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Context of uncertainty quantification

For the last decades, the use of simulation has kept increasing for the
analysis of complex and non-linear physical systems.

Computational models are introduced:

to optimize the system or its maintenance w.r.t. constraints
(geometry, cost, certification criteria...)
to explore the design space (prototyping, better understanding of the
phenomena...)
to evaluate its robustness and its reliability.
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Context of uncertainty quantification

When interested in a complex phenomenon x 7→ y(x), two kinds of
problems can be distinguished:

Forward problems

Given information about x, we
would like to:

1 infer the distribution of x,

2 compute some statistical
quantities of y, such as:

its mean and its variance,
probabilities of exceeding
threshold,
its full density.

Backward problems

Given information about x and y,
we would like to:

1 Construct a parametric
modelM(·;β) for
x 7→ y(x),

2 calibrate parameters β and
validate model M,

3 classify the influence of each
input on the variability of y.

The information about x and y is generally a set of experiments (or code
evaluations). Ecole thématique ETICS - Barcelonnette | June 2016 | PAGE 3/37



Context of uncertainty quantification

Problematic

Most of the methods associated with these problems are based on the
post-processing of large sets of simulations. When the numerical cost
associated with one simulation is very high (for instance ∼100h on 100
cores in parallel), we need to know how to

build cheap mathematical approximations of the quantities of
interest,

control the relevance of these approximations,

use these approximations to solve the problem we are confronted to
(by optimized sequential designs for instance).
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Gaussian process-based regression (GPR)

Let S be a physical system, which response depends on a
d-dimensional input vector x = (x1, . . . , xd), and which performance
can be evaluated from the computation of a quantity of interest, y(x).

Function y is a deterministic mapping that is assumed to be an
element of L2(Dd,R), where Dd is a compact set.

We suppose that the maximal available information about y is a set of
N code evaluations,

{
(x(1), y(x(1))), . . . , (x(N), y(x(N)))

}
.

Each computation of y(x) is computationally expensive, such that N
is relatively small compared to the complexity of y.

Given FN , the σ-algebra associated with this information, we are
interested in the identification of the best predictor y? of y:

‖y − y?‖2L2 ≤ ‖y − ŷ‖2L2 , ŷ ∈ L2(Dd,R).

(u, v)L2 :=

∫

Dd

u(x)v(x)dx, ‖u‖2L2 := (u, u)L2 , u, v ∈ L2(Dd,R).
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Gaussian process-based regression (GPR)

Hypothesis [Sacks et al., 1989],[Santner et al., 2003]

x 7→ y(x) is supposed to be a realization of a Gaussian process (GP),

Y ∼ GP(µ,C).

If the mean and the covariance functions µ and C are known, then :

Y | FN ∼ GP(µN , CN ),

µN (x) = µ(x) + r(x)T [C]−1 (Y− µ),

CN (x,x′) = C(x,x′)− r(x)T [C]−1r(x′),

and E[Y | FN ] = µN is the best predictor of y in the L2 sense.

Y =
(
y(x(1)), . . . , y(x(N))

)
, µ =

(
µ(x(1)), . . . , µ(x(N))

)
,

[C]n,m = C(x(n),x(m)), r(x) =
(
C(x,x(1)), . . . , C(x,x(N))

)
.
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Gaussian process-based regression (GPR)

Parametric formulation

Assuming that µ and C belong to classes that are parameterized by β and
Θ, such that:

Y | β,Θ ∼ GP(µ(β), C(Θ)),

for all x in Dd, the best predictor of y(x) is given by:

E[Y (x) | FN ] =

∫

β,Θ,y

y×π[Y (x) = y | β,Θ,FN ] π[β,Θ | FN ] dβdΘdy,

where:

π[Y (x) = y | β,Θ,FN ] is Gaussian,

π[β,Θ | FN ] is the posterior joint distribution of (β,Θ).
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Gaussian process-based regression (GPR)

Linearized plug-in approach [Bect et al., 2012], [Bichon et al., 2008]

As a good compromise between complexity, efficiency, and errors
control, the "linearized plug-in" approach (or "Universal Kriging") is
generally preferred to this "full-Bayesian" approach.

This method consists in :

1 computing the maximum likelihood estimates of β and Θ, which are
denoted by β? and Θ

?,
2 linearizing the mean function around β?, such that:

µ(x;β) ≈ c0(x) + 〈f (x),β〉 ,
c0(x) := µ(x;β?)− 〈f(x),β?〉 , f (x) :=

∂µ

∂β
(x;β?),

3 reparameterizing: f(x)← (c0(x),f(x)), β ← (1,β),
4 assuming that β ∼ U

R|β|0 , and conditioning all the results by Θ
?.
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Gaussian process-based regression (GPR)

Linearized plug-in approach [Bect et al., 2012], [Bichon et al., 2008]

It comes:

Y | Θ?,FN ∼ GP(µ̂N , ĈN ),

µ̂N (x) =
〈
f(x), β̂

〉
+ r(x)T [C]−1(Y− [F ]β̂),

ĈN (x,x′) = C(x,x′)−r(x)T [C]−1r(x′)+u(x)T ([F ]T [C]−1[F ])−1u(x′).

[F ] = [f(x(1)) · · · f(x(N))]T , β̂ = ([F ]T [C]−1[F ])−1[F ]T [C]−1
Y,

u(x) = [F ]T [C]−1r(x)− f(x).

An analytic expression is found back for the best predictor of y(x) in any
non-computed point x ∈ Dd:

E[Y (x) | FN ] ≈ ylin-plug(x) := µ̂N (x).
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Gaussian process-based regression (GPR)

One of the main advantage of this approximated approach comes from the
fact that the relevance of the "linearized plug-in" predictor of y can
"easily" be computed without any additional evaluation of y from
cross-validation procedures
[Miller, 1974, Dubrule, 1983, Blatman and Sudret, 2011, Bachoc, 2013]:

∥∥∥y − ylin-plug
∥∥∥
2

L2

≈ ε2LOO :=
1

N

N∑

n=1

(
y(x(n))− ylin-plug

(−n) (x(n))
)2

,

y(x(n))− ylin-plug
(−n) (x(n)) =

([R]Y)n
[R]nn

,

[R] = [C]−1
{
[I]− [F ]([F ]T [C]−1[F ])−1[F ]T [C]−1

}
.
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Optimization of the GPR

To optimize the results associated with such a plug-in approach, two
directions can be explored:

work on the parameterization of the covariance function
(stationary or not, regularity...),

work on the parameterization of the mean function (linear or not
with respect to β, sparse representations...).
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Optimization of the GPR - covariance function

By definition, for all x,x′ in Dd:

C(x,x′) := E
[
(Y (x)− E [Y (x)])× (Y (x′)− E

[
Y (x′)

]
)
]
,

such that C is a priori any symmetric and non-negative definite kernel
that is defined on Dd ×Dd.

Remembering that the actual goal is to predict function y, which is
defined on Dd only, it is clear that only "simple" parametric
expressions of C can be considered (from a limited number of
evaluations of y, we do not pretend to be able to precisely identify C).
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Optimization of the GPR - covariance function

A very commonly used representation for C is the following tensorized
Matern expression:

C(x,x′) = σ2
d∏

i=1

1

2ν−1Γ(ν)

(
2
√
νhi

)ν BIIIν

(
2
√
νhi

)
,

where:

hi = gi

(
|xi−x′

i
|

`i

)
,

ν ↔ regularity of y,

σ2 ↔ a priori uncertainty,

`i ↔ correlation lengths,

gi ↔ scaling function (to take into account the fact that the model
can be non-stationary with respect to xi).

Ecole thématique ETICS - Barcelonnette | June 2016 | PAGE 15/37



Optimization of the GPR - covariance function

All the parameters associated with covariance function C have to be
identified from the available evaluations of y, or be a priori fixed
(from expert judgment for instance...).

With only very few information about y and its regularity is available,
it is generally accepted that the Matern-5/2 class is a good a priori

choice for C, which corresponds to the case when the realizations of
Y are twice mean-square differentiable:

C(x,x′) = σ2(1 +
√
h+ (5/3)h2)× exp(−

√
5 h),

h =
∑d

i=1 |xi − x′i|/`i.

Fixed parameters: ν = 5/2, γ =
√
5, g(h) = h,

Free parameters: σ2, {`1, . . . , `d}.
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Optimization of the GPR - mean function

By definition, for all x in Dd:

µ(x;β) := E [Y (x)] ,

such that µ is a priori any function that is defined on Dd.

Any parametric expression can therefore be used to characterize µ.

For instance, one can think to linear or non-linear functions such as
polynomials (which can be orthogonal or not in L2(Dd,R)), cos and
sin, neural networks, Low Rank representations...

Ecole thématique ETICS - Barcelonnette | June 2016 | PAGE 17/37



Optimization of the GPR - mean function

Once again, without information about y, polynomials are generally
chosen for f . Indeed, the set

{
mα, α ∈ N

d
}
, with

mα(x) := xα1

1 × · · · × xαd

d , x ∈ L2(Dd,R),

defines a basis of L2(Dd,R).

β 7→ µ(β) is therefore chosen linear, and for any given value of M ,
the number of polynomials we want to consider for the representation
of µ, the idea is to identify the best M -dimensional subset of{
mα, α ∈ N

d
}

to minimize ‖y − E [Y | FN ]‖L2.

At last, convergence analyses based on the formerly introduced LOO
error can be carried out to identify the most accurate value of M .
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Optimization of the GPR - mean function

In practice, this very complex optimization problem is replaced by an
optimization over a finite dimensional subset of

{
mα, α ∈ N

d
}
.

Different truncation schemes have thus been proposed to choose such
a relevant subset, which are mostly based on the assumption that the
most influential elements of

{
mα, α ∈ N

d
}

correspond to the
elements of lowest total polynomial order:

P(r, d) :=
{
mα | α ∈ N

d,
d∑

i=1

|αi| ≤ r

}
.
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Optimization of the GPR - mean function

A penalization technique, such as the `− 1 or the `− 2
penalizations or the Least Angle Regression (LAR) method
[Hastie et al., 2002, Efron et al., 2004, Blatman and Sudret, 2011] are
generally used to find these M most significant terms in P(r, d).
Cross validation procedures are once again used to avoid overfitting.

Such an approach will be referred as "LAR+UK" approach in the
following [Kersaudy et al., 2015].
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Optimization of the GPR - conclusions

Finally, given FN , the "LAR+UK" approach follows the following steps:

1 identify the M most interesting polynomials to represent y, which are
gathered in the vector-valued function f = (f1, . . . , fM ), such that:

µ(β) := 〈f ,β〉 ,
2 choose an a priori adapted parametric expression for C(Θ),

3 assume that y is a particular realization of Y ∼ GP (µ(β), C(Θ)),

4 identify Θ
? the maximum likelihood estimation of Θ,

5 compute the posterior distribution of Y that is conditioned by FN ,
Θ

? and f .

The optimized GPR is thus given by the mean function of this
conditioned Gaussian process, E [Y (x) | FN ,Θ?,f ].
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Optimization of the GPR - conclusions

E [Y (x) | FN ,Θ?,f ] = ytrend(x) + ycond(x),

ytrend(x) :=
〈
f(x), β̂

〉

ycond(x) := r(x)T [C(Θ?)]−1(Y− [F ]β̂).

Comments

when N tends to infinity, the role of ytrend becomes negligible,

on the contrary, when N is relatively small compared to the
complexity of y, the role of ytrend is crucial.
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Nested polynomial trends

When N , the number of code evaluations, is low compared to the
complexity of y, such approaches are limited by the fact that only low
values of M , the dimension of the projection family, can be
considered to avoid extra-fitting.

In order to be able to deal with higher values of M , without increasing
the number of unknown parameters to be identified, we can propose a
new parameterization of the polynomial trend, which is based on a
nested structure.

It will then be shown to what extent such an approach shows very
promising results when only very limited information is available (↔
N is small).
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Nested polynomial trends

Main ideas

a composition of two polynomials for the mean function, µ, of the
GP associated with x 7→ y(x) is proposed,

the composition of polynomials being polynomials, it is thus possible
to span a large subset of L2(Dd,R) from a small number of
independent parameters.

µ(x; b1, b2) :=
〈
m(p2)

(〈
m(p1)(x1), b1

〉)
, b2

〉
,

where m(p) gathers all the polynomials, which total degree is less than
p ∈ N

∗.

b1 ↔ parameterization of the inner polynomials,

b2 ↔ parameterization of the outer polynomials.
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Nested polynomial trends

Main difficulties

1 the fonction

b1 7→
〈
m(p2)

(〈
m(p1)(x1), b1

〉)
, b2

〉
,

is strongly non-linear.

2 different values of (b1, b2) could lead to the same
nested-representation.

In that prospect, it has been proposed in [Perrin et al., 2016] to work on:

a minimal parametrization of this nested structure to avoid
redundancies,

a linearization of the mean around the maximimun likelihood
estimates of (Θ, b1, b2),

iterative algorithms to solve the maximum likelihood maximization.
Ecole thématique ETICS - Barcelonnette | June 2016 | PAGE 26/37



Nested polynomial trends

Comments on the proposed nested representation

contrary to the "LAR+UK" approach that looks for sparse
representations of µ, the nested representation looks for "full"
polynomial representations, which are however characterized by a very
limited number of independent coefficients. This is particularly
interesting for the modeling of complex phenomena with very limited
information.

For d > 1, it allows us to model separately the dependency structure
between the different input parameters, and the individual actions of
each input parameter. Hence, analyzing the final structure of the
mean function can give us information about the structure of y (is the
model additive up to a transformation of its input parameters or are
the dependencies more complex?).

Ecole thématique ETICS - Barcelonnette | June 2016 | PAGE 27/37



Nested polynomial trends

For d = 1 and Dd = [−1, 1], three analytic examples are proposed:

case 1: y(x) = P
(4)
2 ◦ P (4)

1 (x),

case 2: y(x) = sin((x+ 1)3),

case 3: y(x) = sin(20x) cos(2x),
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Figure: Mean value of the errors associated with these 10 repetitions. Solid black
line: error associated with the LAR+UK approach. Red dotted line: error
associated with the nested approach. Green dotted line: UK with linear trend
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Nested polynomial trends
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approach, bottom : the proposed approach, grey areas ↔ 95% confidence region
for the prediction. Left: case 1, middle: case 2, right: case 3.
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Nested polynomial trends

For d > 1, the same kinds of results are found:

case 1: y(x) = (1− x21) cos(7x1)× (1− x22) sin(5x2),
case 2: y(x) = sin(x1) + 7 sin(x2)

2 + 0.1 sin(x1)x
4
3 (Ishigami),

case 3: y(x) = g(1) ◦ g(2)(x), g(1)(z) = 0.1 cos
(∑6

i=1 zi

)
+

∑6
i=1 z

2
i ,

g(2)(x) = (cos(πx1 + 1), cos(πx2 + 2), . . . , cos(πx6 + 6)).
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Figure: Mean value of the errors associated with these 10 repetitions. Solid black
line: error associated with the LAR+UK approach. Red dashed line: error
associated with the nested approach. Green dotted line: UK with linear trend.
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Conclusions and prospects

A lot of methods in uncertainty quantification and computer
experiments require many code evaluations.

When the numerical cost associated with each evaluation is high,
surrogate models are generally introduced.

When interested in deterministic mappings (when the dimension of
the input space is not too large), one of the most used method is the
GPR.

Working on the polynomial trend can strongly improve the
relevance of the GPR.

When little information about the code is available, considering
nested polynomial trends shows promising results.

Enabling these techniques to deal with high dimensional problem
(d� 1), even if a lot of code evaluations (N � 1) are available is still
an open questions.
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Conclusion

Thank you for your attention.

Ecole thématique ETICS - Barcelonnette | June 2016 | PAGE 33/37



References I

Bachoc, F. (2013).
Estimation paramétrique de la fonction de covariance dans le modèle

de Krigeage par processus Gaussiens. Application à la quantification

des incertitudes en simulation numérique.
PhD thesis, University Paris Diderot, France.

Bect, J., Ginsbourger, D., Li, L., Picheny, V., and Vasquez, E. (2012).
Sequential design of computer experiments for the estimation of a
probability of failure.
Statistics and Computing, 22.

Bichon, B., Eldred, M., Swiler, L., Mahadevan, S., and McFarland, J.
(2008).
Efficient global reliability analysis for non linear implicit performance
functions.
AIAA Journal, 46(10).

Ecole thématique ETICS - Barcelonnette | June 2016 | PAGE 34/37



References II

Blatman, G. and Sudret, B. (2011).
Adaptative sparse polynomial chaos expansion based on least angle
regression.
Journal of Computational Physics, 230.

Dubrule, O. (1983).
Cross validation of kriging in a unique neighborhood.
Mathematical Geology, 15(6):687–699.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004).
Least angle regression.
Ann. Stat., 32:407–499.

Hastie, T., Tibshirani, R., and Friedman (2002).
Elements of Statistical Learning.
Springer, New York.

Ecole thématique ETICS - Barcelonnette | June 2016 | PAGE 35/37



References III

Kersaudy, P., Sudret, B., Varsier, N., and Picon, O. (2015).
A new surrogate modeling technique combining kriging and polynomial
chaos expansions - application to uncertainty analysis in computational
dosimetry.
Journal of Computational Physics, 286:103–117.

Miller, R. G. (1974).
The jackknife - a review.
Biometrika, 61:1–15.

Perrin, G., Soize, C., Garnier, J., and Marque-Pucheu, S. (2016).
Nested polynomial trends for the improvement of gaussian
process-based predictors.
Journal of Computational Physics, in review.

Ecole thématique ETICS - Barcelonnette | June 2016 | PAGE 36/37



References IV

Sacks, J., Welch, W., Mitchell, T., and Wynn, H. (1989).
Design and analysis of computer experiments.
Statistical Science, 4:409–435.

Santner, T. J., Williams, B., and Notz, W. (2003).
The design and analysis of computer experiments.
Springer, New York.

Ecole thématique ETICS - Barcelonnette | June 2016 | PAGE 37/37



Commissariat à l’énergie atomique et aux énergies alternatives
Centre de Saclay | 91191 Gif-sur-Yvette Cedex
T. +33 (0)1 69 08 66 30 | F. +33 (0)1 69 08 66 30

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019

DIRECTION
DEPARTEMENT
SERVICE


	Introduction
	Gaussian process-based regression (GPR)
	Optimization of the GPR
	Nested polynomial trends
	Conclusions and prospects
	References

