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Introduction

Two classical examples of nested codes in reliability analysis:

1 a nuclear power plant under seismic accelerations:

→

2 an off-shore structure that weathers a storm:

→
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Notations and formalism

x1 ∈ R
d1

g1, β1, ε1
−→ y1 = x2 ∈ R

d2

g2, β2, ε2
−→ y2

{
y1(x1) = g1(x1;β1) + ε1(x1),

y2(x2) = g2(x2;β2) + ε2(x2).

g1(·;β1), g2(·;β2) ↔ available codes,

ε1, ε2 ↔ model errors,

(x
(n)
1 , y

(n)
1 )1≤n≤N , (x

(m)
2 , y

(m)
2 )1≤m≤M ↔ available observations,

some values of y
(n)
1 can be equal to the values of x

(m)
2 , such that we

can have access to the results of the complete chain of codes.

Problematic

1 Compute the posterior distribution of βc = (β1, β2),

2 Infer the distribution of y2 in any non-computed point x1.
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Calibration with fixed physical system

Hypotheses:

there exists a unique "true" value of βc = (β1, β2),

the experimental errors are not taken into account in this presentation,

the model errors are supposed to be small compared to the responses
of the calibrated codes, ‖ǫ1‖L2 ≪ ‖g1(·;β1)‖L2 ,
‖ǫ2‖L2 ≪ ‖g2(·;β2)‖L2 ,

the model errors are supposed to be independent, and are modeled by
(potentially vector-valued) centered Gaussian processes, which
covariances are supposed to be known and are written C1 and C2

respectively,

the second code can take additional inputs, but for the sake of clarity,
these inputs do not appear in the following.
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Calibration with fixed physical system

Bayesian framework

β1 ∼ U
Rd1

, β2 ∼ U
Rd2

, β1⊥β2.

Gaussian priors can also be considered.

Linearization

There exists fixed and known nominal values of the parameters, βnom
1 and

βnom
2 , such that:

g1(x1;β1) ≈ f1(x1)β1,

g2(x2;β2) ≈ f2(x2)β2.

The nested phenomenon we are interested in can therefore be written as:

y2(x1) = f2 (f1(x1)β1 + ε1(x1)) β2 + ε2 (f1(x1)β1 + ε1(x1)) .
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Coupling two GPRs

From the available codes evaluations, it is possible to construct two
independent conditioned GPR for the two nested codes:

ŷ1(x1) ∼ N (µ1
N (x1), σ

1
N (x1)) ↔ ŷ1(x1) = µ1

N (x1) + u1 × σ1
N (x1),

ŷ2(x2) ∼ N (µ2
M (x2), σ

2
M (x2)) ↔ ŷ2(x2) = µ2

M (x2) + u2 × σ2
M (x2),

where u1, u2 are two independent centered normalized Gaussian r.v. We
denote by φ the centered normalized Gaussian PDF.

The predictor of the nested phenomenon, Y nest := ŷ2(ŷ1(x1)), verifies
therefore:

Y nest(x1, u1, u2) = µ2
M

(
µ1
N (x1) + u1 × σ1

N (x1)
)

+ u2 × σ2
M

(
µ1
N (x1) + u1 × σ1

N (x1)
)
.
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Coupling two GPRs

Y nest(x1, u1, u2) = µ2
M

(
µ1
N (x1) + u1 × σ1

N (x1)
)

+ u2 × σ2
M

(
µ1
N (x1) + u1 × σ1

N (x1)
)
.

The first and second statistical moments of Y nest(x1, u1, u2), which is a

priori not Gaussian, are given by:

Eu1,u2

[
Y nest(x1, u1, u2)

]
=

∫

R×R

Y nest(x1, u1, u2)φ(u1)φ(u2)du1du2

= Eu1

[
µ2
M

(
µ1
N (x1) + u1 × σ1

N (x1)
)]

.

Eu1,u2

[(
Y nest(x1, u1, u2)

)2]
=

∫

R×R

(
Y nest(x1, u1, u2)

)2
φ(u1)φ(u2)du1du2

= Eu1

[(
µ2
M

(
µ1
N (x1) + u1 × σ1

N (x1)
))2

+
(
σ2
M

(
µ1
N (x1) + u1 × σ1

N (x1)
))2]
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Coupling two GPRs

For all x1, computing the two first statistical moments of
Y nest(x1, u1, u2) amounts at calculating two 1-dimensional integrals.

Quadrature or sampling techniques can be used to compute them.

However, if

each element of f2(x2) can be written as a sum of functions of the
form x2 7→ a0x

j
2 exp(a1x2 + a2x2), with j ≥ 0, a1 ∈ C and a2 ∈ R,

the covariance of ε2, C2, is a squared exponential covariance:

C2(x2, x
′
2) = σ2 exp

(
−
1

2

d2∑

i=1

(
x2,i − x′2,i

ℓi

)2
)
,

then closed-form solutions can be found for Eu1,u2
[Y nest(x1, u1, u2)]

and Eu1,u2

[
(Y nest(x1, u1, u2))

2
]
.
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Coupling two GPRs

Advantages of the method

The conditioned GP predictors can be computed independently.

There is no constraints on the number of available code evaluations
(in particular, we are not limited by the fact that N = M).

The constraints on f2 and C2 being not too restrictive, closed-form
solutions are available for the mean and the variance of the predictor,
which can be used to define iterative procedures for uncertainty
quantification prospects.

There is almost no error compensation for the calibration of β1 and β2.
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Coupling two GPRs

Drawbacks of the method

The two conditioned GP predictors being independent, the variance of
the predictor can be over-estimated (in particular, the configurations

y
(n)
1 = x

(m)
2 may not be enough taken into account).

There is almost no error compensation for the prediction of y2(x1).

Some evaluations of y2(x2) can be carried out in sub-domains of Rd2

that do not belong to the image space of y1.

The closed-form expressions are valid for two nested codes only.

⇒ this invites us to construct a "grouped" predictor for Y nest, which is
based on an other linearization of the predictor.
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Linearized approach

x1

f1, β1, ε1
−→ y1 = x2

f2, β2, ε2
−→ y2

y2(x1) = f2(f1(x1)β1 + ε1(x1))β2 + ε2(f1(x1)β1 + ε1(x1)).

Main objectives

maximize the conditioning of Y nest, to minimize its variance,

stay in the Gaussian framework to get closed-form solutions.

Linearization

We assume that the following linearization is valid around βnom
1 and βnom

2 :

y2(x1) ≈ f2(f1(x1)β
nom
1 )β2 + ε2(f1(x1)β

nom
1 )+

∂f2

∂x2
(f1(x1)β

nom
1 ) (f1(x1)(β1 − βnom

1 ) + ε1(x1))β
nom
2 .
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Linearized approach

Vectorial representation

Hence we get:

Z(x1, x2) :=




y1(x1)
y2(x2)
y2(x1)


 ≈




f1(x1)β1 + ε1(x1)
f2(x2)β2 + ε2(x2)(

y02 + f31(x1)β1 + f32(x1)β2
+f33(x1)ε1(x1) + ε2(f1(x1)β

nom
1 )

)




If ε1 and ε2 are two independent GP, then it comes:

Z(x1, x2) | β1, β2 ∼ N
(
µ(x1, x2, β1, β2),

[
C(x1, x

′
1, x2, x

′
2)
])

.

By construction, Y nest corresponds to Z3 given the available evaluations of
the two codes.
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Linearized approach

Z(x1, x2) | β1, β2 ∼ N
(
µ(x1, x2, β1, β2),

[
C(x1, x

′
1, x2, x

′
2)
])

.

Vector-valued GP Z can then be conditioned by all the available

information gathered in (x
(n)
1 , y

(n)
1 )1≤n≤N and (x

(m)
2 , y

(m)
2 )1≤m≤M .

In particular, the fact that there exists values of n and m such that

y
(n)
1 = x

(m)
2 is taken into account.

⇒ if (β1, β2) is a priori uniformly distributed on R
d1 × R

d2 (or Gaussian),
then the posterior distributions of (β1, β2) and Y nest can be analytically
deduced.

Ecole thématique ETICS - Barcelonnette | June 2016 | PAGE 14/24



Linearized approach

Advantages of the method

There is no constraints on the number of available code evaluations.

All the available information is used to constrain the predictions such
that the variance of the predictor of the nested phenomenon is often
reduced.

The predictor interpolates the code evaluations when y
(n)
1 = x

(m)
2 .

Closed-form solutions are available.

There is a priori no limitation on the covariance of ε2.

There can be error compensation for the prediction of y2(x1).

The linearized approach can be generalized to the calibration of more
than two chained codes.
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Linearized approach

Drawbacks of the method

There can be error compensation for the calibration of β1 and β2.

The relevance of the linearization has to be controlled.
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Numerical application
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(b) Nested phenomenon

Figure: Continuous line ↔ reality i.e. y1 (x1), y2 (x2) and y2 (x1), dashed line ↔
computer codes f1(x1)β1, f2(x2)β2 and f2(f1(x1)β1)β2.

f1(x1) = (1, x21), f2(x2) = (1, x22), such that the dimension of (β1, β2) is 4.
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Numerical application

Two quantities of interest will be computed to control the relevance of the
estimations :

for the calibration :

ǫ2β = E

[∥∥∥βc − β̂c

∥∥∥
2
]
,

where β̂c is the estimator of the parameters given the observations,

for the prediction capability :

ǫ2y =

∫

x1

E

[(
y2 (x1)− Y nest(x1)

)2]
dx1,

where Y nest(x1) is the predictor of y2(y1(x1)) given the observations.

As a reference, we denoted by "black-box" the approach consisting in
calibrating y2(y1(x1)) from the only available information gathered in

(x
(k)
1 , y

(k)
2 )1≤k≤K . Ecole thématique ETICS - Barcelonnette | June 2016 | PAGE 19/24



Numerical application

The box-plots are computed from 50 repetitions of a calibration of
y2(y1(x1)) based on 8 observations of each phenomenon.

Linearised Parallel
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Numerical application
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Estimation of the prediction uncertainty

Black-box ≪ Parallel ≤ Linearized
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Conclusion

Two approaches have been proposed to calibrate two nested codes:

the first one based on the coupling of two predictors,

the second one based on a linearized approach.

Both techniques have their own advantages and drawbacks in terms of
calibration and prediction.

To go further...

taking into account the experimental errors,

case when y1 = {y1(t), 0 ≤ t ≤ T} is a functional output,

sequential improvement of the predictors.
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Conclusion

Thank you for your attention.
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