Noisy kriging-based optimization with online resource allocation

V. Picheny, Ecole Centrale de Paris
D. Ginsbourger, Université de Berne
Y. Richet, IRSN
Optimization of simulators with tunable fidelity

- Two examples:
 - Partially converged simulations
 - Monte-Carlo simulators

- Each observation is a trade-off between rapidity and accuracy

- Objectives:
 - Use it as an additional degree of freedom
 - Optimizing with limited computational resource
Assumptions

- Random noise, no bias
- Noise variance decreases with computational time
- The Monte-Carlo case:
 \[
 \begin{align*}
 y_i &= y(x_i) + \varepsilon_i \\
 \varepsilon_i &\sim N(0, \tau^2(x_i, t_i)) \\
 \tau^2(x, t) &= \frac{f(x)}{t}
 \end{align*}
 \]
- Response convergence is tractable *on-line*
Key concepts and objectives

- **On-line allocation**
 - Allocate computational time adapted to each design
 - Detect when adding computational time will not provide valuable information
 - Allows early stop / accurate simulations

- **Finite time strategy**
 - Computational time is limited by resources and simulator complexity
 - Our trade-off is necessarily driven by this limitation
The quantile-based EI

- We defined a criterion that allows us to:
 - Choose the best experiment for a given future noise level
 - Decide after the optimization which design is best

- The EI can be updated \textit{on-line}

- Open question: choice of the future noise
Influence of future noise level

- Criterion computed for several noise levels of the new observation
- With small noise: equal to classical EI
- With large noise:
 - New observation does not change the Kriging
 - EI is maximum at data points

Atelier Mascot-Num, 4 mai 2010
Choice of the noise level for on-line allocation

- Natural idea: evaluate the interest of a **single time step**
 - EI would show by how much we expect to decrease the quantile with one time step

- Problem: EI would be \(\approx \) zero everywhere

- Proposition: use the value of the **smallest noise achievable**
 - Noise can be bounded by the user (solver tolerance)
 - Noise is always bounded by the computational resource
 - EI shows the ultimate gain achievable by this observation
Illustration

- EI measures by how much we can improve our decision

- It can be re-evaluated for each time step at the current design
 - EI decreases when observation becomes accurate
 - If the design is 'better than expected': EI increases
 - If the design is 'worse than expected': EI decreases faster
Consequences

- The ‘smallest noise achievable’
 - depends on the computational resource
 - increases during the optimization

- The algorithm behaves differently at the beginning and the end of the optimization!
 - Beginning: enhances exploration
 - End: avoids visiting new sites

- The strategy takes into account the limited computational resource
Algorithm overview

Initialization
- Define computational budget T
- Generate initial DoE
- Build metamodel

While $T > 0$

Select experiment
Choose new design that maximizes $EI(T)$

On-line allocation
While $EI > EI_{init}/2$
- Add one time step, update observation
- Update metamodel
- Update $T = T - t_{step}$
- Update EI

Choose final design based on Kriging quantile
Example

- 1D function
- Normally distributed error
- \(\text{var}(\varepsilon) = 0.5 / t \)
- Total time \(T = 100 \)
- Time is divided in 100 increments

- We distinguish here:
 - Algorithm iterations
 - Time steps
Iteration 1: 4 steps used / 92 remaining
Iteration 2: 1 step used / 91 remaining
Iteration 3: 6 steps used / 85 remaining

Actual fit and Kriging

Observation convergence

EI

EI evolution
Iteration 4: 11 steps used / 74 remaining
Iteration 5: 14 steps used / 60 remaining

- Actual func and Kriging
- Observation convergence
- EI
- EI evolution
Iteration 6: 4 steps used / 56 remaining

Actual fct and Kriging

Observation convergence

EI

EI evolution
Iteration 7: 3 steps used / 53 remaining
Iteration 8: 22 steps used / 29 remaining
Iteration 9: 12 steps used / 17 remaining
Iteration 11: 4 steps used / 2 remaining

Actual fact and Kriging

Observation convergence

EI

EI evolution
Iteration 12: 2 steps used / 0 remaining
Final DOE and best point
Concluding comments & future work

- Algorithm main features:
 - Decision criterion based on the metamodel
 - Allows on-line resource allocation
 - Takes into account the computational budget

- Limitations
 - Stopping criterion for on-line allocation is empirical
 - Lack of robustness for some configurations

- Next steps:
 - Test on several optimization problems
 - Comparison with other algorithms
 - Adaptability to different error structures
A Failed optimization