

# $\begin{array}{c} Uncertainty\, and\, sensitivity\, analysis\, of\, land\, shares\, model\, over\\ EU \end{array}$

M. Lamboni, R. Koeble and A. Leip

#### Introduction

- Agricultural sector contributes up 10.6% of total greenhouse gas (GHG) emission in the EU27 (EEA [1]) interest in modeling environmental impacts of agricultural activities
- GHG emissions and environmental indicators depend on local land use shares, biophysical characteristics and management factors [2][3]
- Objective: predict the distribution of crop shares over the new Homogenous Spatial Units (HSU)
  - build Land Shares Model at NUTS2 level
  - downscaling at HSU (1km\*1km) and quantify the uncertainty

#### Method: Land Shares Model (LSM)

- Multinomial logit model at administrative (NUTS 2) level Let.
  - $\mathbf{X} = [TEXTURE, SAND, CLAY, OC, ALT, SLP, RAIN, TEMP, VEGP, CLC, Prices]$  be explanatory variables and l be a land use. The probability to find l at point i is:

$$\mathbb{P}(Y_i = l) = \frac{\exp(\beta_i' \mathbf{x}_i)}{\sum_{l=1}^{L} \exp(\beta_i' \mathbf{x}_i)},$$

with  $\beta_l$  a vector of parameters and L is the number of land use.

- Local Multinomial logit: bandwidth selection
  - choose number of points to include in the model at NUTS2 level
  - give a weight to observations to preserve local properties
  - Cross validation with F-measure [4] as effectiveness criteria.

# Method: prediction of land Shares over HSU

- Statistical disaggregation
  - Hypothesis: stability of coefficients within a NUTS 2 For each HSU (1km\*1km), characterized by  $\mathbf{X}_h$ , the crop share is:

$$\widehat{\mathbb{P}(Y_h = l)} = \frac{\exp(\hat{\beta}_l' \mathbf{x}_h)}{\sum_{l=1}^{L} \exp(\hat{\beta}_l' \mathbf{x}_l)} * A_h,$$

where  $A_h$  is the total area of HSU and  $\hat{\beta}_l$  is the weighted likelihood estimator of  $\beta_l$ .

# Method: uncertainty and sensitivity analysis

• Multivariate Sensitivity Analysis [5] Let  $S=[S_1,S_2,\ldots,S_L]=f(\beta,\mathbf{x})$  be model outputs of LSM. Inertia is decomposed like:

$$\mathbb{I}(S) = \sum_{j=1} \mathbb{I}(\beta_j) + \sum_{i < j} \mathbb{I}(\beta_i, \beta_j) + \dots,$$

The first order and total Generalized Sensitivity Indices (GSI) are:

$$GSI_{j} = \frac{\mathbb{I}(\beta_{j})}{\mathbb{I}(S)} \qquad GSI_{T,j} = \frac{\sum_{u \supseteq_{j}} \mathbb{I}(\beta_{u})}{\mathbb{I}(S)}$$

- MSA is applied to select the most influential parameter model for UKC1 includes 15 parameters (pre-selected)
- Uncertainty Analysis of prediction shares over HSU
  - perform a LHS design with most influential parameters
  - replicate model prediction for each sample point

# Result: GSI Indices of LSM for UKC1

Top ten first order and total GSI



### Result: uncertainty of predictions at NUTS 1



Barley Shares from CAPRI (Blue), EUROSTAT (red), prediction in UK

#### Conclusion

- prediction of the crop shares over the new HSU
- Predicted crop shares follow the trends of statistics in general
- Perspective
  - include the statistics of crop shares in the process of coefficient estimation (Bayesian approach)

## References

- -[1] EEA, Annual European Community greenhouse gas inventory 1990 2010 and inventory
- report 2012. Submission to the UNFCCC secretariat. European Environment Agency.
- -[2] M. Lamboni, D. Makowski, S. Lehuger, B. Gabrielle, H. Monod, Multivariate global sensitivity analysis for dynamic crop models, Field Crops Research 113 (2009) 312320.
- -[3] A. Leip, G. Marchi, R. Koeble, M. Kempen, W. Britz, C. Li, Linking an economic model for european agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in europe, Biogeosciences 5 (1) (2008) 7394
- -[4] D. Powers, Evaluation: From precision, recall and f-factor to roc, informedness, markedness | correlation, Journal of Machine Learning Technologies 2 (2011) 37-63.
- -[5] M. Lamboni, H. Monod, D. Makowski, Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models, RESS 96 (2011) 450-459. Contact

European Commission • Joint Research Centre

European Commission • Joint Research Centre
IIES/MARS/Agri-ENV
Email: matieyendou,lamboni@irc,ec.europa.eu

www.jrc.ec.europa.eu