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Industrial context

Numerical simulations more and more used to
complement/replace physical experiments, when these are
too costly/dangerous

In industrial studies, simulations used for

design/optimization tasks
reliability assessment and risk analysis

Can we be sure the computer code used for the simulation
‘predicts well enough’ (and in which sense ?) the physical
phenomena under study ?

↪→ Code Validation answers these questions
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What is Code Validation ?

Definition (Advanced Simulation and Computer Program)

‘Code Validation provides assurance that the models in the codes
produce mathematically correct answers and that the answers
reflect physical reality’

Definition (American Institute of Aeronautics and
Astronautics [AIAA, 1998])

‘The process of determining the degree to which a model is an
accurate representation of the real world from the perspective of
the intended uses of the model. (AIAA G-077-1998)’

Ok, but how is it done in practice ?
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Notations

Let r(x) ∈ R be the physical quantity of interest with
respect to a controlable input vector x ∈ Rd

A computer code can be seen as a parametric function yθ(x)

θ vector of (unobservable) parameters to be tuned

z = (z1, . . . , zn) available field measurements :

zi = r(xi ) + εi (1)

εi
i .i .d∼ N (0, λ2)

Based on z, the following tasks are considered :

Calibration : Estimate code parameters θ
Validation : Predict r(x) for x /∈ {xi}1≤i≤n using yθ(x), and
assess prediction uncertainty
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Current approaches

[Loeppky et al., 2006, Cox et al., 2001]

Test of H0 : r(·) = yθ(·) for a known θ, and computation of
confidence intervals for r(x) assuming :

zi = yθ(xi ) + εi (2)

[Kennedy and O’Hagan, 2001, Bayarri et al., 2007]

Code discrepancy term b(x) s.t. H1 : r(x) = yθ(x) + b(x),
(θ, b(x)) estimates and credible intervals for r(x) assuming :

zi = yθ(xi ) + b(xi ) + εi (3)

b(.) ∼ GP(0, σ2
bΣΨb

(., .))
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Limits of current approaches

Code discrepancy : pros and cons

[Bayarri et al., 2007] justify introducing b(x) by arguing that :

it prevents over-fitting of θ
it ameliorates predictions of r(x)

However this term remains controversial, due to :

No formal justification for the presence of b(x) in either
[Kennedy and O’Hagan, 2001] or [Bayarri et al., 2007]
Identifiability issues : (θ, b(x)) and (θ̃, b̃(x)) equally likely as
soon as : b(x) + yθ(x) = b̃(x) + yθ̃(x) := r̂(x)
Computational/interpretational complexity

↪→ Need to develop a formal test of the existence of b(x) before
dealing with it !
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Bayesian Model Selection

In a Bayesian framework, H0 : b(·) = 0 and H1 : b(·) 6= 0 are
compared through their posterior odds :

P(H0|z)

P(H1|z)
=

P(H0)

P(H1)
× p(z|H0)

p(z|H1)

where

Prior odds chosen equal to one : P(H0)
P(H1) = 1

p(z|Hj) =
∫

pj
p(z|pj ,Hj)π(pj)dpj marginal likelihood or

evidence of model Hj , with parameter vector pj

B0,1(z) := p(z|H0)
p(z|H1) is the Bayes factor for H0 over H1

B0,1(z) > 1 indicates stronger evidence for H0 than for H1

Bayesian equivalent of likelihood ratio test lr(z) := p(z|p̂0,H0)
p(z|p̂1,H1)
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Intrinsinc Bayes factor [Berger and Pericchi, 1996]

Main issue : Evidence p(z|Hj) sensitive to priors π(pj)

↪→ Need to use compatible priors [Celeux et al., 2006] or
objective priors [Casella and Moreno, 2006]

but marginal likelihood ill-defined (up to arbitrary constant)
for improper priors (as objective priors often are)

Idea : Replace π(pj) by partial posterior π(pj |z(m)) given
training set z(m) ⊂ z, yielding the partial Bayes factor :

B0,1(z(−m)|z(m)) =
B0,1(z)

B0,1(z(m))
(4)

B0,1(z(−m)|z(m)) well-defined for |m| ≥ n0 large enough :

Intrinsinc Bayes factor obtained by averaging over all z(m)s :

BA
0,1(z) =

B0,1(z)

C (n, n0)

∑
|m|=n0

B0,1(z(m))−1 (5)
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Application to Linear Code Validation

Linear assumption : yθ(x) = h(x)>θ, with h(x) ∈ Rp

Model H0 boils down to :

H0 : z ∼ N (Hθ0;λ2
0In); p0 = (θ0, λ

2
0)

H = [h(x1), · · · , h(xn)]> the n × p design matrix

↪→ Under Jeffreys prior : π(p0) ∝ λ−2
0 , p(z|H0) explicit

Model H1 boils down to :

H1 : z ∼ N (Hθ1;σ2Vk,Ψ); p1 = (θ1, σ
2,Ψ, k)

Vk,Ψ(i , j) = kδi ,j + e−||xi−xj ||2/ψ2
; k = λ2

1σ
−2

Prior choice : π(p1) ∝ π(Ψ|k)π(k)σ−2 [Berger et al., 2011]
Integration of p(z|p1,H1) : explicit over (θ1, σ

2), by gaussian
quadrature over (Ψ, k)
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Prior over Gaussian process hyperparameters

Comparison of two proper conditional priors π(Ψ|k) combined with
π(k) = Beta(k ; 1, 3), making BA

0,1(z) easy to compute due to :

Theorem ([Berger et al., 2011])

If π(Ψ, k) is proper and |m| = p + 1, then B0,1(z(m)) ∝ 1

The uniform prior :

π(Ψ) ∝ 1[Ψmin,Ψmax](Ψ)

The reference prior [Berger et al., 2011] :

π(Ψ|k) ∝
{
tr[W 2

Ψ]− 1

n
tr[WΨ]2

} 1
2
,

with WΨ =
∂Vk,Ψ

∂Ψ V−1
k,Ψ

(
I − H(HV−1

k,ΨH)−1HV−1
k,Ψ

)
.
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Data Simulation

Data simulated according to model H1, with :

x =

(
i

n

)
1≤i≤n

, n = 30, σ2 = 0.1, k = 1

Three different linear models tested :

constant trend h(x) = 1 ; θ1 = 1,

linear trend h(x) = (1, x) ; θ1 = (1, 1),

quadratic trend h(x) = (1, x , x2) ; θ1 = (1, 1, 1).

100 datasets simulated for each model & for Ψ varying in [0, 1]

Bayes factor BA
0,1 expected to decrease with Ψ
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Confounding between trend and the discrepancy

Ψ = 0.2 Ψ = 0.7

Data simulated with quadratic trend and Ψ ∈ {0.2, 0.7}
ψ, k, σ2 estimated by maximum integrated likelihood

For Ψ = 0.7, discrepancy undistinguishable from trend !
16 / 25



Introduction Bayesian Code Validation Numerical Experiment Case Study Discussion

Intrinsinc Bayes factor under Uniform-Beta prior

Boxplots of BA
0,1(z) values over 100 simulations with constant,

linear and quadratic trends (left to right)

H0 selected over H1 if BA
0,1(z) > 1

Due to the confound between nonconstant trend and
discrepancy, H0 and H1 hard to distinguish for ψ > 0.3

17 / 25



Introduction Bayesian Code Validation Numerical Experiment Case Study Discussion

Intrinsinc Bayes factor under Reference-Beta prior

Same remarks as for Uniform-Beta prior

Higher values of BA
0,1(z) using Reference- rather than

Uniform-Beta prior

Reference prior seems to promote conservatism when
searching for code discrepancy
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Case description

Industrial computer code predicting the productivity of an
electric power plant, based on measurements (temperature,
pressure, discharge, . . . ) throughout the plant

n = 24 available field measures (results of periodic testing) to
validate code

Main code features :

d = 20 input variables (x ∈ R20)

Two outputs of interest (electric power, condenser pressure),
seen here as two separate codes

Code linearized in neighbourhood of reference value θ? :

yp
θ (xi ) ≈ yp

θ?(xi ) + h(xi )
>(θ − θ?),

where h(xi ) = ∇θyθ?(xi ) evaluated numerically through finite
difference
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Reference code predictions vs measures

Pressure Power

Systematic bias (constant discrepancy) in code predictions

May be reduced by calibration
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Calibrated code predictions vs measures

Pressure
BA

0,1 = 2× 10−18
Power

BA
0,1 = 3× 10−3

Bias reduced by calibration, but not supressed

strong evidence for code discrepancy
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Conclusion & Perspectives

Bayesian code validation

Assesses uncertainties associated to code predictions,

Corrects code predictions for discrepancy iff needed.

If evidence inconclusive, Bayesian model averaging can be
used [Hoeting et al., 1999]

Future work

Compute reference prior for k

Relax assumption of code linearity

Use kriging to emulate costly nonlinear computer codes

Build physical/numerical DOEs for computer validation

Efficient likelihood integration in higher dimensions

24 / 25



Introduction Bayesian Code Validation Numerical Experiment Case Study Discussion

Short-term perspectives

Work presented at ENBIS 2015, accepted in QREI

↪→ EDF/CEA post-doc under project, due to start beg. 2017 (still
looking for candidates ! !)

Envisioned Industrial applications :
Power plant production control model (DYMOLA)

→ high-dimensional (temporal) output

CANOPY joint welding model (Code_Saturne)

→ costly (> 1h per evaluation)

Hydraulic model of Garrone river (TELEMAC-2D)

→ costly and high-dimensional (spatial) output
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