UASA of complex models: Coping with dynamic and static inputs

F. Collin, J. Goffart, T. Mara, L. Denis-Vidal

Université de Lorraine - Research Centre for Automatic Control
Introduction

Building energy model

Uncertainties on:
- thermophysical materials
- weather data
- user behavior, ...

⇒ Uncertainties on energy consumption

• How are the uncertainties propagated through the model?
• Which inputs are responsible for these uncertainties?

⇒ Need to analyze the uncertainties to better understand the energy consumption
Contents

Energy building model

Proposed approach

Results

Conclusion
Contents

Energy building model

Proposed approach

Results

Conclusion
Model

Energy building model

\[y(t, \theta) = g(\omega^d(t, \theta), \omega^s(\theta), t) \]

- \(\omega^d(t, \theta) \): uncertain weather data depending on \(t \)
- \(\omega^s(\theta) \): uncertain thermophysical properties of materials
- \(y \): energy consumption
- \(t \): time (spatio/temporal variable)
- \(g \): PDE
Energy building model

\[y(t, \theta) = g(\omega^d(t, \theta), \omega^s(\theta), t) \]

- Thermophysical properties \(\omega^s_i(\theta) \) (static inputs)
 - Random variable
 - Marginal distribution
 - Random sampling methods

- Weather data \(\omega^d_i(t, \theta) \) (dynamic inputs)
 - Random processes
 - Mean value \(\bar{\omega}^d_i(t) \)
 - Covariance function \(C_i(t_1, t_2) \)

Problem: how to generate consistent samples of dynamic inputs?
Contents

Energy building model

Proposed approach

Results

Conclusion
Generation of dynamic inputs samples

Weather data $\omega^d_i(t, \theta)$
- Random processes
- Mean value $\bar{\omega}^d_i(t)$
- Covariance function $C_i(t_1, t_2)$

Series expansion
Complete set of deterministic functions with corresponding random coefficients

Karhunen-Loève decomposition
- Eigen-decomposition of the covariance function
- Orthogonal deterministic basis functions
- Uncorrelated random coefficients
- Optimal encapsulation of information contained in the random process into a set of discrete uncorrelated random variables
Generation of dynamic inputs samples

Weather data $\omega^d_i(t, \theta)$
- Random processes
- mean value $\bar{\omega}^d_i(t)$
- covariance function $C_i(t_1, t_2)$

Karhunen-Loève decomposition

$$\omega^d_i(t, \theta) \approx \bar{\omega}^d_i(t) + \sum_{k=1}^{M_i} \sqrt{\lambda_k} \xi_k(\theta) f_k(t)$$

- λ_k : eigenvalues of $C_i(t_1, t_2)$
- f_k : eigenfunctions of $C_i(t_1, t_2)$
- M_i : number of modes
- ξ_k : independent normally distributed random variables
Generation of dynamic inputs samples

Weather data $\omega_i^d(t, \theta)$
- Random processes
- mean value $\bar{\omega}_i^d(t)$
- covariance function $C_i(t_1, t_2)$

Karhunen-Loève decomposition

$$
\omega_i^d(t, \theta) \approx \bar{\omega}_i^d(t) + \sum_{k=1}^{M_i} \sqrt{\lambda_k} \xi_k(\theta) f_k(t)
$$

- λ_k and $f_k(t)$ solutions of Fredholm integral:

$$
\int_{D} C_i(t_1, t_2) f_k(t_1) dt_1 = \lambda_k f_k(t_2)
$$

- Resolution based on wavelet transform of $C_i(t_1, t_2)$
Generation of dynamic inputs samples

Karhunen-Loève decomposition

\[
\omega_i^d(t, \theta) \approx \bar{\omega}_i^d(t) + \sum_{k=1}^{M_i} \sqrt{\lambda_k} \xi_k(\theta) f_k(t)
\]

- \(M_i \) modes containing 95\% of \(V(\omega_i^d(t, \theta)) \)
- Influence of the inputs
 \[\{ \omega_1^d(t_1, \theta), \ldots, \omega_1^d(t_f, \theta), \omega_2^d(t_1, \theta), \ldots, \omega_2^d(t_f, \theta), \ldots \} \]
- Influence of the modes
Sensitivity analysis of the dynamic inputs

- \(N_d \) dynamic inputs \(\omega_i^d(t, \theta) \)
- \(M_i \) modes for each input \(\omega_i^d(t, \theta) \)
- In all: \(n = \sum_{i=1}^{N_d} M_i \) modes to analyze
- SA of the inputs through \(\{\xi_1, \cdots, \xi_n, \omega^s\} \)

- Sensitivity indices

\[
\begin{align*}
\{ & \{ \xi_1, \cdots, \xi_{n_1} \}, \xi_{n_1+1}, \cdots, \xi_{n_2}, \cdots, \xi_n, \omega_1^s, \cdots, \omega_N^s \} \\
M_1 \text{ modes of } & \omega_1^d & M_2 \text{ modes of } & \omega_2^d
\end{align*}
\]

Sensitivity index of \(\omega_i^d \) (grouped modes)
\[
S_1 = \frac{V(E(y|\xi_1, \cdots, \xi_{n_1})))}{V(y)},
\]

\cdots

Sensitivity index of \(\omega_i^s \)
\[
S_i = \frac{V(E(y|\omega_i^s))}{V(y)},
\]

\cdots
Contents

Energy building model

Proposed approach

Results

Conclusion
Results

Initial problem

\[y(\theta) = g(\omega^d(t, \theta), t) \]

<table>
<thead>
<tr>
<th>6 dynamic inputs</th>
<th>2 outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (T)</td>
<td>Heat consumption grnd floor (y_1)</td>
</tr>
<tr>
<td>Direct solar radiation (D)</td>
<td>Heat consumption 1st floor (y_2)</td>
</tr>
<tr>
<td>Diffuse solar radiation (d)</td>
<td></td>
</tr>
<tr>
<td>Wind speed (V)</td>
<td></td>
</tr>
<tr>
<td>Wind direction (V_d)</td>
<td></td>
</tr>
<tr>
<td>Relative humidity (H)</td>
<td></td>
</tr>
</tbody>
</table>

- Daily consumption summed over one month
- Data for representative month of january
Results

Procedure

1. Generation of the dynamic inputs
 1.1 Perform a 2D wavelet transform of $C_i(t_1, t_2), i = 1, \ldots, 6$
 Fast Haar wavelet transform algorithm
 Here 3072 modes in all
 $\Rightarrow \lambda_k, f_k(t)$

1.2 Generate the independent random variables ξ_k

1.3 Generate the $N_d = 6$ dynamic inputs ω^d_i

\[
\omega^d_i \approx \bar{\omega}^d_i(t) + \sum_{k=1}^{M_i} \sqrt{\lambda_k} \xi_k(\theta)f_k(t)
\]
Results

Procedure

2 Sensitivity analysis

2.1 Simulate the model with the dynamic inputs

\[y(\theta) = g(\omega^d(t, \theta), t) \]

- Higher consumption at the 1st floor
- More glass surface at the ground floor
- Solar gain more important at the ground floor
- Sensitivity indices to check this assumption
Results

2.2 Sensitivity indices of the grouped modes

\[S_i = \frac{V(E(y|x_i, \cdots, x_n))}{V(y)} \]

- Direct solar radiation more influential at the ground floor
- Temperature more influential at the 1st floor
- Importance of solar gain during winter time
Contents

Energy building model

Proposed approach

Results

Conclusion
Conclusion

In prospect

- Study the influence of the individual modes
- Include the thermophysical properties of the materials ω^s (static inputs)
- Consider the dynamic output $y(t, \theta)$ (thermal comfort)
- Work done in the context of the french project ASenDyn granted by the CNRS
Thank you for your attention

Questions?