simulate

They are characterized by their mean and covariance functions

Conditional distributions of components of Gaussian vectors are still Gaussian

Gaussian processes have been the most studied theoretically
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The mean function

When modeling computer experiments with Gaussian process, it is standard to have a
constant or affine mean function :

M(x) = a0

or
M(x) = a1x1 + . . .+ ad xd

In geostatistics (when modeling natural data with Gaussian processes) one may consider
more complex mean functions

In this course, we consider Gaussian processes with zero mean function :

∀x ∈ Rd M(x) = 0

(Roughly speaking the computer model will play the role of a mean function)
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The covariance function

The covariance function

C : (x1, x2)→ C(x1, x2) = cov(Z (x1),Z (x2))

C must me symmetric non-negative definite

∀n ∈ N, ∀x1, ..., xn ∈ Rd ,∀λ1, ..., λn ∈ R :
n∑

i,j=1

λiλj C(x i , x j ) ≥ 0

=⇒ the covariance matrix [C(x i , x j )]i,j=1,...,n must be non-negative definite

Often, we require the covariance function to be positive definite :

if (x1, ..., xn) are 2-by-2 distinct and (λ1, ..., λn) 6= (0, ..., 0) :
n∑

i,j=1

λiλj C(x i , x j ) > 0

=⇒ the covariance matrix [C(x i , x j )]i,j=1,...,n must be positive definite
=⇒ No Z (x) can be expressed as a linear combination of Z (x1), ...,Z (xn) when
x1 6= x , ..., xn 6= x
=⇒≈ the realizations of Z are sufficiently complex
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Stationary covariance functions

Stationarity
The covariance function C is stationary when

∀x1, x2 ∈ Rd : C(x1, x2) = C(x1 − x2)

=⇒ The distribution of the Gaussian process with zero mean function and covariance function C
is translation-invariant

Bochner’s theorem

Consider a stationary function C(x1, x2) = C(x1 − x2). Define the Fourier transform Ĉ : Rd → R
of C by

Ĉ(f ) =
1

(2π)d

∫
Rd

C(t)e−if ·t dt ,

where i2 = −1. Assume that

C(t) =

∫
Rd

Ĉ(f )eif ·t df

In this case :

C is symmetric non-negative definite⇐⇒ ∀f ∈ Rd : Ĉ(f ) ≥ 0

C is symmetric positive definite⇐⇒ ∀f ∈ Rd : Ĉ(f ) > 0
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Proof of ⇐ in Bochner’s theorem

Let n ∈ N, x1, ..., xn ∈ Rd , α1, ..., αn ∈ R :

n∑
i,j=1

αiαj C(xi , xj ) =
n∑

i,j=1

αiαj

∫
Rd

Ĉ(f )eif ·(x i−x j )df

=

∫
Rd

Ĉ(f )

 n∑
i,j=1

αiαj eif ·(x i−x j )

 df

=

∫
Rd

Ĉ(f )

 n∑
i,j=1

αi eif ·x iαj eif ·x j

 df

=

∫
Rd

Ĉ(f )

( n∑
i=1

αi eif ·x i

) n∑
j=1

αj eif ·x j

 df

=

∫
Rd

Ĉ(f )

∣∣∣∣∣
n∑

i=1

αi eif ·x i

∣∣∣∣∣
2

df

This proves the symmetric non-negative definite part. The symmetric positive definite part is
proved by remarking that for x1, ..., xn 2-by2 distinct, the functions eif ·x1 , ..., eif ·xn are linearly
independent
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Regularity of Gaussian processes

Mean square continuity

A Gaussian process Z is mean-square continuous on Rd is for all x0 ∈ Rd we have

E([Z (x)− Z (x0)]2)→x→x0 0

Mean square differentiability (on R)
A Gaussian process Z is mean-square differentiable on R if there exists a Gaussian process Z ′ on
R so that for all x0 ∈ R we have

E

([
Z (x0 + h)− Z (x0)

h
− Z ′(x0)

]2
)
→h→0,h>0 0

=⇒ Z ′ is called the derivative process of Z

Mean square differentiability of higher order (on R)
Definition by induction : A Gaussian process Z is k times mean-square differentiable on R with
derivative process Z (k) if

Z is k − 1 times mean-square differentiable on R with derivative process Z (k−1)

Z (k−1) is mean-square differentiable on R with derivative process Z (k)
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Relationships with covariance function regularity

Proposition (continuity)

Let Z be a Gaussian process on Rd with mean zero and covariance function C. Then Z is
mean-square continuous on Rd if and only if C is continuous on Rd × Rd

Proposition (derivability)
Let Z be a Gaussian process on R with mean zero and covariance function C. Then, if C is 2k
times continuously differentiable on R× R, Z is k times mean square differentiable on R

Proposition (link with Fourier transforms)

Let C be a stationary covariance function with Fourier transform Ĉ. Then, if∫
R

Ĉ(f )|f |l df < +∞

C is l times continuously differentiable on R× R

∫
R Ĉ(f )f 2k df < +∞ =⇒ C is C2k =⇒ Z is k times mean square differentiable
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The Matérn model on R

Matérn model
A covariance function C on R is Matérn with covariace parameters φ > 0, ν > 0 and α > 0 if C is
stationary and its Fourier transform is

Ĉ(f ) = φ
1

(α2 + f 2)
1
2 +ν

Ĉ(f ) > 0 =⇒ C is symmetric positive definite

ν : smoothness parameter.
ν > k ⇐⇒

∫
R Ĉ(f )f 2k df < +∞ =⇒ C is 2k times continuously differentiable =⇒ Z is k

times mean square differentiable.
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Parameterization of the Matérn covariance function on R

Parameterization of the Matérn model
Alternative parameterization by σ2 > 0, ` > 0, ν > 0 :

C(x) =
σ2

Γ(ν)2ν−1

(
2
√
νx
`

)ν
Kν
(

2
√
νx
`

)

Interpretation of the parameters

σ2 = K (0) is the variance→ order of magnitude of the Gaussian Process

` is the correlation length→ scale of variation of the Gaussian Process

ν is the smoothness parameter→ smoothness of the Gaussian Process
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Particular cases

ν = 1
2 : exponential covariance function

C(x) = σ2e−
√

2 |x|
`

=⇒ mean square continuous

ν = 3
2 : Matérn 3/2 covariance function

C(x) = σ2
(

1 +
√

6
|x |
`

)
e−
√

6 |x|
`

=⇒ mean square differentiable

ν = 5
2 : Matérn 5/2 covariance function

C(x) = σ2

(
1 +
√

10
|x |
`

+
10
3
|x |2

`2

)
e−
√

10 |x|
`

=⇒ twice mean square differentiable

ν → +∞ : Gaussian covariance function

C(x) = σ2e−
x2

`2

=⇒ infinitely mean square differentiable
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Plot of some Matérn covariance functions on R

The Matérn 3/2 covariance function

Cσ2,`(x1, x2) = σ2
(

1 +
√

6
|x1 − x2|

`

)
e−
√

6
|x1−x2|
`

=⇒ two times differentiable at 0 but not three times :

(1 + |t |)e−|t| = 1−
t2

2
+
|t |3

3
+ O(t4)

=⇒ decreases with |t | 0 1 2 3 4
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Plot of the Matérn covariance function with σ2 = 1,
` = 1 and ν = 1

2 , ν = 3
2 , ν = 5

2 and ν =∞.
=⇒ The value of ` has the same interpretation
regardless of ν
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Impact of σ2 on Gaussian process realizations
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FIGURE: Influence of the variance parameter σ2 for the Matérn covariance function. Plot of trajectories of
Gaussian processes with the Matérn covariance function with correlation length ` = 1, smoothness parameter
ν = 3

2 and variance σ2 = 1
2 , 1, 2 from left to right.
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Impact of ` on Gaussian process realizations
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FIGURE: Influence of the correlation length ` for the Matérn covariance function. Plot of trajectories of Gaussian
processes with the Matérn covariance function with variance σ2 = 1, smoothness parameter ν = 3

2 and
correlation length ` = 1

2 , 1, 2 from left to right.
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Impact of ν on Gaussian process realizations
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FIGURE: Influence of the smoothness parameter ν for the Matérn covariance function. Plot of trajectories of
Gaussian processes with the Matérn covariance function with variance σ2 = 1, correlation length ` = 1 and
smoothness parameter ν = 1
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3
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5
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Matérn covariance function on Rd

Geometric anisotropic Matérn covariance function

Parameterized by σ2 > 0, `1 > 0, ...,`d > 0, ν > 0
Defined by, with

|x |` =

√√√√ d∑
i=1

x2
i

`2i
,

and with C1,ν the Matérn covariance function in dimension one with σ2 = 1 and ` = 1,

C(x) = σ2C1,ν(|x |`)

(symmetric positive definite, see Stein 99, Rasmussen 06)

Tensor product Matérn covariance function

Parameterized by σ2 > 0, `1 > 0, ...,`d > 0, ν > 0
Defined by

C(x) = σ2
d∏

i=1

C1,ν

(
xi

`i

)

→ `i is the i-th correlation length and is the scale of variation corresponding to xi
→ `i very large⇐⇒ Gaussian process realizations practically do not depend on xi
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Remark on tensor product covariance functions

General properties :

If C1, ...,Cd are symmetric non-negative definite functions on R× R, then

C(x) = C1(x1)...Cd (xd )

is a symmetric non-negative definite functions on R× R
If furthermore C1, ...,Cd are stationary covariance functions on R, with Fourier transforms
Ĉ1, ..., Ĉd , and if for i = 1, ..., n

Ci (t) =

∫
R

Ĉi (f )eift df

then we have
Ĉ(f ) = Ĉ1(f1), ..., Ĉd (fd )

and
C(t) =

∫
Rd

Ĉ(f )eif ṫ df

=⇒ The tensor product Matérn covariance function is symmetric positive definite
=⇒ Tensorization always enables to build multidimensional covariance functions from
monodimensional ones
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Main tool for inference on Gaussian processes : Gaussian
conditioning theorem

Theorem
Let (Y 1,Y 2)t be a (n1 + n2)× 1 Gaussian vector with mean vector (mt

1,m2)t and covariance
matrix (

R1 R1,2
Rt

1,2 R2

)
Then, conditionally on Y 1 = y1, Y 2 is a Gaussian vector with mean

E(Y 2|Y 1 = y1) = m2 + Rt
1,2R−1

1 (y1 −m1)

and variance
var(Y 2|Y 1 = y1) = R2 − Rt

1,2R−1
1 R1,2

Illustration
When (Y1,Y2)t be a 2× 1 Gaussian vector with mean vector (µ1, µ2)t and covariance matrix(

1 ρ
ρ 1

)
Then

E(Y2|Y1 = y1) = µ2 + ρ(y1 − µ1) and var(Y2|Y1 = y1) = 1− ρ2
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Summary

Gaussian processes are a model for random functions

Characterized by mean and covariance functions

Covariance function must be symmetric non-negative definite (many possibilities on Rd × Rd )
Matérn covariance function can carry information on

smoothness
scale of variations
order of magnitude

For inference on Gaussian processes : Gaussian conditioning theorem
conditional distributions are Gaussian
explicit matricial formulas
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1 General introduction to calibration

2 Introduction to Gaussian processes

3 Gaussian process-based calibration and improved prediction : linear case

4 Gaussian process-based calibration and improved prediction : non-linear case

5 Examples of recent methodological developments (by Guillaume Damblin, Merlin Keller and
Guillaume Perrin)
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The stochastic model

With, for i = 1, ..., n
x i ∈ Rd → physical system → yi ∈ R

our stochastic model is

yi =

p∑
j=1

hj (x i )β0,j + Z (x i ) + εi

where

β0 = (β0,1, ...,β0,p)t ∼ N(βprior ,Qprior ), with βprior and Qprior known

x i ∈ D is fixed and observed

The functions h1, ..., hp : D → R can be evaluated (partial derivatives of code function f )

φ(x) =
∑p

j=1 hj (x)β0,j + Z (x) is the physical system function (code+model error)

Z is a centered Gaussian process with unknown covariance function C

ε1, ..., εn ∼iid N (0, σ2
m)

yi is thus an observed Gaussian variable

Comments :

The randomness of ε1, ..., εn is “frequentist”

The randomness of β0 and Z is “Bayesian”

The model is identifiable when h1, ..., hp are linearly independent
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Matrix notations

Let

the n × 1 vector y = (y1, ..., yn)t

the n × 1 vector ε = (ε1, ..., εn)t

the n × 1 vector z = (Z (x1), ...,Z (xn))t

the n × p matrix H defined by Hi,j = hj (x i )

Then we have
y = Hβ0 + z + ε

Let

Σ be the n × n matrix defined by Σi,j = cov(zi , zj ) = C(x i , x j ). Hence Σ = cov(z)

R be the n × n matrix defined by R = Σ + σ2
mIn. Hence R = cov(z + ε)

Then we have

y ∼ N
(

Hβprior ,HQprior H t + R
)
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Estimation of C and σ2
m : parametrization

To estimate R we need to estimate C and σ2
m :

We select C in the parametric set {σ2Cθ , σ
2 ∈ S ⊂ (0,∞),θ ∈ Θ ⊂ Rq} (e.g. Matérn model)

σ2
m is selected in the set Sm

Let for (σ2,θ, σ2
m) ∈ S ×Θ× Sm

Rσ2,θ,σ2
m

= σ2Σθ + σ2
mIn

with Σθ the n × n matrix defined by Σθ,i,j = Cθ(x i , x j )

Remark : If the measure error variance σ2
m is known (expert knowledge), the following remains

valid with Sm = {σ2
m}
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Estimation of C and σ2
m : restricted maximum likelihood

Under covariance parameters (σ2,θ, σ2
m) we have :

y ∼ N
(

Hβprior ,HQprior H t + Rσ2,θ,σ2
m

)
Let

W be a (n − p)× n matrix, with full rank, so that WH = 0

w = Wy
Then w is a Gaussian vector and we have

E(w) = WHβprior = 0

and
cov(w) = WHQprior H t W t + WRσ2,θ,σ2

m
W t = WRσ2,θ,σ2

m
W t

Then restricted maximum likelihood on y is maximum likelihood on w :

(σ̂2, θ̂, σ̂2
m) ∈ argmin

σ2,θ,σ2
m∈S×Θ×Sm

ln(|WRσ2,θ,σ2
m

W t |) + w t (WRσ2,θ,σ2
m

W t )−1w

=⇒We are not impacted by βprior and Qprior
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Properties of restricted maximum likelihood

Proposition (Harville, 74)

i) Changing W only multiplies the restricted likelihood by a constant not depending on σ2,θ, σ2
m

ii) For W so that WW t = In−m and W t W = In − H(H t H)−1H t we have

ln(|WRσ2,θ,σ2
m

W t |) + w t (WRσ2,θ,σ2
m

W t )−1w

= − ln |H t H|+ ln |Rσ2,θ,σ2
m
|+ ln |H t R−1

σ2,θ,σ2
m

H|+ y tΠσ2,θ,σ2
m

y ,

with
Πσ2,θ,σ2

m
= R−1

σ2,θ,σ2
m
− R−1

σ2,θ,σ2
m

H(H t R−1
σ2,θ,σ2

m
H)−1H t R−1

σ2,θ,σ2
m

iii) Let H = USV t with n × p matrix U so that U t U = Ip,p , p × p diagonal matrix S with
non-negative components, and orthogonal p × p matrix V . Then

(σ̂2, θ̂, σ̂2
m) ∈ argmin

σ2,θ,σ2
m∈S×Θ×Sm

ln
∣∣∣∣U t R−1

σ,θ,σ2
m

U
∣∣∣∣+ ln

∣∣∣Rσ,θ,σ2
m

∣∣∣+ y t R−1
σ,θ,σ2

m
y

−y t R−1
σ,θ,σ2

m
U(U t R−1

σ,θ,σ2
m

U)−1U t R−1
σ,θ,σ2

m
y

The estimator (σ̂2, θ̂, σ̂2
m) is not impacted by the choice of W

We can avoid n × n matrix products. The condition number of H is not impacting the
estimation
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Proof of i)

Let W 1 and W 2 so that, for i = 1, 2 W i is (n − p)× n, with full rank, so that W i H = 0.

Let E be the linear space orthogonal to the column space of H. Then E ⊂ Rn has dimension
n − p. Let PE be the orthogonal projection from Rn to E . Let, for i = 1, 2, Si be the linear mapping
from E to Rp defined by Si v = W t

i v . Then Si is invertible with inverse S−1
i : Rp → E .

We have

W t
2y = W t

2(PE y)

= S2PE y

= S2S−1
1 S1PE y

= S2S−1
1 W t

1(PE y)

= S2S−1
1 (W t

1y)

Hence, there exists an invertible p × p matrix F so that W t
2y = FW t

1y . Hence, with gσ2,θ,σ2
m

the

pdf of W t
1y ,

E(f (W t
2y)) = E(f (FW t

1y)) =

∫
Rp

f (Fz)gσ2,θ,σ2
m

(z)dz =

∫
Rp

f (z)gσ2,θ,σ2
m

(F−1z)|F−1|dz

so that

(likelihood of W t
2y) = gσ2,θ,σ2

m
(F−1W t

2y)|F−1| = gσ2,θ,σ2
m

(W t
1y)|F−1| = |F−1|(likelihood of W t

1y)
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Proof of ii) and iii)

For ii), see Harville, 74
For iii)

− ln |H t H|+ ln |Rσ2,θ,σ2
m
|+ ln |H t R−1

σ2,θ,σ2
m

H|+ y tΠσ2,θ,σ2
m

y

= − ln |H t H|+ ln |Rσ2,θ,σ2
m
|+ ln |H t R−1

σ2,θ,σ2
m

H|+ y t R−1
σ2,θ,σ2

m
y

−y t R−1
σ2,θ,σ2

m
H(H t R−1

σ2,θ,σ2
m

H)−1H t R−1
σ2,θ,σ2

m
y

= − ln |H t H|+ ln |Rσ2,θ,σ2
m
|+ ln |VSU t R−1

σ2,θ,σ2
m

USV t |+ y t R−1
σ2,θ,σ2

m
y

−y t R−1
σ2,θ,σ2

m
USV t (VSU t R−1

σ2,θ,σ2
m

USV t )−1VSU t R−1
σ2,θ,σ2

m
y

= − ln |H t H|+ ln |Rσ2,θ,σ2
m
|+ 2 ln |VS|+ ln |U t R−1

σ2,θ,σ2
m

U|+ y t R−1
σ2,θ,σ2

m
y

−y t R−1
σ2,θ,σ2

m
USV t (SV t )−1(U t R−1

σ2,θ,σ2
m

U)−1(VS)−1VSU t R−1
σ2,θ,σ2

m
y

= − ln |H t H|+ 2 ln |VS|+ ln
∣∣∣∣U t R−1

σ,θ,σ2
m

U
∣∣∣∣+ ln

∣∣∣Rσ,θ,σ2
m

∣∣∣+ y t R−1
σ,θ,σ2

m
y

−y t R−1
σ,θ,σ2

m
U(U t R−1

σ,θ,σ2
m

U)−1U t R−1
σ,θ,σ2

m
y
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After estimation : plug-in

Plug-in
C is estimated by Cσ̂2,θ̂

σ2
m is estimated by σ̂2

m

We make the approximation that C = Cσ̂2,θ̂ and that σ2
m = σ̂2

m to compute all subsequent
conditional distributions

=⇒ convenient simplification
=⇒ one alternative : Bayesian framework on σ2,θ, σ2

m

In the rest of this section we consider that C and σ2
m are known
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Calibration

Proposition
We have

L(β0|y) = N (βpost ,Qpost )

with

βpost = βprior + (Q−1
prior + H t R−1H)−1H t R−1(y − Hβprior )

Qpost = (Q−1
prior + H t R−1H)−1

Comments

Everything remains linear Gaussian

Posterior uncertainty < prior uncertainty

βpost →R−1→0 βprior and Qpost →R−1→0 Qprior

If p is fixed and n→∞, we do not necessarily have Qpost →n→∞ 0
=⇒ Properties of fixed domain asymptotics (book, Stein 99)
=⇒ Related to the identifiability issues for the realizations of Z and β0
=⇒ cf exercise session
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Proof (1/2)

The Gaussian pdf with mean vector m and covariance matrix Σ is of the form

ln(p(z)) = Cst .−
1
2

z tΣ−1z + z tΣ−1m,

where Cst . does not depend on z .

We have, where Cst . does not depend on β

ln(pβ0|y (β|y)) = ln

(
py|β0

(y |β)pβ0 (β)

py (y)

)

= Cst .−
1
2

(β − βprior )t Q−1
prior (β − βprior )−

1
2

(y − Hβ)t R−1(y − Hβ)

= Cst .−
1
2
βt Q−1

priorβ + βt Q−1
priorβprior −

1
2
βt H t R−1Hβ + βt H t R−1y

= Cst .−
1
2
βt (Q−1

prior + H t R−1H)β + βt (Q−1
priorβprior + H t R−1y)

Hence,
Qpost = (Q−1

prior + H t R−1H)−1

and
βpost = (Q−1

prior + H t R−1H)−1(Q−1
priorβprior + H t R−1y)
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Proof (2/2)

βpost = (Q−1
prior + H t R−1H)−1(Q−1

priorβprior + H t R−1y)

= (Q−1
prior + H t R−1H)−1(Q−1

priorβprior + H t R−1(y − Hβprior ) + H t R−1Hβprior )

= βprior + (Q−1
prior + H t R−1H)−1H t R−1(y − Hβprior )
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Illustration of calibration (1/3)

Observation of the physical system : for i = 1, ..., n yi = x2
i + εi . ε1, ..., εn are iid N (0, σ2

m)

with σ2
m = 0 (without measure errors) or σ2

m = 0.12 (with measure errors)

Computer model : f (x ,β) = β1 + β2x

Model error as a realization of a Gaussian process with covariance function :

C(x , y) = σ2 exp
(
− |x−y|2

`2

)
. σ = 0.3, ` = 0.5 (known)

βprior =

(
0.2
1

)
,Qprior =

(
0.09 0

0 0.09

)
Observations : x1 = 0.2, x2 = 0.4, x3 = 0.6 and x4 = 0.8 on D = [0, 1]
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Illustration of calibration (2/3) (without measure errors)

FIGURE: Up-left : prior probability density function of the parameter β0. Down-left : posterior probability density
function of the parameter β0. Right : plot of the code response corresponding to prior and posterior mean of the
code parameter.
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Illustration of calibration (3/3) (with measure errors)

FIGURE: Up-left : Prior probability density function of the parameter β0. Down-left : Posterior probability density
function of the parameter β0. Right : plot of the code response corresponding to prior and posterior mean of the
code parameter.
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Prediction (1/2)

Goal : To compute L(φ(x0)|y) at a new experimental condition x0

Notations
y0 : potential observation at x0. y0 = φ(x0) + ε0 with ε0 ∼ N (0, σ2

m) (independent of the rest)

h(x0) : p × 1 vector defined by [h(x0)]j = hj (x0)

r(x0) : n × 1 vector defined by [r(x0)]i = cov(Z (x i ),Z (x0)) = C(x i , x0)
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Prediction (2/2)

Proposition

L(φ(x0)|y) = N (φ̂(x0), σ̂2(x0))

L(y0|y) = N (φ̂(x0), σ̂2(x0) + σ2
m)

with

φ̂(x0) = (h(x0))tβpost + (r(x0))t R−1(y − Hβpost )

σ̂2(x0) = C(x0, x0)− r(x0)t R−1r(x0) + (h(x0)− H t R−1r(x0))t (H t R−1H +

Q−1
prior )−1(h(x0)− H t R−1r(x0))

The prediction expression is decomposed into a calibration term and a Gaussian inference
term of the model error.

When the code has a small error on the n observations, the prediction at x0 uses almost only
the calibrated code.

L(y0|y) can be used in cross validation of the stochastic model
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Proof (1/2)

Law of total expectation :

E(φ(x0)|y) = E[E(φ(x0)|y ,β0)|y ]

Then, since

p(φ(x0)|y ,β0) =
p(φ(x0), y ,β0)

p(y ,β0)
=

p(φ(x0), y ,β0)p(β0)

p(y ,β0)p(β0)
=

p(φ(x0), y |β0)

p(y |β0)
= p|β0

(φ(x0)|y),

we have

E(φ(x0)|y ,β0) = E|β0
(φ(x0)|y)

Now, conditionally to β0,(
y0
y

)
∼ N

((
h(x0)tβ0

Hβ0

)
,

(
C(x0, x0) r(x0)t

r(x0) R

))
Hence, from the Gaussian conditioning theorem

E|β0
(φ(x0)|y) = h(x0)tβ0 + r(x0)t R−1(y − Hβ0).

So

E(φ(x0)|y) = E[h(x0)tβ0 + r(x0)t R−1(y − Hβ0)|y ]

= (h(x0))tβpost + (r(x0))t R−1(y − Hβpost )

François Bachoc Calibration of computer experiments ETICS - June 2016 56 / 81



Proof (2/2)

Law of total variance :

var(φ(x0)|y) = E[var(φ(x0)|y ,β0)|y ] + var [E(φ(x0)|y ,β0)|y ]

We have, from the previous Gaussian conditioning theorem,

E[var(φ(x0)|y ,β0)|y ] = E[C(x0, x0)− r(x0)t R−1r(x0)|y ]

= C(x0, x0)− r(x0)t R−1r(x0)

and

var [E(φ(x0)|y ,β0)|y ] = var [h(x0)tβ0 + r(x0)t R−1(y − Hβ0)|y ]

= var [(h(x0)t − r(x0)t R−1H)β0|y ]

= var [(h(x0)− H t R−1r(x0))tβ0|y ]

= (h(x0)− H t R−1r(x0))t Qpost (h(x0)− H t R−1r(x0))

= (h(x0)− H t R−1r(x0))t (Q−1
prior + H t R−1H)−1(h(x0)− H t R−1r(x0))
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Illustration of prediction (1/3)

Observation of the physical system : for i = 1, ..., n, yi = −sin(πx
2 ) + εi ε1, ..., εn are iid

N (0, σ2
m) with σ2

m = 0 (without measure errors) or σ2
m = 0.12 (with measure errors)

Computer model : f (x ,β) = β1 + β2x + β3x2 + β4x3

Model error as a realization of a Gaussian process with covariance function :

C(x , y) = σ2 exp
(
− |x−y|2

`2

)
. σ = 0.3, ` = 0.5 (known)

Qprior very large

D = [−1, 2] : 6 observations regularly sampled between −0.8 and 1.7

François Bachoc Calibration of computer experiments ETICS - June 2016 58 / 81



Illustration of prediction (2/3) (without measure errors)

The use of the model error improves the prediction given by the numerical code
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Illustration of prediction (3/3) (with measure errors)

The measure error deteriorates the quality of the predictions

The confidence intervals are however still reliable
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Case study : FLICA IV

We now illustrate the implementation of this Gaussian process model with the FLICA IV case study

Based on

F. Bachoc, G. Bois, J. Garnier and J.M Martinez, Calibration and improved prediction of
computer models by universal Kriging, Nuclear Science and Engineering 176(1) 81-97, 2014.
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FLICA IV : experimental results

x ∈ Rd → physical system → y ∈ R

The experiment/physical system
Pressurized and possibly heated water flowing through a cylinder

We measure the pressure drop between the two ends of the cylinder

y : the part of the pressure drop due to friction

Two kinds of experimental conditions
x is partitioned into

System parameters : Hydraulic diameter Dh, Friction height Hf , Channel width e

Environment variables : Output pressure Po , Flowrate Ge, Wall heat flux Φw , Liquid enthalpy
hl

e, Thermodynamic title X e
th, Input temperature Ti

Experimental results
There are n = 253 experimental results x1, y1, ..., xn, yn

Only 8 configurations of system parameters are explored ! (8 campaigns where a system is
built and tested under different environments)
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FLICA IV : computer model

FLICA IV modelling of the experiment is based on the local relations

∆Pfric =
H

2ρDh
G2fiso fh,

fiso =


al
Re if Re < Rel

at
Rebt

if Ret < Re
al
Re

Ret−Re
Ret−Rel

+ at
Rebt

Re−Rel
Ret−Rel

if Rel < Re < Ret

and

fh = 1−
Ph

Pw

Cf (Tw − Tb)

1 + d
(

Tw +Tb
2T0

)n ,

where al , at , bt ,Cf , n, d are the model parameters

The local relations above are integrated numerically

We focus on the parameters at , bt and fix the parameters al ,Cf , n, d to nominal values.
Hence β0 = (at , bt )

t . We let βprior = (0.22, 0.21)t and Qprior = diag(0.112, 0.1052)

When fh = 1 : Isothermal regime. Else anisothermal regime. Among the 253 experiments,
115 are in the isothermal regime

Run time ≈ 1 min
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FLICA IV : covariance functions

We experimented the following settings for the choice of C and σ2
m

Let x = (xs, xe) (decomposition between system parameters and environment variables).
Then

either C(x1, x2) = C̄(x1, x2) (dependence between different system parameters)
or C(x1, x2) = 1{xs,1 = xs,2}C̄(xe,1, xe,2) (independence between different system parameters)

Exponential, Matérn 3/2, Matérn 5/2 and Gaussian for C̄

σ2
m either provided by experimentalists or estimated by restricted maximum likelihood

=⇒ the prediction differences were small
=⇒ In the sequel we present the results with C(x1, x2) = C̄(x1, x2) and σ2

m provided by
experimentalists
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FLICA IV : cross validation

10-fold cross validation :

We partition the 253 experimental results into 10 subsets.

For each yi , we compute φ̃(x i ) and σ̃2(x i ) + σ2
m as φ̂(x i ) and σ̂2(x i ) + σ2

m but when only the
9 subsets not containing yi are used

We re-estimate the β0, C and σ2
m for each left out subset (10 estimations)

In each subset all of the 8 system parameter configurations are present
=⇒We predict for known system parameters

Prediction criteria :

root mean square error (RMSE) ; should be minimal

RMSE =
1
n

n∑
i=1

(yi − φ̃(x i ))2

90% confidence intervals ; should be close to 0.9

1
n

n∑
i=1

1
{
|yi − φ̃(x i )| ≤ 1.645

√
σ̃2(x i ) + σ2

m

}
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FLICA IV : calibration results

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25
at

b
t

Exp Tens
Matern 3/ 2
Matern 5/ 2
Gaussian

FIGURE: For each choice of covariance function for C : the 10 values of βpost = (at,post , bt,post )
t for the 10 left

out subsets.

The empirical correlation between at and bt comes from the relation at R
−bt
e
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FLICA IV : prediction results

Prediction results with 10-fold cross validation of the 253 experimental results :

RMSE 90% Confidence Intervals
Calibrated code 567Pa 241/253 ≈ 0.95

Gaussian Processes 196Pa 241/253 ≈ 0.95

Left : calibrated code. Right : Gaussian processes
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Summary

Our setting
yi = f (x i ,β0) + Z (x i ) + εi

Physical system (quantity of interest)

φ(x i ) = f (x i ,β0) + Z (x i )

model error Z : Gaussian process

Bayesian framework for β0

Linearization of f (x ,β0) =⇒ calibration and prediction
we stay in the linear Gaussian framework
explicit matrix vector formulas

identifiability issue solved in the stochastic framework (different code functions =⇒ different
distributions of the Gaussian process Z )

identifiability issue is likely to remain in practice

=⇒ we now investigate the limitations of the linear approximation of the code
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1 General introduction to calibration

2 Introduction to Gaussian processes

3 Gaussian process-based calibration and improved prediction : linear case

4 Gaussian process-based calibration and improved prediction : non-linear case

5 Examples of recent methodological developments (by Guillaume Damblin, Merlin Keller and
Guillaume Perrin)
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Notations

The stochastic model is, for i = 1, ..., n

yi = f (x i ,β0) + Z (x i ) + εi

Let for β ∈ Rp

fβ be the n × 1 vector defined by
[fβ]i = f (x i ,β)

Hβ be the n × p matrix defined by

[Hβ]i,j =
∂f (x i ,β)

∂βj

Then, a linear approximation around βnom ∈ Rp yields

y = fβ0 + z + ε

≈ fβnom + Hβnom (β0 − βnom) + z + ε

=⇒ this is our model from Section 3 when βnom = 0 and fβnom = 0. =⇒We can always recover
this setting upon changing the definition of β and y
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Calibration

From the calibration proposition in Section 3, if the relation

y = fβnom + Hβnom (β0 − βnom) + z + ε

is exact, then we have

E(β0|y) = βprior + (Q−1
prior + H t

βnom
R−1Hβnom )−1H t

βnom
R−1(y − fβnom − Hβnom (βprior − βnom))

and
cov(β0|y) = (Q−1

prior + H t
βnom

R−1Hβnom )

Proof : We have
y − fβnom = Hβnom (β0 − βnom) + z + ε

and β0 − βnom ∼ N (βprior − βnom,Qprior ), so we can apply the proposition in Section 3 which
gives

E(β0 − βnom|y − fβnom ) =

βprior − βnom + (Q−1
prior + H t

βnom
R−1Hβnom )−1H t

βnom
R−1(y − fβnom − Hβnom (βprior − βnom))

and
var(β0 − βnom|y − fβnom ) = (Q−1

prior + H t
βnom

R−1Hβnom )
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Iterative linear approximation

Algorithm
Start with i = 1 and βnom,1 = βnom
Until βnom,i+1 ≈ βnom,i (or after a computation budget is reached) do

1 Compute fβnom,i and Hβnom,i (calls to the computer model)

2 Let

βnom,i+1 =

βprior + (Q−1
prior + H t

βnom,i
R−1Hβnom,i )

−1H t
βnom,i

R−1(y − fβnom,i − Hβnom,i (βprior − βnom,i ))

3 Let i = i + 1

At the end of the algorithm, one can use βnom = βnom,i for the linear approximation, compute
fβnom,i and Hβnom,i , and use the calibration and prediction formulas of Section 3
=⇒We aim at choosing the linearization point at the maximum a posteriori, so that the linear
approximation is most accurate where the conditional distribution concentrates
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Prediction : general formulas

Let for x0 ∈ D, hβnom (x0) be the p × 1 vector defined by

[hβnom (x0)]j =
∂f (x0,βnom)

∂βj

If the two relations
y = fβnom + Hβnom (β0 − βnom) + z + ε

y0 = f (x0,βnom) + hβnom (x0)t (β0 − βnom) + Z (x0) + ε0

are exact, then we have

L(φ(x0)|y) = N (φ̂(x0), σ̂2(x0)) and L(y0|y) = N (φ̂(x0), σ̂2(x0) + σ2
m)

with

φ̂(x0) =

f (x0,βnom) + (hβnom (x0))t (βpost − βnom) + (r(x0))t R−1(y − fβnom − Hβnom (βpost − βnom))

and

σ̂2(x0) = C(x0, x0)− r(x0)t R−1r(x0)

+ (hβnom (x0)− H t
βnom

R−1r(x0))t (H t
βnom

R−1Hβnom + Q−1
prior )−1(hβnom (x0)− H t

βnom
R−1r(x0))

Proof : same as for calibration
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Exact non-linear calibration

We have
y = fβ0 + z + ε,

and
φ(x0) = f (x0,β0) + Z (x0)

Hence

E(β0|y) =

∫
β∈Rd βp(y |β)p(β)dβ∫
β∈Rd p(y |β)p(β)dβ

and

cov(β0|y) =

∫
β∈Rd ββt p(y |β)p(β)dβ∫

β∈Rd p(y |β)p(β)dβ
− E(β0|y)E(β0|y)t

with

p(y |β) =
1

(2π)n/2
√
|R|

exp
(
−

1
2

(y − fβ)t R−1(y − fβ)

)
and

p(β) =
1

(2π)p/2
√
|Qprior |

exp
(
−

1
2

(β − βprior )t Q−1
prior (β − βprior )

)
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One approximate non-linear calibration

We approximate the integrals with sums :
Let β1, ...,βN ∈ Rp be suitable to approximate integrals
=⇒ e.g. taken by determining a compact B ⊂ Rp containing most of the mass of p(β) , and then
by random or regular sampling
=⇒ possibility to use integration quadratures as well

Then one can use

Ẽ(β0|y) =

∑N
i=1 βi p(y |βi )p(βi )∑N

i=1 p(y |βi )p(βi )

and

˜cov(β0|y) =

∑N
i=1 βiβ

t
i p(y |βi )p(βi )∑N

i=1 p(y |βi )p(βi )
− Ẽ(β0|y)Ẽ(β0|y)t

=⇒ Necessitates N.n calls to the computer model
=⇒ Estimating C and σ2

m becomes complex. References with Bayesian framework on C and σ2
m,

Higdon et al 2004, Kennedy and O’Hagan 2001
=⇒ Here we use the estimates of C and σ2

m obtained from the linear approximation
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Exact non-linear prediction

We have, using the Gaussian conditioning theorem

E(φ(x0)|y ,β0) = f (x0,β0) + r(x0)t R−1(y − fβ0 )

Hence,

E(φ(x0)|y) = E(E(φ(x0)|y ,β0)|y)

=

∫
β∈Rd E(φ(x0)|y ,β)p(y |β)p(β)dβ∫

β∈Rd p(y |β)p(β)dβ

Similarly, from the Gaussian conditioning theorem

E(φ(x0)2|y ,β0) = E(φ(x0)|y ,β0)2 + var(φ(x0)|y ,β0)

with
var(φ(x0)|y ,β0) = C(x0, x0)− r(x0)t R−1r(x0)

Hence,

var(φ(x0)|y) = E(φ(x0)2|y)− E(φ(x0)|y)2

= E(E(φ(x0)2|y ,β0)|y)− E(φ(x0)|y)2

=

∫
β∈Rd E(φ(x0)2|y ,β)p(y |β)p(β)dβ∫

β∈Rd p(y |β)p(β)dβ
− E(φ(x0)|y)2

François Bachoc Calibration of computer experiments ETICS - June 2016 76 / 81



One approximate non-linear prediction

Same as for calibration :

Ẽ(φ(x0)|y) =

∑N
i=1 E(φ(x0)|y ,βi )p(y |βi )p(βi )∑N

i=1 p(y |βi )p(βi )

and

˜var(φ(x0)|y ,β0) =

∑N
i=1 E(φ(x0)2|y ,βi )p(y |βi )p(βi )∑N

i=1 p(y |βi )p(βi )
− Ẽ(φ(x0)|y)2

=⇒ No need for additional calls to computer model after calibration

Note that we still have
E(y0|y) = E(φ(x0)|y)

and
var(y0|y) = var(φ(x0)|y) + σ2

m
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Comparison of linear and non-linear calibration and prediction on
the FLICA IV case study

With the same FLICA IV data, we compare

Approximate non-linear calibration and prediction with 25 grid points for integration over β

Approximate linear calibration and prediction with the same grid (we use
f (x ,β) = f (x ,βnom) + hβnom (x)t (β − βnom))

We obtain

RMSE non-linear = 196.9

RMSE linear = 197.8

L2 norm between linear and non-linear conditional means of β0 = .025 (each of them has L2

norm around 0.3)

=⇒ more impact of linear approximation on calibration than on prediction
=⇒ The model error Gaussian process can take into account the difference between the
linearized computer model and the exact computer model

François Bachoc Calibration of computer experiments ETICS - June 2016 78 / 81



Summary

Iterative linear approximations

In the non-linear case, we can write the conditional distributions, but the integrals are
intractable, since they involve the computer model

One possibility is to integrate numerically

There are other methods which we did not talk about, e.g. Gaussian process model of the
computer model as well (Higdon et al 2004, Kennedy and O’Hagan 2001)

We believe that the linear approximation generally has more impact on calibration than on
prediction
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Thank you for your attention !
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