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1 Introduction

Technology, in common with many other activi-
ties, tends toward avoidance of risks by investors.
Uncertainty is ruled out if possible. [P]eople gen-
erally prefer the predictable. Few recognize how
destructive this can be, how it imposes severe lim-
its on variability and thus makes whole popula-
tions fatally vulnerable to the shocking ways our
universe can throw the dice.

Heretics of Dune

Frank Herbert

In uncertainty quantification, one is usually faced with the challenge of quantifying the
impact of some uncertainty or random variability (often modelled as a probability distribu-
tion µ) on a particular system of interest (often modelled as a response function g). These
lecture notes are an introduction to uncertainty quantification under a particularly severe
form of uncertainty, namely uncertainty about µ and g themselves. This kind of uncertainty
can arise very easily: we may be conducting simulations using computational or numerical
versions of µ and g that differ in some way from their ‘real’ counterparts, or there may
be non-negligible uncertainty about what the ‘real’ µ and g actually are. Nevertheless, the
challenge is to provide rigorous and useful information about the system.

Example 1.1. Suppose that a company manufactures a particular part P for use in an
aeroplane, and we are interested in how some property X of the part P affects some perfor-
mance metric, or quantity of interest, q(X). For simplicity, suppose that both X and q(X)
are real-valued. Consider the following hierarchy of complexity.
(a) At the simplest level, every instance of the part P is completely identical and in

accordance with the design specification x0 ∈ R. In this case, X is a constant, X = x0.
We just need to evaluate the function q on this constant x0, and then we are done.



2 Optimal Distributionally Robust Uncertainty Quantification

(b) At the next level, we accept the due to manufacturing imperfections, sometimes X 6=
x0. Nevertheless, quality control procedures are such that, in some sense, |X−x0| ≤ δ.
Note that, in this case, we profess no knowledge about which values of X are more
or less likely than others, except that those further than δ from x0 are ruled out as
impossible. To determine the corresponding worst- and best-case performance of the
aeroplane, we need to minimise and maximise q(x) over all x with |x− x0| ≤ δ.

(c) At the next level, perhaps after extensive statistical studies of the manufacturing
process, we even have a model for X as a random variable: X is distributed according
to some probability distribution µ. Then, the challenge is to determine quantities like
the mean performance, i.e. the expected value EX∼µ[q(X)] and perhaps also measures
of variability such as the standard deviation. Perhaps some outcome, such as q(X) ≤ t,
is considered to be ‘failure’, in which case we might care about the probability of failure,
PX∼µ[q(X) ≤ t].

(d) However, if we are honest, the most realistic situation is that we are somewhere between
the last two cases: we partially understand the probability distribution µ based on a
limited amount of sample information. For example, we may know that |X−x0| ≤ δ/2
with probability at least 99% under µ. This does not completely characterise µ, since it
tells us nothing about how the probability mass of µ is distributed within the interval
[x0− δ/2, x0+ δ/2], but it does significantly constrain what µ can do compared to case
(b) above: µ can no longer put all its probability mass at x0−δ, for example. The art is
to use this information to give bounds on e.g. the probability of failure PX∼µ[q(X) ≤ t]
that are rigorously true and also useful: it is no use to give the true but trivial bounds
0 ≤ PX∼µ[q(X) ≤ t] ≤ 1 unless there really are admissible µ that realise these bounds.
Thus, we are arrive at the need to be able to optimise over measures µ.

Exercise 1.2. Adapt this discussion to your own field of interest. Perhaps X no longer
describes some property of a manufactured part for an aeroplane, but the operating cir-
cumstances (e.g. traffic and meteorological and geological stresses) of a road bridge or road
tunnel.

With examples like this in mind, it makes sense to develop mathematical theory and
computational tools to allow us to explore admissible sets (or ‘feasible sets’) A for what µ
and g could be. The tools that we use will be grounded in optimization theory, and will
have a particularly strong connection to the now-classical theory of finite-dimensional linear
programming, even though A will typically be infinite-dimensional.

Acknowledgements. These notes are an abridged selection of material from Sullivan (2015),
and draw upon joint work with Owhadi et al. (2013), Sullivan et al. (2013), and Kamga et al.
(2014). Those collaborations are gratefully acknowledged, as is the support of the Free Uni-
versity of Berlin within the Excellence Initiative of the German Research Foundation.

2 General Notation and Terminology

• N := {1, 2, 3, . . .} denotes the natural numbers starting at 1.
• R denotes the real number system, with its usual arithmetic operations, absolute value
| · |, etc. For m ∈ N, Rm denotes the vector space of m-tuples of real numbers, with
its usual operations of vector addition and scalar multiplication.

• Calligraphic letters X and Y denote space for ‘inputs’ and ‘outputs’ of a response
function g : X → Y. For example, they may be finite sets, R, Rm, or a ‘nice’ subset
of those. More precisely, X is a complete and separable metric space, equipped with
its Borel σ-algebra B(X ) (generated by the open sets), and the same applies for Y.
Sets E ∈ B(X ) are called Borel-measurable, or simply measurable — such sets are the
only ones for which it is permitted to consider notions of ‘length’, ‘area’, ‘measure’, or
‘probability’.
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• M+(X ) denotes the set of all non-negative σ-additive measures on X , i.e. countably
additive set functions µ : B(X ) → [0,+∞] with

µ(∅) = 0 and µ

(

⋃

n∈N

En

)

=
∑

n∈N

µ(En)

whenever the En ∈ B(X ) are pairwise disjoint. M1(X ) ⊂ M+(X ) denotes the set
of probability measures on X , i.e. those µ for which µ(X ) = 1. M±(X ) ⊃ M+(X )
denotes the vector space of signed measures on X . M±(X ) can be given the total
variation norm

‖µ‖TV := sup

{

N
∑

n=1

|µ(En)|
∣

∣

∣

∣

∣

E1, . . . , EN ⊆ X are pairwise disjoint

}

.

In particular, the total variation distance between two probability measures µ and ν
(i.e. the total variation norm of their difference) is twice the greatest absolute difference
in the two probability values that µ and ν assign to any measurable event E:

dTV(µ, ν) ≡ ‖µ− ν‖TV = 2 sup
{

|µ(E)− ν(E)|
∣

∣E ∈ F
}

.

• When X is a random variable taking values in some space X and µ ∈ M1(X ), the
notationX ∼ µ is read ‘X is distributed according to µ’ and means that the probability
that X takes a value in some measurable set E ⊆ X is exactly the µ-probability mass
µ(E) ∈ [0, 1].

• q : X × Y → R is a function, which is considered to be a quantity of interest. In par-
ticular, we are interested in the values of q(X, f(X)) when X is distributed according
to some known or partially known probability measure µ on X .

• When µ ∈ M1(X ) and f : X → R, we write EX∼µ[f(X)] or simply Eµ[f ] for the
expected value (Lebesgue integral) of f against µ:

EX∼µ[f(X)] ≡
∫

X
f(x) dµ(x).

• For a ∈ X , δx ∈ M+(X ) denotes the Dirac measure or unit point mass centred at a.
This is the probability measure

δa(E) :=

{

1, if a ∈ E,

0, if a /∈ E.

Integration against δa is a simple matter of point evaluation:

EX∼δa [f(X)] ≡
∫

X
f(x) dδa(x) ≡ f(a).

• I[P ] is shorthand for the indicator function of a logical statement P , the function that
takes the value 1 if P is true and 0 if P is false. The similar notation IE denotes the
indicator function of a set E: IE(x) = I[x ∈ E] evaluates to 1 if x is in E and to 0
otherwise.

• The support of a probability measure µ on X is denoted supp(µ) and is defined to be
the smallest closed set C so that µ(C) = 1, or equivalently µ(X \ C) = 0. Thus, for
example, supp(δa) = {a}, a Gaussian measure N (m, s2) is supported on all of R, and
the lognormal distribution is supported on the half-line [0,∞).
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3 Convex and Linear Optimization Theory

The topic of this section is convex optimization. As will be seen, convexity is a powerful
property that makes optimization problems tractable to a much greater extent than any
amount of smoothness (which still permits local minima) or low-dimensionality can do.

The general form of a constrained optimization problem is

extremise: f(x)

with respect to: x ∈ X
subject to: gi(x) ∈ Ei for i = 1, 2, . . . ,

where X is some set; f : X → R∪ {±∞} is a function called the objective function; and, for
each i, gi : X → Yi is a function and Ei ⊆ Yi some subset. By ‘extremise’ we mean either
to minimise (make as small as possible) or to maximise (make are large as possible). The
conditions {gi(x) ∈ Ei | i = 1, 2, . . .} are called constraints, and a point x ∈ X for which all
the constraints are satisfied is called feasible; the set of feasible points,

{x ∈ X | gi(x) ∈ Ei for i = 1, 2, . . .},

is called the feasible set. If there are no constraints, so that the problem is a search over all of
X , then the problem is said to be unconstrained. In the case of a minimization problem, the
objective function f is also called the cost function or energy; for maximization problems,
the objective function is also called the utility function.

In this section, X will be a real normed vector space, such as Rm with its usual Euclidean
norm; later on, when considering distributional robustness problems, it will be the space of
signed measures, equipped with the total variation norm. Given two points x0 and x1 of X
and t ∈ [0, 1], xt will denote the convex combination

xt := (1− t)x0 + tx1.

More generally, given points x0, . . . , xn of a vector space, a sum of the form

α0x0 + · · ·+ αnxn

is called a linear combination if the αi ∈ R are any scalars, an affine combination if their
sum is 1, and a convex combination if they are non-negative and sum to 1.

Definition 3.1. (a) A subset K ⊆ X is a convex set if, for all x0, x1 ∈ K and t ∈ [0, 1],
xt ∈ K; it is said to be strictly convex if xt ∈ K̊ whenever x0 and x1 are distinct
points of K̄ and t ∈ (0, 1).

(b) An extreme point of a convex set K is a point of K that cannot be written as a non-
trivial convex combination of distinct elements of K; the set of all extreme points of
K is denoted ext(K).

(c) The convex hull co(S) (resp. closed convex hull co(S)) of S ⊆ X is defined to be the
intersection of all convex (resp. closed and convex) subsets of X that contain S.

Example 3.2. (a) The square [−1, 1]2 is a convex subset of R2, but is not strictly convex,
and its extreme points are the four vertices (±1,±1).

(b) The closed unit disc {(x, y) ∈ R2 | x2 + y2 ≤ 1} is a strictly convex subset of R2, and
its extreme points are the points of the unit circle {(x, y) ∈ R2 | x2 + y2 = 1}.

(c) If p0, . . . , pd ∈ X are distinct points such that p1 − p0, . . . , pd − p0 are linearly inde-
pendent, then their (closed) convex hull is called a d-dimensional simplex. The points
p0, . . . , pd are the extreme points of the simplex.

(d) See Figure 3.1 for further examples.
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b b

(a) A convex set (grey) and its set of ex-
treme points (black).

b

b

(b) A non-convex set (black) and its con-
vex hull (grey).

Figure 3.1: Convex sets, extreme points, and convex hulls of some subsets of the plane R2.

Example 3.3. M1(X ) is a convex subset of the space of all (signed) Borel measures on
X . The extremal probability measures are the zero-one measures, i.e. those for which, for
every measurable set E ⊆ X , µ(E) ∈ {0, 1}. Furthermore, as will be discussed later on, if
X is, say, a Polish space, then the zero-one measures (and hence the extremal probability
measures) on X are the Dirac point masses. Indeed, in this situation,

M1(X ) = co
(

{δx | x ∈ X}
)

⊆ M±(X ).

The principal reason to confine attention to normed spaces[3.1] X is that it is highly
inconvenient to have to work with spaces for which the following ‘common sense’ results do
not hold:

Theorem 3.4 (Krĕın–Milman). Let K ⊆ X be compact and convex. Then K is the closed
convex hull of its extreme points.

Theorem 3.5 (Choquet–Bishop–de Leeuw). Let K ⊆ X be compact and convex, and let
c ∈ K. Then there exists a probability measure p supported on ext(K) such that, for all
affine functions f on K,

f(c) =

∫

ext(K)

f(e) dp(e).

The point c in Theorem 3.5 is called a barycentre of the set K, and the probability
measure p is said to represent the point c. Informally speaking, the Krĕın–Milman and
Choquet–Bishop–de Leeuw theorems together ensure that a compact, convex subset K of a
topologically respectable space is entirely characterised by its set of extreme points in the
following sense: every point of K can be obtained as an average of extremal points of K,
and, indeed, the value of any affine function at any point of K can be obtained as an average
of its values at the extremal points in the same way.

Definition 3.6. Let K ⊆ X be convex. A function f : K → R ∪ {±∞} is a convex function
if, for all x0, x1 ∈ K and t ∈ [0, 1],

f(xt) ≤ (1 − t)f(x0) + tf(x1), (3.1)

and is called a strictly convex function if, for all distinct x0, x1 ∈ K and t ∈ (0, 1),

f(xt) < (1 − t)f(x0) + tf(x1).

[3.1]Or, more generally, Hausdorff, locally convex, topological vector spaces.
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The inequality (3.1) defining convexity can be seen as a special case — with X ∼ µ
supported on two points x0 and x1 — of the following result:

Theorem 3.7 (Jensen). Let (Θ,F , µ) be a probability space, let K ⊆ X and f : K → R ∪
{±∞} be convex, and let X ∈ L1(Θ, µ;X ) take values in K. Then

f
(

Eµ[X ]
)

≤ Eµ

[

f(X)
]

, (3.2)

where Eµ[X ] ∈ X is defined by the relation 〈ℓ |Eµ[X ]〉 = Eµ[〈ℓ |X〉] for every ℓ ∈ X ′.
Furthermore, if f is strictly convex, then equality holds in (3.2) if and only if X is µ-almost
surely constant.

It is straightforward to see that f : K → R ∪ {±∞} is convex (resp. strictly convex) if
and only if its epigraph

epi(f) := {(x, v) ∈ K × R | v ≥ f(x)}

is a convex (resp. strictly convex) subset of K×R. Furthermore, twice-differentiable convex
functions are easily characterised in terms of their second derivative (Hessian):

Theorem 3.8. Let f : K → R be twice continuously differentiable on an open, convex set K.
Then f is convex if and only if D2f(x) is positive semi-definite for all x ∈ K. If D2f(x) is
positive definite for all x ∈ K, then f is strictly convex, though the converse is false.

Convex functions have many convenient properties with respect to minimization and
maximization:

Theorem 3.9. Let f : K → R be a convex function on a convex set K ⊆ X . Then
(a) any local minimiser of f in K is also a global minimiser;
(b) the set argminK f of global minimisers of f in K is convex;
(c) if f is strictly convex, then it has at most one global minimiser in K;
(d) if K is also compact, then f has the same maximum values on K and ext(K).

Proof. (a) Suppose that x0 is a local minimiser of f in K that is not a global minimiser:
that is, suppose that x0 is a minimiser of f in some open neighbourhood N of x0, and
also that there exists x1 ∈ K \N such that f(x1) < f(x0). Then, for sufficiently small
t > 0, xt ∈ N , but convexity implies that

f(xt) ≤ (1 − t)f(x0) + tf(x1) < (1− t)f(x0) + tf(x0) = f(x0),

which contradicts the assumption that x0 is a minimiser of f in N .

(b) Suppose that x0, x1 ∈ K are global minimisers of f . Then, for all t ∈ [0, 1], xt ∈ K
and

f(x0) ≤ f(xt) ≤ (1− t)f(x0) + tf(x1) = f(x0).

Hence, xt ∈ argminK f , and so argminK f is convex.

(c) Suppose that x0, x1 ∈ K are distinct global minimisers of f , and let t ∈ (0, 1). Then
xt ∈ K and

f(x0) ≤ f(xt) < (1− t)f(x0) + tf(x1) = f(x0),

which is a contradiction. Hence, f has at most one minimiser in K.

(d) Suppose that c ∈ K \ ext(K) has f(c) > supext(K) f . By Theorem 3.5, there exists a
probability measure p on ext(K) such that, for all affine functions ℓ on K,

ℓ(c) =

∫

ext(K)

ℓ(x) dp(x).
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i.e. c = EX∼p[X ]. Then Jensen’s inequality implies that

EX∼p

[

f(X)
]

≥ f(c) > sup
ext(K)

f,

which is a contradiction. Hence, since supK f ≥ supext(K) f , f must have the same
maximum value on ext(K) as it does on K. �

Remark 3.10. Note well that Theorem 3.9 does not assert the existence of minimisers, which �
requires non-emptiness and compactness of K, and lower semicontinuity of f . For example:

• the exponential function on R is strictly convex, continuous and bounded below by 0
yet has no minimiser;

• the interval [−1, 1] is compact, and the function f : [−1, 1] → R ∪ {±∞} defined by

f(x) :=

{

x, if |x| < 1
2 ,

+∞, if |x| ≥ 1
2 ,

is convex, yet f has no minimiser — although infx∈[−1,1] f(x) = − 1
2 , there is no x for

which f(x) attains this infimal value.

Definition 3.11. A convex optimization problem (or convex program) is a minimization
problem in which the objective function and all constraints are equalities or inequalities
with respect to convex functions.

Remark 3.12. (a) Beware of the common pitfall of saying that a convex program is simply �
the minimization of a convex function over a convex set. Of course, by Theorem 3.9,
such minimization problems are nicer than general minimization problems, but bona
fide convex programs are an even nicer special case.

(b) In practice, many problems are not obviously convex programs, but can be transformed
into convex programs by e.g. a cunning change of variables. Being able to spot the
right equivalent problem is a major part of the art of optimization.

It is difficult to overstate the importance of convexity in making optimization problems
tractable. Indeed, it has been remarked that lack of convexity is a much greater obstacle
to tractability than high dimension. There are many powerful methods for the solution
of convex programs, with corresponding standard software libraries such as cvxopt. For
example, interior point methods explore the interior of the feasible set in search of the
solution to the convex program, while being kept away from the boundary of the feasible set
by a barrier function. The discussion that follows is only intended as an outline; for details,
see Boyd and Vandenberghe (2004, Chapter 11).

Consider the convex program

minimise: f(x)

with respect to: x ∈ Rn

subject to: ci(x) ≤ 0 for i = 1, . . . ,m,

where the functions f, c1, . . . , cm : Rn → R are all convex and differentiable. Let F denote
the feasible set for this program. Let 0 < µ ≪ 1 be a small scalar, called the barrier
parameter, and define the barrier function associated to the program by

B(x;µ) := f(x)− µ

m
∑

i=1

log ci(x).

Note that B( · ;µ) is strictly convex for µ > 0, that B(x;µ) → +∞ as x → ∂F , and that
B( · ; 0) = f ; therefore, the unique minimiser x∗

µ ofB( · ;µ) lies in F̊ and (hopefully) converges

http://cvxopt.org/
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to the minimiser of the original problem as µ → 0. Indeed, using arguments based on convex
duality, one can show that

f(x∗
µ)− inf

x∈F
f(x) ≤ mµ.

The strictly convex problem of minimizing B( · ;µ) can be solved approximately using New-
ton’s method. In fact, however, one settles for a partial minimization of B( · ;µ) using only
one or two steps of Newton’s method, then decreases µ to µ′, performs another partial
minimization of B( · ;µ′) using Newton’s method, and so on in this alternating fashion.

Theorem 3.9 has the following immediate corollary for the minimization and maximiza-
tion of affine functions on convex sets:

Corollary 3.13. Let ℓ : K → R be a continuous affine function on a non-empty, compact,
convex set K ⊆ X . Then

ext{ℓ(x) | x ∈ K} = ext{ℓ(x) | x ∈ ext(K)}.

That is, ℓ has the same minimum and maximum values over both K and the set of extreme
points of K.

Definition 3.14. A linear program is an optimization problem of the form

extremise: f(x)

with respect to: x ∈ Rp

subject to: gi(x) ≤ 0 for i = 1, . . . , q,

where the functions f, g1, . . . , gq : R
p → R are all affine functions. Linear programs are often

written in the canonical form

maximise: c · x
with respect to: x ∈ Rn

subject to: Ax ≤ b

x ≥ 0,

where c ∈ Rn, A ∈ Rm×n and b ∈ Rm are given, and the two inequalities are interpreted
componentwise. (Conversion to canonical form, and in particular the introduction of the
non-negativity constraint x ≥ 0, is accomplished by augmenting the original x ∈ Rp with
additional variables called slack variables to form the extended variable x ∈ Rn.)

Note that the feasible set for a linear program is an intersection of finitely many half-
spaces of Rn, i.e. a polytope. This polytope may be empty, in which case the constraints are
mutually contradictory and the program is said to be infeasible. Also, the polytope may be
unbounded in the direction of c, in which case the extreme value of the problem is infinite.

We finish this section with some terminology concerning constraints:

Definition 3.15. For a given constrained optimization problem, a constraint is said to be
(a) redundant if it does not change the feasible set, and non-redundant or relevant other-

wise;
(b) non-binding if it does not change the extreme value, and binding otherwise;
(c) active if it is an inequality constraint that holds as an equality at the extremiser, and

inactive otherwise.

Example 3.16. Consider f : R2 → R, f(x, y) := y. Suppose that we wish to minimize f over
the unbounded w-shaped region

W := {(x, y) ∈ R2 | y ≥ (x2 − 1)2}.
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Over W , f takes the minimum value 0 at (x, y) = (±1, 0). Note that the inequality con-
straint y ≥ (x2 − 1)2 is an active constraint. The additional constraint y ≥ 0 would be
redundant with respect to this feasible set W , and hence also non-binding. The additional
constraint x > 0 would be non-redundant, but also non-binding, since it excludes the previ-
ous minimiser at (x, y) = (−1, 0) but not the one at (x, y) = (1, 0). Similarly, the additional
equality constraint y = (x2 − 1)2 would be non-redundant and non-binding.

The importance of these concepts for UQ lies in the fact that many UQ problems are, in
part or in whole, optimization problems: a good example is the calibration of parameters in
a model in order to best explain some observed data. Each piece of information about the
problem (e.g. a hypothesis about the form of the model, such as a physical law) can be seen
as a constraint on that optimization problem. It is easy to imagine that each additional
constraint may introduce additional difficulties in computing the parameters of best fit.
Therefore, it is natural to want to exclude from consideration those constraints (pieces of
information) that are merely complicating the solution process, and not actually determining
the optimal parameters, and to have some terminology for describing the various ways in
which this can occur.

4 Motivation and Notation for Distributional Robustness

To begin with, we will suppress all reference to uncertain response functions and focus only
on uncertain probability measures. The reasons for doing so will become clearer later, but
in essence handling the measures first will enable huge reductions in the complexity of the
response function problem.

Suppose that we are interested in the value Q(µ†) of some quantity of interest that is
a functional of a partially known probability measure µ† on a space X . (Here we use the
common notation of having daggers — † — denote the ‘truth’.) Very often, Q(µ†) arises
as the expected value with respect to µ† of some function q : X → R, so the objective is to
determine

Q(µ†) ≡ EX∼µ† [q(X)].

Now suppose that µ† is known only to lie in some subset A ⊆ M1(X ). How should we try
to understand or approximate Q(µ†)?

In the absence of any further information about which µ ∈ A are more or less likely
to be µ†, and particular if the consequences of planning based on an inaccurate estimate
of Q(µ†) are very high, it makes sense to adopt a posture of ‘healthy conservatism’ and
compute bounds on Q(µ†) that are as tight as justified by the information that µ† ∈ A, but
no tighter, i.e. to find

Q(A) := inf
µ∈A

Q(µ) and Q(A) := sup
µ∈A

Q(µ).

When Q(µ) is the expected value with respect to µ of some function q : X → R, the objective
is to determine

Q(A) := inf
µ∈A

Eµ[q] and Q(A) := sup
µ∈A

Eµ[q].

The inequality
Q(A) ≤ Q(µ†) ≤ Q(A)

is, by construction, the sharpest possible bound on Q(µ†) given only information that µ† ∈
A: any wider inequality would be unnecessarily pessimistic, with one of its bounds not
attained; any narrower inequality would ignore some feasible scenario µ ∈ A that could be
µ†. The obvious question is, can Q(A) and Q(A) be computed?

Naturally, the answer to this question depends upon the form of the admissible set
A. These notes focus upon admissible sets A of a particular but very accessible type, those
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specified by equality or inequality constraints on expected values of test functions, otherwise
known as generalised moment classes.

Example 4.1. As an example of this paradigm, suppose that it is desired to give bounds on
the quality of some output Y = g(X) of a manufacturing process in which the probability
distribution of the inputs X is partially known. For example, quality control procedures
may prescribe upper and lower bounds on the cumulative distribution function of X , but
not the exact CDF of X , e.g.

0 ≤ PX∼µ† [−∞ < X ≤ a] ≤ 0.1

0.8 ≤ PX∼µ† [a < X ≤ b] ≤ 1.0

0 ≤ PX∼µ† [b < X ≤ ∞] ≤ 0.1.

Let A denote the (infinite-dimensional) set of all probability measures µ on R that are
consistent with these three inequality constraints. Given the input-to-output map f , what
are optimal bounds on the cumulative distribution function of Y , i.e., for t ∈ R, what are

inf
µ∈A

PX∼µ[f(X) ≤ t] and sup
µ∈A

PX∼µ[f(X) ≤ t]?. (4.1)

The results of this section will show that these extremal values can be found by solving an
optimization problem involving at most eight optimization variables, namely four possible
values x0, . . . , x3 ∈ R for X , and the four corresponding probability masses w0, . . . , w3 ≥ 0
that sum to unity. More precisely, we minimise or maximise

3
∑

i=0

wiI[f(xi) ≤ t]

subject to the the constraints

0 ≤
3
∑

i=0

wiI[xi ≤ a] ≤ 0.1

0.8 ≤
3
∑

i=0

wiI[a < xi ≤ b] ≤ 1.0

0 ≤
3
∑

i=0

wiI[xi > b] ≤ 0.1.

In general, this problem is a non-convex global optimization problem that can only be solved
approximately. However, for fixed positions {xi}3i=0, the optimal weights {wi}3i=0 can be
determined quickly and accurately using the tools of linear programming. Thus, the problem
(4.1) reduces to a nonlinear family of linear programs, parametrised by {xi}3i=0.

5 Maximum Entropy Distributions

Suppose that we are interested in the value Q(µ†) of some quantity of interest that is a
functional of a partially known probability measure µ† on a space X . Very often, Q(µ†)
arises as the expected value with respect to µ† of some function q : X → R, so the objective
is to determine

Q(µ†) ≡ EX∼µ† [q(X)].

Now suppose that µ† is known only to lie in some subset A ⊆ M1(X ). How should we try
to understand or approximate Q(µ†)? One approach is the following MaxEnt Principle:
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Definition 5.1. The Principle of Maximum Entropy states that if all one knows about a
probability measure µ is that it lies in some set A ⊆ M1(X ), then one should take µ to be
the element µME ∈ A of maximum entropy.

There are many heuristics underlying the MaxEnt Principle, including appeals to equi-
librium thermodynamics and attractive derivations due to Wallis and Jaynes (2003). If
entropy is understood as being a measure of uninformativeness, then the MaxEnt Principle
can be seen as an attempt to avoid bias by selecting the ‘least biased’ or ‘most uninformative’
distribution.

Example 5.2 (Unconstrained maximum entropy distributions). If X = {1, . . . ,m} and p ∈ Rm
>0

is a probability measure on X , then the entropy of p is

H(p) := −
m
∑

i=1

pi log pi. (5.1)

The only constraints on p are the natural ones that pi ≥ 0 and that S(p) :=
∑m

i=1 pi = 1.
Temporarily neglect the inequality constraints and use the method of Lagrange multipliers
to find the extrema of H(p) among all p ∈ Rm with S(p) = 1; such p must satisfy, for some
λ ∈ R,

0 = ∇H(p)− λ∇S(p) = −







1 + log p1 + λ
...

1 + log pm + λ






.

It is clear that any solution to this equation must have p1 = · · · = pm, for if pi and pj
differ, then at most one of 1 + log pi + λ and 1 + log pj + λ can equal 0 for the same
value of λ. Therefore, since S(p) = 1, it follows that the unique extremiser of H(p) among
{p ∈ Rm | S(p) = 1} is p1 = · · · = pm = 1

m . The inequality constraints that were neglected
initially are satisfied, and are not active constraints, so it follows that the uniform probability
measure on X is the unique maximum entropy distribution on X .

A similar argument using the calculus of variations shows that the unique maximum
entropy probability distribution on an interval [a, b] ( R is the uniform distribution 1

|b−a| dx.

Example 5.3 (Constrained maximum entropy distributions). Consider the set of all probability
measures µ on R that have mean m and variance s2; what is the maximum entropy dis-
tribution in this set? Consider probability measures µ that are absolutely continuous with
respect to Lebesgue measure, having density ρ. Then the aim is to find µ to maximise

H(ρ) = −
∫

R

ρ(x) log ρ(x) dx,

subject to the constraints that ρ ≥ 0,
∫

R
ρ(x) dx = 1,

∫

R
xρ(x) dx = m and

∫

R
(x −

m)2ρ(x) dx = s2. Introduce Lagrange multipliers c = (c0, c1, c2) and the Lagrangian

Fc(ρ) := H(ρ) + c0

∫

R

ρ(x) dx+ c1

∫

R

xρ(x) dx+ c2

∫

R

(x−m)2ρ(x) dx.

Consider a perturbation ρ+ tσ; if ρ is indeed a critical point of Fc, then, regardless of σ, it
must be true that

d

dt
Fc(ρ+ tσ)

∣

∣

∣

∣

t=0

= 0.

This derivative is given by

d

dt
Fc(ρ+ tσ)

∣

∣

∣

∣

t=0

=

∫

R

σ(x)
[

− log ρ(x)− 1 + c0 + c1x+ c2(x−m)2
]

dx.
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Since it is required that d
dtFc(ρ+ tσ)

∣

∣

t=0
= 0 for every σ, the expression in the brackets

must vanish, i.e.
ρ(x) = exp(−c0 + 1− c1x− c2(x−m)2).

Since ρ(x) is the exponential of a quadratic form in x, µ must be a Gaussian of some mean
and variance, which, by hypothesis, are m and s2 respectively, i.e.

c0 = 1− log
(

1/
√
2πs2

)

,

c1 = 0,

c2 = 1
2s2 .

Thus, the maximum entropy distribution on R of with mean m and variance s2 is N (m, s2),
with entropy

H(N (m, s2)) =
1

2
log(2πes2).

Discrete Entropy and Convex Programming. In discrete settings, the entropy of a prob-
ability measure p ∈ M1({1, . . . ,m}) with respect to the uniform measure as defined in (5.1)
is a strictly convex function of p ∈ Rm

>0. Therefore, when p is constrained by a family of
convex constraints, finding the maximum entropy distribution is a convex program:

minimise:

m
∑

i=1

pi log pi

with respect to: p ∈ Rm

subject to: p ≥ 0

p · 1 = 1

ϕi(p) ≤ 0 for i = 1, . . . , n,

for given convex functions ϕ1, . . . , ϕn : R
m → R. This is useful because an explicit formula

for the maximum entropy distribution, such as in Example 5.3, is rarely available. Therefore,
the possibility of efficiently computing the maximum entropy distribution, as in this convex
programming situation, is very attractive.

Exercise 5.4. Suppose that a six-sided die (with the six sides bearing 1 to 6 spots) has been
tossed N ≫ 1 times and that the sample average number of spots is 4.5, rather than 3.5 as
one would usually expect. Assume that this sample average is, in fact, the true average.
(a) What, according to the Principle of Maximum Entropy, is the correct probability

distribution on the six sides of the die given this information?
(b) What are the optimal lower and upper probabilities of each of the 6 sides of the die

given this information?

Remark 5.5. Note well that not all classes of probability measures contain maximum entropy�
distributions:
(a) The class of all absolutely continuous µ ∈ M1(R) with mean 0 but arbitrary variance

contains distributions of arbitrarily large entropy.
(b) The class of all absolutely continuous µ ∈ M1(R) with mean 0 and second and third

moments equal to 1 has all entropies bounded above but there is no distribution which
attains the maximal entropy.

Remark 5.6. There are some philosophical, mathematical, and practical objections to the
use of the Principle of Maximum Entropy:
(a) The MaxEnt Principle is an application-blind selection mechanism. It asserts that the

correct course of action when faced with a collection A ⊆ M1(X ) and an unknown
µ† ∈ A is to select a single representative µME ∈ A and to make the approximation
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Q(µ†) ≈ Q(µME) regardless of what Q is. This is in contrast to hierarchical and
optimization-based methods later in this chapter. Furthermore, MaxEnt distributions
are typically ‘nice’ (exponentially small tails etc.), whereas many practical problems
with high consequences involve heavy-tailed distributions.

(b) Recalling that in fact all entropies are relative entropies (Kullback–Leibler diver-
gences), the result of applying the MaxEnt Principle is dependent upon the reference
measure chosen, and many complex systems do not admit a uniform measure for use
as a reference measure. Thus, the MaxEnt Principle would appear to depend upon an
ad hoc choice of reference measure.

(c) MaxEnt distributions are almost atypically smooth and light-tailed, as the next exer-
cise illustrates, whereas many important applications involve distributions that have
heavy tails.

Exercise 5.7. Suppose X ⊆ R is closed, and we seek a maximum entropy distribution subject
to N constraints of the form EX∼µ[ϕn(X)] = cn, for n = 1, . . . , N , where the ϕn are known
measurable functions and the cn are known real constants. Using the Lagrange multiplier
theorem, show that, if such a MaxEnt distribution exists and has positive probability density
function ρ in X , the ρ is given by

ρ(x) =
1

Z
exp

(

N
∑

n=1

λnϕn(x)

)

,

where Z > 0 and the λn ∈ R are constants to be determined. Thus — if the ϕn are, say,
smooth and bounded — MaxEnt distributions are smooth with exponentially small tails at
infinity.

Exercise 5.8. Let Pk denote the set of probability measures µ on R with finite moments up
to order k ≥ 0, i.e.

Pk :=

{

µ ∈ M1(R)

∣

∣

∣

∣

∫

R

xk dµ(x) < ∞
}

.

Show that Pk is a ‘small’ subset of Pℓ whenever k > ℓ in the sense that, for every µ ∈ Pk

and every ε > 0, there exists ν ∈ Pℓ \ Pk with dTV(µ, ν) < ε. Hint: follow the example of
the Cauchy distribution

ρCauchy(x) =
1

π

1

1 + x2
,

which only has finite moments of order strictly less than 1, to construct a ‘standard’ prob-
ability measure with polynomial moments of order ℓ and no higher, and consider convex
combinations of this ‘standard’ measure with µ.

6 Distributional Robustness

As before, suppose that we are interested in the value Q(µ†) of some quantity of interest
that is a functional of a partially-known probability measure µ† on a space X , and that µ†

is known only to lie in some subset A ⊆ M1(X ). In the absence of any further information
about which µ ∈ A are more or less likely to be µ†, and particular if the consequences of
planning based on an inaccurate estimate of Q(µ†) are very high, it makes sense to adopt a
posture of ‘healthy conservatism’ and compute bounds on Q(µ†) that are as tight as justified
by the information that µ† ∈ A, but no tighter, i.e. to find

Q(A) := inf
µ∈A

Q(µ) and Q(A) := sup
µ∈A

Q(µ).

As discussed earlier, the inequality

Q(A) ≤ Q(µ†) ≤ Q(A)
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is the sharpest possible bound on Q(µ†) given only information that µ† ∈ A. However, can
Q(A) and Q(A) be computed?

Finite Sample Spaces. Suppose that the sample space X = {1, . . . ,K} is a finite set
equipped with the discrete topology. Then the space of measurable functions f : X → R is
isomorphic to RK and the space of probability measures µ on X is isomorphic to the unit
simplex in RK ; integrating f against µ is simply taking the Euclidean dot product of the
two K-vector representations. If the available information on µ† is that it lies in the set

A := {µ ∈ M1(X ) | Eµ[ϕn] ≤ cn for n = 1, . . . , N}

for known measurable functions ϕ1, . . . , ϕN : X → R and values c1, . . . , cN ∈ R, then the
problem of finding the extreme values of Eµ[q] among µ ∈ A reduces to linear programming:

extremise: p · q
with respect to: p ∈ RK

subject to: p ≥ 0

p · 1 = 1

p · ϕn ≤ cn for n = 1, . . . , N .

Note that the feasible set A for this problem is a convex subset of RK ; indeed, A is a
polytope, i.e. the intersection of finitely many closed half-spaces of RK . Furthermore, as a
closed subset of the probability simplex in RK , A is compact. Therefore, by Corollary 3.13,
the extreme values of this problem are certain to be found in the extremal set ext(A). This
insight can be exploited to great effect in the study of distributional robustness problems
for general sample spaces X .

Remarkably, when the feasible setA of probability measures is sufficiently like a polytope,
it is not necessary to consider finite sample spaces. What would appear to be an intractable
optimization problem over an infinite-dimensional set of measures is in fact equivalent to
a tractable finite-dimensional problem. Thus, the aim of this section is to find a finite-
dimensional subset A∆ of A with the property that

ext
µ∈A

Q(µ) = ext
µ∈A∆

Q(µ).

To perform this reduction, it is necessary to restrict attention to probability measures,
topological spaces, and functionals that are sufficiently well-behaved.

Extreme Points of Moment Classes. The first step in this reduction is to classify the ex-
tremal measures in sets of probability measures that are prescribed by inequality or equality
constraints on the expected value of finitely many arbitrary measurable test functions, so-
called moment classes. Since, in finite time, we can only verify — even approximately,
numerically — the truth of finitely many inequalities, such moment classes are appealing
feasible sets from an epistemological point of view because they conform to the dictum
of Karl Popper (1963) that “Our knowledge can be only finite, while our ignorance must
necessarily be infinite.”

Definition 6.1. A Borel measure µ on a topological space X is called inner regular if, for
every Borel-measurable set E ⊆ X ,

µ(E) = sup{µ(K) | K ⊆ E and K is compact}.

A pseudo-Radon space is a topological space on which every Borel probability measure is
inner regular. A Radon space is a separable, metrisable, pseudo-Radon space.
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Example 6.2. (a) Lebesgue measure (n-dimensional volume) on Euclidean space Rn (re-
stricted to the Borel σ-algebra B(Rn), if pedantry is the order of the day) is an inner
regular measure. Similarly, Gaussian measure is an inner regular probability measure
on Rn.

(b) Indeed, every Polish space (i.e. every separable and completely metrisable topological
space) is a pseudo-Radon space. Thus, almost all of the spaces that one meets in
‘practical’ discussions — compact rectangular boxes in Rn, the whole of Rn, separable
Banach and Hilbert spaces of functions — are suitable for the UQ theory that we are
building here.

(c) However, there are some special cases where the inner regularity assumptions fail. For
example, Lebesgue/Gaussian measures on R equipped with the topology of one-sided
convergence are not inner regular measures: see Exercise 6.3 below if you are interested
in the details.

Exercise 6.3. Consider the topology T on R generated by the basis of open sets [a, b), where
a, b ∈ R.

1. Show that this topology generates the same σ-algebra on R as the usual Euclidean
topology does. Hence, show that Gaussian measure is a well-defined probability mea-
sure on the Borel σ-algebra of (R, T ).

2. Show that every compact subset of (R, T ) is a countable set.
3. Conclude that Gaussian measure on (R, T ) is not inner regular and that (R, T ) is not

a pseudo-Radon space.

Compare the following definition of a barycentre (a centre of mass) for a set of probability
measures with the conclusion of the Choquet–Bishop–de Leeuw theorem (Theorem 3.5):

Definition 6.4. A barycentre for a set A ⊆ M1(X ) is a probability measure µ ∈ M1(X )
such that there exists p ∈ M1(ext(A)) such that

µ(B) =

∫

ext(A)

ν(B) dp(ν) for all measurable B ⊆ X . (6.1)

The measure p is said to representthe barycentre µ.

Recall that a d-dimensional simplex is the closed convex hull of d + 1 points p0, . . . , dd
such that p1−p0, . . . , pd−p0 are linearly independent. The next ingredient in the analysis of
distributional robustness is an appropriate infinite-dimensional generalization of the notion
of a simplex — a Choquet simplex — as a subset of the vector space of signed measures
on a given measurable space. One way to define Choquet simplices is through orderings
and cones on vector spaces, but this definition can be somewhat cumbersome. Instead, the
following geometrical description of Choquet simplices, illustrated in Figure 6.1, is much
more amenable to visual intuition, and more easily checked in practice:

Definition 6.5. A homothety of a real topological vector space V is the composition of a
positive dilation with a translation, i.e. a function f : V → V of the form f(x) = αx+ v, for
fixed α > 0 and v ∈ V .

Theorem 6.6 (Choquet–Kendall). A convex subset S of a topological vector space V is a
Choquet simplex if and only if the intersection of any two homothetic images of S is empty,
a single point, or another homothetic image of S.

With these definitions, the extreme points of moment sets of probability measures can
be described by the following theorem:

Theorem 6.7 (Winkler, 1988). Let (X ,F ) be a measurable space and let S ⊆ M1(F ) be
a Choquet simplex such that ext(S) consists of Dirac measures. Fix measurable functions
ϕ1, . . . , ϕn : X → R and c1, . . . , cn ∈ R and let

A :=

{

µ ∈ S

∣

∣

∣

∣

for i = 1, . . . , n,
ϕi ∈ L1(X , µ) and Eµ[ϕi] ≤ ci

}

.
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(a) (b)

Figure 6.1: By the Choquet–Kendall theorem (Theorem 6.6), like finite-dimensional sim-
plices, Choquet simplices S in a vector space V are characterised by the property that the
intersection of any two homothetic images of S, (α1S+v1)∩ (α1S+v2), with α1, α2 > 0 and
v1, v2 ∈ V , is either empty, a single point, or another homothetic image of S. This property
holds for the simplex (a), but not for the non-simplicial convex set (b).

Then A is convex and its extremal set satisfies

ext(A) ⊆ A∆ :=















µ ∈ A

∣

∣

∣

∣

∣

∣

∣

∣

µ =
∑m

i=1 wiδxi
,

1 ≤ m ≤ n+ 1, and
the vectors (ϕ1(xi), . . . , ϕn(xi), 1)

m
i=1

are linearly independent















;

Furthermore, if all the moment conditions defining A are equalities Eµ[ϕi] = ci instead of
inequalities Eµ[ϕi] ≤ ci, then ext(A) = A∆.

The proof of Winkler’s theorem is rather technical, and is omitted. The important point
for our purposes is that, when X is a pseudo-Radon space, Winkler’s theorem applies with
S = M1(X ), so ext(A) ⊆ A ∩∆n(X ), where

∆N (X ) :=







µ =

N
∑

i=0

wiδxi
∈ M1(X )

∣

∣

∣

∣

∣

∣

w0, . . . , wN ≥ 0,
w0 + · · ·+ wN = 1,
x0, . . . , xN ∈ X







denotes the set of all convex combinations of at most N + 1 unit Dirac measures on the
space X . Pictures like Figure 6.2 should make this an intuitively plausible claim, at least in
the case that X is a finite set.

Optimization of Measure Affine Functionals. Having understood the extreme points of
moment classes, the next step is to show that the optimization of suitably nice functionals
on such classes can be exactly reduced to optimization over the extremal measures in the
class.

Definition 6.8. For A ⊆ M1(X ), a function F : A → R∪{±∞} is said to be measure affine
if, for all µ ∈ A and p ∈ M1(ext(A)) for which (6.1) holds, F is p-integrable with

F (µ) =

∫

ext(A)

F (ν) dp(ν). (6.2)

As always, the reader should check that the terminology ‘measure affine’ is a sensible
choice by verifying that when X = {1, . . . ,K} is a finite sample space, the restriction of any
affine function F : RK ∼= M±(X ) → R to a subset A ⊆ M1(X ) is a measure affine function
in the sense of Definition 6.8.

An important and simple example of a measure affine functional is an evaluation func-
tional, i.e. the integration of a fixed measurable function q:
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lD

lD

lD

lD
δx1

δx2

δx3

A = {µ ∈ M1(X ) | Eµ[ϕ] ≤ c}

lD ∈ ext(A) ⊆ ∆1 ∩ A

⊂ M±(X )

Figure 6.2: Heuristic justification of Winkler’s classification of extreme points of moment
sets (Theorem 6.7). Observe that the extreme points of the dark grey set A consist of convex
combinations of at most 2 point masses, and 2 = 1 + the number of constraints defining A.

Proposition 6.9. If q is bounded either below or above, then µ 7→ Eµ[q] is a measure affine
map.

Proof. First consider the case that q = IE is the indicator function of a measurable set
E ⊆ X . Suppose that µ is a barycentre for A and that p ∈ M1(ext(A)) represents µ, i.e.

µ(B) =

∫

ext(A)

ν(B) dp(ν) for all measurable B ⊆ X .

For B = E, this is the statement that

Eµ[IE ] =

∫

ext(A)

Eν [IE ] dp(ν),

which is (6.2). To complete the proof, verify the claim for q a linear combination of indicator
functions, then for a sequence of such functions increasing to a function that is bounded
above (resp. decreasing to a function that is bounded below), and apply the monotone class
theorem — see Exercise 6.10. �

Exercise 6.10. Complete the proof of Proposition 6.9: verify the claim for q a linear combi-
nation of indicator functions, then for a sequence of such functions increasing to a function
that is bounded above (resp. decreasing to a function that is bounded below), and finish by
applying the monotone class theorem.

Proposition 6.11. Let A ⊆ M1(X ) be convex and let F be a measure affine function on A.
Then F has the same extreme values on A and ext(A).

Proof. Without loss of generality, consider the maximization problem; the proof for min-
imization is similar. Let µ ∈ A be arbitrary and choose a probability measure p ∈
M1(ext(A)) with barycentre µ. Then, it follows from the barycentric formula (6.2) that

F (µ) ≤ sup
ν∈supp(p)

F (ν) ≤ sup
ν∈ext(A)

F (ν). (6.3)

First suppose that supµ∈A F (µ) is finite. Necessarily, supν∈ext(A) F (ν) is also finite, but
it remains to show that the two suprema are equal. Let ε > 0 be arbitrary. Let µ∗ be
ε
2 -suboptimal for the problem of maximizing F over A, i.e. F (µ∗) ≥ supµ∈A F (µ) − ε

2 , and
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let ν∗ be ε
2 -suboptimal for the problem of maximizing F over ext(A). Then

F (ν∗) ≥ sup
ν∈ext(A)

F (ν)− ε

2

≥ F (µ∗)− ε

2
by (6.3) with µ = µ∗

≥ sup
µ∈A

F (µ)− ε.

Since ε > 0 was arbitrary, supµ∈A F (µ) = supν∈ext(A) F (ν), and this proves the claim in
this case.

In the case that supµ∈A F (µ) = +∞, let C, ε > 0. Then there exists some µ∗ ∈ A such
that F (µ∗) ≥ C+ε. Then, regardless of whether or not supν∈ext(A) F (ν) is finite, (6.3) with
µ = µ∗ implies that there is some ν∗ ∈ ext(A) such that

F (ν∗) ≥ F (µ∗)− ε ≥ C + ε− ε = C.

However, since C > 0 was arbitrary, it follows that in fact supν∈ext(A) F (ν) = +∞, and this
completes the proof. �

In summary, we now have the following:

Theorem 6.12. Let X be a pseudo-Radon space and let A ⊆ M1(X ) be a moment class of
the form

A := {µ ∈ M1(X ) | Eµ[ϕj ] ≤ 0 for j = 1, . . . , N}
for prescribed measurable functions ϕj : X → R. Then the extreme points of A are given by

ext(A) ⊆ A∆ := A ∩∆N (X )

=



















µ ∈ M1(A)

∣

∣

∣

∣

∣

∣

∣

∣

∣

for some w0, . . . , wN ∈ [0, 1], x0, . . . , xN ∈ X ,

µ =
∑N

i=0 wiδxi
∑N

i=0 wi = 1,

and
∑N

i=0 wiϕj(xi) ≤ 0 for j = 1, . . . , N



















.

Hence, if q is bounded either below or above, then Q(A) = Q(A∆) and Q(A) = Q(A∆).

Proof. Winkler’s theorem (Theorem 6.7) implies that ext(A) ⊆ A∆. Since q is bounded on
at least one side, Proposition 6.9 implies that µ 7→ F (µ) := Eµ[q] is measure affine. The
claim then follows from Proposition 6.11. �

Remark 6.13. (a) Theorem 6.12 is good news from a computational standpoint for two
reasons:
(i) Since any feasible measure in A∆ is completely described by N + 1 scalars and

N + 1 points of X , the reduced set of feasible measures is a finite-dimensional
object — or, at least, it is as finite-dimensional as the space X is — and so it
can in principle be explored using the finite-dimensional numerical optimization
techniques that can be implemented on a computer.

(ii) Furthermore, since the probability measures in A∆ are finite sums of Dirac mea-
sures, expectations against such measures can be performed exactly using finite
sums — there is no quadrature error.

(b) That said, when µ ∈ A∆ has # supp(µ) ≫ 1, as may be the case with problems�
exhibiting independence structure like those considered below, it may be cheaper to
integrate against a discrete measure µ =

∑N
i=0 αiδxi

∈ A∆ in a Monte Carlo fashion,
by drawing some number 1 ≪ M ≪ #supp(µ) of independent samples from µ (i.e. xi

with probability αi).
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In general, the optimization problems over A∆ in Theorem 6.12 can only be solved
approximately, using the tools of numerical global optimization. However, some of the
classical inequalities of basic probability theory can be obtained in closed form by this
approach.

Example 6.14 (Markov’s inequality). Suppose that X is a non-negative real-valued random
variable with mean E[X ] ≤ m > 0. Given t ≥ m, what is the least upper bound on P[X ≥ t]?

To answer this question, observe that the given information says that the distribution
µ† of X is some (and could be any!) element of A, where

A :=
{

µ ∈ M1([0,∞))
∣

∣EX∼µ[X ] ≤ m
}

.

This A is a moment class with a single moment constraint. By Theorem 6.12, the least
upper bound on PX∼µ[X ≥ t] among µ ∈ A can be found by restricting attention to the
set A∆ of probability measures with support on at most two points x0, x1 ∈ [0,∞), with
masses w0, w1 respectively.

Assume without loss of generality that the two point masses are located at x0 and x1

with 0 ≤ x0 ≤ x1 < ∞. Now make a few observations:
(a) In order to satisfy the mean constraint that E[X ] ≤ m, we must have x0 ≤ m.
(b) If x1 > t and the mean constraint is satisfied, then moving the mass w1 at x1 to x′

1 := t
does not decrease the objective function value PX∼µ[X ≥ t] and the mean constraint is
still satisfied. Therefore, it is sufficient to consider two-point distributions with x1 = t.

(c) By similar reasoning, it is sufficient to consider two-point distributions with x0 = 0.
(d) Finally, suppose that x0 = 0, x1 = t, but that

EX∼µ[X ] = w0x0 + w1x1 = w1t < m.

Then we may change the masses to

w′
1 := m/t > w1,

w′
0 := 1−m/t < w0,

keeping the positions fixed, thereby increasing the objective function value PX∼µ[X ≥
t] while still satisfying the mean constraint.

Putting together the above observations yields that

sup
µ∈A

PX∼µ[X ≥ t] =
m

t
,

with the maximum being attained by the two-point distribution
(

1− m

t

)

δ0 +
m

t
δt.

This result is exactly Markov’s inequality from basic probability theory.

Exercise 6.15 (Bounded random variables). Calculate by hand, as a function of t ∈ R, D ≥ 0
and m ∈ R,

sup
µ∈A

PX∼µ[X ≤ t],

where

A :=

{

µ ∈ M1(R)

∣

∣

∣

∣

EX∼µ[X ] ≥ m, and
diam(supp(µ)) ≤ D

}

.

Physically, this exercise corresponds to the following challenge: you have 1 kg of idealised
infinitely divisible sand, which you can arrange on a horizontal beam (R) however you like,
and must place as much sand as possible in the region x ≥ t while ensuring that the beam
balances about a point ≥ m and all sand is contained in a region at most D in length. Hint:
the answer is the same for

A= :=

{

µ ∈ M1(R)

∣

∣

∣

∣

EX∼µ[X ] = m, and
diam(supp(µ)) ≤ D

}

.
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Exercise 6.16 (Chebyshev’s inequality). Calculate by hand, as a function of t ∈ R, s ≥ 0 and
m ∈ R,

sup
µ∈A

PX∼µ[X −m ≥ st],

and
sup
µ∈A

PX∼µ[|X −m| ≥ st],

where

A :=

{

µ ∈ M1(R)

∣

∣

∣

∣

EX∼µ[X ] ≤ m, and
EX∼µ[|X −m|2] ≤ s2

}

.

Hint: reduce the search space to a search over probability measures supported on at most
three points in R, and then model your reasoning on Example 6.14.

7 Independence

The kinds of constraints on measures (or, if you prefer, random variables) that can be
considered in Theorem 6.12 include values for, or bounds on, functions of one or more of
those random variables: e.g. the mean of X1, the variance of X2, the covariance of X3 and
X4, and so on. However, one commonly encountered piece of information that is not of this
type is that X5 and X6 are independent random variables, i.e. that their joint distibution is
a product measure. The problem here is that sets of product measures can fail to be convex,
so the reduction to extreme points cannot be applied directly.

For measures µ1 on X1 and µ2 on X2, µ1⊗µ2 denotes their product, which is the measure
on X1 ×X2 defined by

(µ1 ⊗ µ2)(E1 × E2) := µ1(E1)µ2(E2)

i.e the measure of a ‘rectangle’ is the product of the measures of its ‘sides’. This formula
is then extended to non-rectangular subsets of X1 ×X2 by σ-additivity. In this sense, ‘area
measure’ is the product of ‘length measure’ with itself. As remarked in the previous para-
graph, random variables X1 and X2 with marginal distributions µ1 and µ2 are independent
exactly when the joint distribution of (X1, X2) is the product measure µ1 ⊗ µ2.

Exercise 7.1. Let λ denote uniform measure on the unit interval [0, 1] ( R. Show that the
line segment in M1([0, 1]

2) joining the measures λ ⊗ δ0 and δ0 ⊗ λ contains measures that
are not product measures. Hence show that a set A of product probability measures like
that considered in Theorem 7.2 is typically not convex.

Fortunately, a cunning application of Fubini’s theorem resolves this difficulty. Fubini’s
theorem is the result that ensures that integration (expectation) against a product measure
can be performed as an iterated integral:

E(X1,X2)∼µ1⊗µ2
[f(X1, X2)] = EX1∼µ1

[

EX2∼µ2
[f(X1, X2)]

]

= EX2∼µ2

[

EX1∼µ1
[f(X1, X2)]

]

,

at least for integrands f : X1 × X2 → R that are measurable and bounded either below or
above. Using Fubini’s theorem, we can extend Theorem 6.12 to cope with independence
constrains coupled with moment constraints on the marginal and joint distributions. Note�
well, though, that unlike Theorem 6.12, Theorem 7.2 does not say that A∆ = ext(A); it
only says that the optimization problem has the same extreme values over A∆ and A.

Theorem 7.2. Let A ⊆ M1(X ) be a moment class of the form

A :=



















µ =

K
⊗

k=1

µk ∈
K
⊗

k=1

M1(Xk)

∣

∣

∣

∣

∣

∣

∣

∣

∣

Eµ[ϕj ] ≤ 0 for j = 1, . . . , N ,
Eµ1

[ϕ1j ] ≤ 0 for j = 1, . . . , N1,
...

EµK
[ϕKj ] ≤ 0 for j = 1, . . . , NK
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A

Ay∗

Ax∗

lD

Figure 7.1: Optimization of a bilinear form B over a non-convex set A ⊆ R2 that has convex
cross-sections. The black curves show level sets of B(x, y) = xy. Note that the maximum
value of B over A is found at a point (x∗, y∗) (marked with a diamond) such that x∗ and
y∗ are both extreme points of the corresponding sections Ay∗

and Ax∗ respectively.

for prescribed measurable functions ϕj : X → R and ϕkj : X → R. Let

A∆ := {µ ∈ A |µk ∈ ∆N+Nk
(Xk)} .

Then, if q is bounded either above or below, Q(A) = Q(A∆) and Q(A) = Q(A∆).

Proof. Let ε > 0 and let µ∗ ∈ A be ε
K+1 -suboptimal for the maximization of µ 7→ Eµ[q]

over µ ∈ A, i.e.

Eµ∗ [q] ≥ sup
µ∈A

Eµ[q]−
ε

K + 1
.

By Fubini’s theorem,
Eµ∗

1⊗···⊗µ∗
K
[q] = Eµ∗

1

[

Eµ∗
2⊗···⊗µ∗

K
[q]
]

By the same arguments used in the proof of Theorem 6.12, µ∗
1 can be replaced by some

probability measure ν1 ∈ M1(X1) with support on at most N + N1 points, such that
ν1 ⊗ µ∗

2 ⊗ · · · ⊗ µ∗
K ∈ A, and

Eν1

[

Eµ∗
2⊗···⊗µ∗

K
[q]
]

≥ Eµ∗
1

[

Eµ∗
2⊗···⊗µ∗

K
[q]
]

− ε

K + 1
≥ sup

µ∈A
Eµ[q]−

2ε

K + 1
.

Repeating this argument a further K − 1 times yields ν =
⊗K

k=1 νk ∈ A∆ such that

Eν [q] ≥ sup
µ∈A

Eµ[q]− ε.

Since ε > 0 was arbitrary, it follows that

sup
µ∈A∆

Eµ[q] = sup
µ∈A

Eµ[q].

The proof for the infimum is similar. �

Example 7.3. A simple two-dimensional optimization problem that illustrates the essential
features of Theorem 7.2 is that of optimizing a bilinear form on R2 over a non-convex set
with convex cross-sections. Suppose that A ⊆ R2 is such that, for each x, y ∈ R, the sections

Ax = {y ∈ R | (x, y) ∈ A}, and

Ay = {x ∈ R | (x, y) ∈ A}
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are convex sets. Note that this does not imply that A itself is convex, as illustrated in
Figure 7.1. Let B : R×R → R be a bilinear functional: for definiteness, consider B(x, y) =
xy. Since A is not convex, its extremal set is undefined, so it does not even make sense
to claim that B has the same extreme values on A and ext(A). However, as can be seen
in Figure 7.1, the extreme values of B over A are found at points (x∗, y∗) for which x∗ ∈
ext(Ay∗

) and y∗ ∈ ext(Ax∗). Just as in the Fubini argument in the proof of Theorem 7.2,
the optimal point can be found by either maximizing maxx∈Ay B(x, y) with respect to y, or
maximizing maxy∈Ax

B(x, y) with respect to x.

Remark 7.4. (a) In the context of Theorem 7.2, a measure µ ∈ A∆ is of the form

µ =

K
⊗

k=1

N+Nk
∑

ik=0

wkikδxkik
=

(N+N1,...,N+NK)
∑

i=(0,...,0)

wiδxi

where, for a multi-index i ∈ {0, . . . , N +N1} × · · · × {0, . . . , N +NK},

wi := w1i1w2i2 . . . wKiK ≥ 0,

xi :=
(

x1i1 , . . . xKiK

)

∈ X .

Note that this means that the support of µ is a rectangular grid in X .
(b) As noted in Remark 6.13(b), the support of a discrete measure µ ∈ A∆, while finite,�

can be very large when K is large: the upper bound is

# supp(µ) =

K
∏

k=1

(1 +N +Nk).

In such cases, it is usually necessary to sacrifice exact integration against µ for the
sake of computational cost and resort to Monte Carlo averages against µ.

(c) However, it is often found in practice that the µ∗ ∈ A∆ that extremises Q(µ∗) does
not have support on as many distinct points of X as Theorem 7.2 permits as an upper
bound, and that not all of the constraints determining A hold as equalities. That is,
there are often many inactive and non-binding constraints, and only those that are
active and binding truly carry information about the extreme values of Q.

(d) Finally, note that this approach to UQ is non-intrusive in the sense that if we have
a deterministic solver for g : X → Y and are interested in EX∼µ† [q(g(X))] for some
quantity of interest q : Y → R, then the deterministic solver can be used ‘as is’ at each
support point x of µ ∈ A∆ in the optimization with respect to µ over A.

8 Functional and Distributional Robustness

In addition to epistemic uncertainty about probability measures, applications often feature
epistemic uncertainty about the functions involved. For example, if the system of interest is
in reality some function g† from a space X of inputs to another space Y of outputs, it may
only be known that g† lies in some subset G of the set of all (measurable) functions from X
to Y; furthermore, our information about g† and our information about µ† may be coupled
in some way, e.g. by knowledge of EX∼µ† [g†(X)]. Therefore, we now consider admissible
sets of the form

A ⊆
{

(g, µ)

∣

∣

∣

∣

g : X → Y is measurable
and µ ∈ M1(X )

}

,

quantities of interest of the form Q(g, µ) = EX∼µ[q(X, g(X))] for some measurable function
q : X × Y → R, and seek the extreme values

Q(A) := inf
(g,µ)∈A

EX∼µ[q(X, g(X))] and Q(A) := sup
(g,µ)∈A

EX∼µ[q(X, g(X))].
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Obviously, if for each g : X → Y the set of µ ∈ M1(X ) such that (g, µ) ∈ A is a moment
class of the form considered in Theorem 7.2, then

ext
(g,µ)∈A

EX∼µ[q(X, g(X))] = ext
(g,µ)∈A

µ∈
⊗K

k=1 ∆N+Nk
(Xk)

EX∼µ[q(X, g(X))].

In principle, though, although the search over µ is finite-dimensional for each g, the search
over g is still infinite-dimensional. However, the passage to discrete measures often enables
us to finite-dimensionalise the search over g, since, in some sense, only the values of g on
the finite set supp(µ) ‘matter’ in computing EX∼µ[q(X, g(X))].

The idea is quite simple: instead of optimizing with respect to g ∈ G, we optimise with
respect to the finite-dimensional vector y = g|supp(µ). However, this reduction step requires
some care:
(a) Some ‘functions’ do not have their values defined pointwise, e.g. ‘functions’ in Lebesgue

and Sobolev spaces, which are actually equivalence classes of functions modulo equality
almost everywhere. If isolated points have measure zero, then it makes no sense to
restrict such ‘functions’ to a finite set supp(µ). These difficulties are circumvented by
insisting that G be a space of functions with pointwise-defined values.

(b) In the other direction, it is sometimes difficult to verify whether a vector y indeed
arises as the restriction to supp(µ) of some g ∈ G; we need functions that can be
extended from supp(µ) to all of X . Suitable extension properties are ensured if we
restrict attention to smooth enough functions between the right kinds of spaces.

Theorem 8.1 (Minty, 1970). Let (X , d) be a metric space, let H be a Hilbert space, let E ⊆ X ,
and suppose that f : E → H satisfies

‖f(x)− f(y)‖H ≤ d(x, y)α for all x, y ∈ E (8.1)

with Hölder constant 0 < α ≤ 1. Then there exists F : X → H such that F |E = f and (8.1)
holds for all x, y ∈ X if either α ≤ 1

2 or if X is an inner product space with metric given by

d(x, y) = k1/α‖x− y‖ for some k > 0. Furthermore, the extension can be performed so that
F (X ) ⊆ co(f(E)), and hence without increasing the Hölder norm

‖f‖C0,α := sup
x

‖f(x)‖H + sup
x 6=y

‖f(x)− f(y)‖H
d(x, y)α

,

where the suprema are taken over E or X as appropriate.

Minty’s extension theorem includes as special cases the Kirszbraun–Valentine theorem
(which assures that Lipschitz functions between Hilbert spaces can be extended without
increasing the Lipschitz constant) and McShane’s theorem (which assures that scalar-valued
continuous functions on metric spaces can be extended without increasing a prescribed con-
vex modulus of continuity). However, the extensibility property fails for Lipschitz functions
between Banach spaces, even finite-dimensional ones, as shown by the following example of
Federer (1969, p. 202):

Example 8.2. Let E ⊆ R2 be given by E := {(1,−1), (−1, 1), (1, 1)} and define f : E → R2

by
f((1,−1)) := (1, 0), f((−1, 1)) := (−1, 0), and f((1, 1)) := (0,

√
3).

Suppose that we wish to extend this f to F : R2 → R2, where E and the domain copy of
R2 are given the metric arising from the maximum norm ‖ · ‖∞ and the range copy of R2 is
given the metric arising from the Euclidean norm ‖ · ‖2. Then, for all distinct x, y ∈ E,

‖x− y‖∞ = 2 = ‖f(x)− f(y)‖2,

so f has Lipschitz constant 1 on E. What value should F take at the origin, (0, 0), if it is to
have Lipschitz constant at most 1? Since (0, 0) lies at ‖ · ‖∞-distance 1 from all three points
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b

b b1

−1

1−1

(R2, ‖ · ‖∞)
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bb
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1

2
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−1

1 2−1−2

(R2, ‖ · ‖2)

Figure 8.1: Illustration of Example 8.2. The function f that takes the three points on
the left (equipped with ‖ · ‖∞) to the three points on the right (equipped with ‖ · ‖2) has
Lipschitz constant 1, but has no 1-Lipschitz extension F to (0, 0), let alone the whole plane
R2, since F ((0, 0)) would have to lie in the (empty) intersection of the three grey discs.

of E, F ((0, 0)) must lie within ‖ · ‖2-distance 1 of all three points of f(E). However, there is
no such point of R2 within distance 1 of all three points of f(E), and hence any extension
of f to F : R2 → R2 must have Lip(F ) > 1; indeed, any such F must have Lip(F ) ≥ 2√

3
.

See Figure 8.1.

Theorem 8.3. Let G be a collection of measurable functions from X to Y such that, for
every finite subset E ⊆ X and g : E → Y, it is possible to determine whether or not g can
be extended to an element of G. Let A ⊆ G ×M1(X ) be such that, for each g ∈ G, the set of
µ ∈ M1(X ) such that (g, µ) ∈ A is a moment class of the form considered in Theorem 7.2.
Let

A∆ :=







(y, µ)

∣

∣

∣

∣

∣

∣

µ ∈⊗K
k=1 ∆N+Nk

(Xk),
y is the restriction to supp(µ) of some g ∈ G,

and (g, µ) ∈ A







.

Then, if q is bounded either above or below, Q(A) = Q(A∆) and Q(A) = Q(A∆).

Exercise 8.4. Prove Theorem 8.3.

Example 8.5. Suppose that g† : [−1, 1] → R is known to have Lipschitz constant Lip(g†) ≤ L.
Suppose also that the inputs of g† are distributed according to µ† ∈ M1([−1, 1]), and it is
known that

EX∼µ† [X ] = 0 and EX∼µ† [g†(X)] ≥ m > 0.

Hence, the corresponding feasible set is

A =

{

(g, µ)

∣

∣

∣

∣

g : [−1, 1] → R has Lipschitz constant ≤ L,
µ ∈ M1([−1, 1]), EX∼µ[X ] = 0, and EX∼µ[g(X)] ≥ m

}

.

Suppose that our quantity of interest is the probability of output values below 0, i.e. q(x, y) =
I[y ≤ 0]. Then Theorem 8.3 ensures that the extreme values of

Q(g, µ) = EX∼µ[I[g(X) ≤ 0]] = PX∼µ[g(X) ≤ 0]
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are the solutions of

extremise:

2
∑

i=0

wiI[yi ≤ 0]

with respect to: w0, w1, w2 ≥ 0

x0, x1, x2 ∈ [−1, 1]

y0, y1, y2 ∈ R

subject to:

2
∑

i=0

wi = 1

2
∑

i=0

wixi = 0

2
∑

i=0

wiyi ≥ m

|yi − yj | ≤ L|xi − xj | for i, j ∈ {0, 1, 2}.
Example 8.6 (McDiarmid). Consider the following admissible set of response functions and
product measures on their inputs

AMcD =







(g, µ)

∣

∣

∣

∣

∣

∣

g : X → R has Dk[g] ≤ Dk,

µ =
⊗K

k=1 µk ∈ M1(X ),
and EX∼µ[g(X)] = m







.

Let m+ := max{0,m}. This AMcD is the admissible set corresponding to the assumptions of
a concentration-of-measure inequality known as McDiarmid’s inequality (McDiarmid, 1989),
which is the upper bound

Q(AMcD) := sup
(g,µ)∈AMcD

Pµ[g(X) ≤ 0] ≤ exp

(

− 2m2
+

∑K
k=1 D

2
k

)

.

Perhaps not surprisingly given its general form, McDiarmid’s inequality is not the least upper
bound on Pµ[g(X) ≤ 0]; the actual least upper bound can be calculated using the reduction
theorems. The proofs are lengthy, and the results are dependent upon K (Owhadi et al.,
2013).
(a) For K = 1,

Q(AMcD) =

{

0, if D1 ≤ m+,

1− m+

D1
, if 0 ≤ m+ ≤ D1.

(8.2)

(b) For K = 2,

Q(AMcD) =















0, if D1 +D2 ≤ m+,
(D1+D2−m+)2

4D1D2
, if |D1 −D2| ≤ m+ ≤ D1 +D2,

1− m+

max{D1,D2} , if 0 ≤ m+ ≤ |D1 −D2|.
(8.3)

Note that in the third case, min{D1, D2} does not contribute to the least upper bound
on Pµ[g(X) ≤ 0]. In other words, if most of the uncertainty is contained in the
first variable (i.e. m+ + D2 ≤ D1), then the uncertainty associated with the second
variable does not affect the global uncertainty; the inequality D2[g] ≤ D2 is non-
binding information, and a reduction of the global uncertainty requires a reduction in
D1.

(c) Similar, but more complicated, results are possible for K ≥ 3, and there are similar
‘screening effects’ in which only a few of the diameter constraints supply binding
information to the optimization problem for Q(AMcD).
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Dominant Uncertainties and Screening Effects. The phenomenon observed in the K = 2
solution of the optimal McDiarmid inequality (8.3) occurs in many contexts: not all of the
constraints that specify A necessarily hold as binding or active constraints at the extremizing
solution (g∗, µ∗) ∈ A. That is, the best- and worst-case predictions for the quantity of
interest Q(g†, µ†) are controlled by only a few pieces of input information, and the others
have not just little impact, but none at all! Far from being undesirable, this phenomenon
is actually very useful, since it can be used to direct future information-gathering activities,
such as expensive experimental campaigns, by attempting to acquire information (and hence
pass to a smaller feasible set A′ ( A) that will modify the binding/active constraints for the
previous problem, i.e. invalidate the previous extremiser in A and lead to a new extremiser
in A′. In this way, we hence pass from the optimal bounds given the information in A

Q(A) ≤ Q(g†, µ†) ≤ Q(A)

to improved optimal bounds given the information in A′

Q(A) < Q(A′) ≤ Q(g†, µ†) ≤ Q(A′) < Q(A).

Exercise 8.7. Calculate by hand, as a function of t ∈ R, m ∈ R, z ∈ [0, 1] and v ∈ R,

sup
(g,µ)∈A

PX∼µ[g(X) ≤ t],

where

A :=







(g, µ)

∣

∣

∣

∣

∣

∣

g : [0, 1] → R has Lipschitz constant 1,
µ ∈ M1([0, 1]), EX∼µ[g(X)] ≥ m,

and g(z) = v







.

Numerically verify your calculations.

9 Numerical Implementation

The inequalities of Markov and Chebyshev are elementary deviation inequalities for ran-
dom variables under very simple assumptions, or rather with very simple information. The
approach to uncertainty quantification discussed in these notes, namely optimizing over fam-
ilies of probability measures and functions, can be seen as the calculation of situation-specific
probabilistic inequalities. Even after applying the reduction theorems (Theorems 6.12, 7.2,
8.3), we will usually have no hope of expressing the solutions in closed form and we must
resort to the tools of numerical optimization.

As remarked earlier, if the input space X is a finite set and the constraints are all
moment constraints, then the optimization problem is already a finite-dimensional linear
programming problem to determine the worst- or best-case weights wi. Such problems can
be solved quickly, accurately, and reliably using many off-the-shelf software packages for
linear or convex optimization.

In general, though, the optimization problems are nonconvex and highly constrained
global optimization problems — a numerical nightmare! This is not to say that the situation
is hopeless, only that it must usually be solved in a more careful and time-consuming ‘offline’
mode, whereas linear and convex programming is amenable to ‘real time’ solutions.

Without going into details, it is worth discussing some the characteristics of the opti-
mization problems to be solved, and hence the requirements of any putative software imple-
mentation. For purely illustrative purposes, pseudo-code will be presented in a Python-like
syntax.

The central data objects are representatives of the discrete function-measure pairs (g, µ) ∈
A∆. The basic object is a measure µ supported at a single point x ∈ X , with weight w ∈ R,
and a corresponding value y representing g(x). This kind of object could be implemented
as a class, or even a simple dictionary:
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p0 = {"position": x, "weight": w, "value": y}

A float or double-precision float may be a suitable data type for w; array data types should
be used for x and y. After treating single-point measures, one needs to be able to consider
measures supported on finitely many points, which could again be implemented as classes,
or just as lists:

mu = [p0, p1, ..., pn]

Assuming that this mu is indeed a probability measure (the weights are all non-negative and
sum to unity), the expected value of a function f on X is simply

def expected_value(f, mu):

return sum(f(p["position"]) * p["weight"] for p in mu)

and the expected value of a quantity of interest, EX∼µ[q(X, g(X))], as discussed earlier,
would be

def expected_value_of_qoi(q, mu):

return sum(q(p["position"], p["value"]) * p["weight"] for p in mu)

The question of what to do if mu has not been normalised is actually a gateway to the
most important aspect of optimal UQ problems: the treatment of constraints. For example,
to ensure that mu remains normalised as a probability measure throughout the computation,
even when the optimiser subjects its components to e.g. some random walk in parameter
space, it is very useful to have a function that imposes the constraint that all the point masses
are non-negative and sum to unity. Here is one possibility, which reflects any negative masses
in the origin (truncation is another popular choice) and then renormalises:

def make_probability_measure(mu):

for p in mu:

p["weight"] = abs(p["weight"])

total_weight = sum(p["weight"] for p in mu)

if not total_weight == 0.0:

for p in mu:

p["weight"] = p["weight"] / total_weight

return mu

else:

return <some error message>

Similar functions should be written for the imposition of target means, variances, etc. When
it is not possible to write functions that will perform such transformations exactly, there is
a choice: either

• add penalty terms to the objective function, so that failure to satisfy the constraints
is heavily penalised; or

• continue to insist that trial points mu satisfy the constraints, but impose the con-
straints implicitly rather than explicitly, by operating an inner optimisation loop that
minimises non-satisfaction of the constraints down to zero.

The penalty function approach is often quick to implement and computationally cheap to
run for simple constraints, but becomes unwieldy when many constraints are involved; it also
has the disadvantage of corrupting the problem structure and allowing the objective function
to be evaluated off the feasible set. The inner optimisation approach has complementary
advantages and disadvantages: the problem structure is respected, but potentially at a high
computational cost. Which approach is ‘better’ is highly problem-dependent.

One final remark about the imposition of constraints is that implementations should
remain flexible so that new constraints can be added and old ones removed, in order to
explore the effect of new items of information or other hypothetical scenarios upon the
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optimisation problem. This means, as a design choice, that the optimisation strategy and
the representation of constraints should be kept separate unless there is a very good reason
to couple them and use an optimiser that is only good for particular kinds of constraints.

Exercise 9.1. Write a program to solve Example 6.14 and Exercises 6.15 and 6.16 numer-
ically using the number of support points given by the reduction theorem (Theorem 6.12).
Once your program is working well, allow it to run on a collection of support point more
numerous than Theorem 6.12 says is sufficient — what do you observe?

A final remark about implementation is that — depending upon the optimisation strategy
— one often observes that the point masses p comprising mu degenerate in the course of the
calculation, either by weights degenerating to a numerical 0.0 or positions ‘colliding’. This
degeneracy is actually a good thing: the optimiser is discovering that not all the available
degrees of freedom are needed to solve the problem — as in the last part of the previous
exercise. Therefore, efficient implementations will monitor the optimiser for this kind of
degeneracy event, and then restart the calculation in a lower-dimensional search space, e.g.
with one less point mass, corresponding to removing the point mass with weight 0.0.

10 Background and Literature

The principle of maximum entropy was proposed by Jaynes (1957a,b), appealing to a cor-
respondence between statistical mechanics and information theory. On the basis of this
principle and Cox’s theorem (Cox, 1946, 1961), Jaynes (2003) developed a comprehensive
viewpoint on probability theory, viewing it as the natural extension of Aristotelian logic.

Berger (1994) makes the case for distributional robustness, with respect to priors and
likelihoods, in Bayesian inference. Smith (1995) provides theory and several practical ex-
amples for generalised Chebyshev inequalities in decision analysis. Boyd and Vandenberghe
(2004, Section 7.2) cover some aspects of distributional robustness under the heading of
nonparametric distribution estimation, in the case in which it is a convex problem. Convex
optimization approaches to distributional robustness and optimal probability inequalities
are also considered by Bertsimas and Popescu (2005). There is also an extensive literature
on the related topic of majorization, for which see the book of Marshall et al. (2011).

A standard short reference on Choquet theory is the book of Phelps (2001). Theorem 6.6
was proved first by Choquet under the additional assumption that the simplex is compact;
the assumption was later dropped by Kendall (1962). For linear programming in infinite-
dimensional spaces, with careful attention to what parts of the analysis are purely algebraic
and what parts require topology / order theory, see Anderson and Nash (1987).

The classification of the extreme points of moment sets, and the consequences for the
optimization of measure affine functionals, are due to von Weizsäcker and Winkler (1979/80,
1980) and Winkler (1988). Theorem 7.2 and the Lipschitz version of Theorem 8.3 can be
found in Owhadi et al. (2013) and Sullivan et al. (2013) respectively. Theorem 8.1 is due
to Minty (1970), and generalises earlier results by McShane (1934), Kirszbraun (1934), and
Valentine (1945). The optimal version of McDiarmid’s inequality is given by Owhadi et al.
(2013, Section 5.1.1).

Applications of the methodology discussed in these notes can be found in various papers:
1. applications to hypervelocity impact Owhadi et al. (2013), Sullivan et al. (2013), and

Kamga et al. (2014);
2. applications to seismic safety certification: Owhadi et al. (2013);
3. application to power grid optimisation: Han et al. (2015);
4. applications to the robustness of Bayesian inference: Owhadi et al. (2015a,b).

Corresponding software can be found in the examples section of the mystic optimization
framework at

http://github.com/uqfoundation/mystic

http://github.com/uqfoundation/mystic
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