Estimating Sobol indices by combining *pick freeze* estimators and Replicated Latin Hypercube sampling

Clémentine PRIEUR
(joint work with J.Y. Tissot)

University of Grenoble
Laboratoire Jean Kuntzmann
Inria "Project-team" MOISE

SAMO 2013, July 1-4 2013
One wishes to quantify the sensitivity of the output Y to the independent inputs X_1, \ldots, X_d by computing Sobol indices.

In this talk, we introduce new *pick & freeze estimator* based on Replicated Latin Hypercube sampling (RLHS).
I- Our new estimation procedure : notation, definition.

II- Properties.

III- Comparison with randomized QMC approaches.

IV- Conclusion, perspectives.
I- Our new estimation procedure : notation, definition

In this talk, we propose a new estimation procedure for first order Sobol’ indices, that is
\[S_i = \frac{\text{Var}(\mathbb{E}(Y|X_i))}{\text{Var}(Y)}, \quad i = 1, \ldots, d. \]

We assume (without loss of generality)
\[\forall i = 1, \ldots, d \; X_i \sim \mathcal{U}([0,1]), \] the inputs are independent.

Advantages
• it is robust (one only needs very soft assumptions on the model),
• one can derive asymptotic confidence intervals,
• the rate of convergence does not depend on the dimension.

Disadvantages
• this rate is rather slow \(n^{1/2} \),
• with classical sampling strategies, the number of model evaluations needed for estimating all the first order Sobol’ indices is linear in the dimension \(d \).
In this talk, we propose a new estimation procedure for first order Sobol’ indices, that is $S_i = \frac{\text{Var}(\mathbb{E}(Y|X_i))}{\text{Var}(Y)}$, $i = 1, \ldots, d$.

We assume (without loss of generality) $\forall i = 1, \ldots, d \; X_i \sim \mathcal{U}([0, 1])$, the inputs are independent.

What about the *pick & freeze* estimation procedure?

Advantages • it is robust (one only needs very soft assumptions on the model), • one can derive asymptotic confidence intervals, • the rate of convergence does not depend on the dimension.

Disadvantages • this rate is rather slow $n^{1/2}$, • with classical sampling strategies, the number of model evaluations needed for estimating all the first order Sobol’ indices is linear in the dimension d.

Clémentine PRIEUR (joint work with J.Y. Tissot)
Pick & Freeze procedure: n double evaluations of \mathcal{M} required.

Let \mathbf{X} and \mathbf{Z} be two independent random vectors distributed as $\mathcal{U}([0, 1]^d)$.

- the first of any double evaluation is a realization of the random variable $\mathbf{Y} = \mathcal{M}(\mathbf{X})$,

- the complementary evaluation is a realization of the random variable denoted by \mathbf{Y}_i defined by $\mathbf{Y}_i = \mathcal{M}(\mathbf{X}_i : \mathbf{Z}_{i^c})$ where $\mathbf{X}_i : \mathbf{Z}_{i^c}$ is the d-dimensional random vector defined by

$$
(\mathbf{X}_i : \mathbf{Z}_{i^c})_l = \begin{cases}
\mathbf{X}_i & \text{if } l = i \\
\mathbf{Z}_i & \text{if } l \neq i.
\end{cases}
$$
I- Our new estimation procedure: notation, definition

The i^{th} component of X has been frozen.
The i^{th} component of X has been frozen.

We can prove [JKL+12] that

$$S_i = \frac{\text{Cov}(Y, Y_i)}{\text{Var}[Y]} = \frac{\mathbb{E}[YY_i] - \mathbb{E}[Y]\mathbb{E}[Y_i]}{\text{Var}[Y]}.$$
The i^{th} component of X has been frozen.

We can prove [JKL$+12$] that

$$S_i = \frac{\text{Cov}(Y, Y_i)}{\text{Var}[Y]} = \frac{\mathbb{E}[YY_i] - \mathbb{E}[Y]\mathbb{E}[Y_i]}{\text{Var}[Y]}.$$

Then the *pick & freeze* approach [Sob93] consists in proposing an empirical estimator for both the numerator and the denominator.
I- Our new estimation procedure: notation, definition

Design of Experiments:

We define

\[H(n) = \{ X^j, 1 \leq j \leq n \} \]
\[\tilde{H}(n) = \{ Z^j, 1 \leq j \leq n \} \]

We then define

\[H_i(n) = \{ (X_i : Z_i^c)^j, 1 \leq j \leq n \} = \begin{pmatrix}
Z_1^1 & \ldots & X_i^1 & \ldots & Z_d^1 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
Z_1^n & \ldots & X_i^n & \ldots & Z_d^n
\end{pmatrix} \]
I- Our new estimation procedure: notation, definition

Design of Experiments:
we define

\[H(n) = \{ X^j, 1 \leq j \leq n \} \]
\[\tilde{H}(n) = \{ Z^j, 1 \leq j \leq n \} \]

We then define

\[H_i(n) = \{ (X_i : Z_{i^c})^j, 1 \leq j \leq n \} = \begin{pmatrix} Z_1^1 & \cdots & X_i^1 & \cdots & Z_d^1 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \cdots & \vdots & \cdots & \vdots \\ Z_n^1 & \cdots & X_i^n & \cdots & Z_d^n \end{pmatrix} \]

Our design of experiments to estimate \(S_i \) with the \textit{pick & freeze} approach is \(D_i(N) = H(n) \cup H_i(n) \). It is of size \(N = 2n \).
I- Our new estimation procedure: notation, definition

Pick & freeze estimator:

For any \(j \) in \(\{1, \ldots, n\} \), define

\[
\begin{align*}
Y_j^i &= \mathcal{M}(X_j^i) \\
Y_j &= \mathcal{M}((X_i : Z_{ic})^j)
\end{align*}
\]
I- Our new estimation procedure: notation, definition

Pick & freeze estimator:

For any j in $\{1, \ldots, n\}$, define

\[
\begin{align*}
Y_j &= M(X_j) \\
Y_i^j &= M((X_i : Z_{i_c})^j)
\end{align*}
\]

We then introduce [JKL$^+$12]

\[
\hat{S}_{i,n} = \frac{1}{n} \sum_{j=1}^{n} Y_j Y_i^j - \left(\frac{1}{2n} \sum_{j=1}^{n} Y_j + Y_i^j \right)^2
\]

\[
= \frac{1}{2n} \sum_{j=1}^{n} \left((Y_j)^2 + (Y_i^j)^2 \right) - \left(\frac{1}{2n} \sum_{j=1}^{n} Y_j + Y_i^j \right)^2.
\]

Other choices for the empirical estimates of the numerator and the denominator are possible (e.g. [Sal02, Mau02, Owe12]).
We thus need \((1 + d)n\) evaluations of the model to compute all the \(\hat{S}_{i,n}, i = 1 \ldots, d\).

Example with \(d = 2\) and \(n = 4\):

- On the left hand side \(X (\star)\) and \((X_1 : Z_2)_{\text{sample}} (\bullet)\).
- On the right hand side \(X (\star)\) and \((X_2 : Z_1)_{\text{sample}} (\bullet)\).
Which design of experiments to overcome this issue?

Let D a design of experiments (DoE) of size n defined by

$$D = \{ x^j = (x_1^j, \ldots, x_d^j), \; 1 \leq j \leq n \}.$$

The DoE D' is replicated from D if there exist d independent random permutations of $\{1, \ldots, n\}$ — denoted by π_1, \ldots, π_d — such that

$$D' = \{ x'^j = (x_1^{\pi_1(j)}, \ldots, x_d^{\pi_d(j)}), \; 1 \leq j \leq n \}.$$
Then \(D \cup D' \) can be used for estimating any first-order Sobol indices using the \textit{pick & freeze} approach (see Figure below).

On the left hand side \(D \) is an independent sampling.

On the right hand side \(D \) is a LHS (thus \(D' \) too).

Clémentine PRIEUR (joint work with J.Y. Tissot)
I- Our new estimation procedure: notation, definition

Replicated Latin Hypercube sampling [McK95]

Let $H(n) = \{X^j, 1 \leq j \leq n\}$ and $\tilde{H}(n) = \{X'^j, 1 \leq j \leq n\}$ be two Replicated Latin Hypercubes.

$j = 1, \ldots, n$

$x^j = \left(\frac{j-U_{1,j}}{n}, \ldots, \frac{j-U_{d,j}}{n}\right)$

$x'^j = \left(\frac{\pi_1(j)-U_{1,\pi_1(j)}}{n}, \ldots, \frac{\pi_d(j)-U_{d,\pi_d(j)}}{n}\right)$
I- Our new estimation procedure: notation, definition

Define $H_i(n) = \{X'_{\pi_i^{-1}(j)}, \ 1 \leq j \leq n\}$

$$H_i(n) = \left\{ X'_{\pi_i^{-1}(j)}, \ 1 \leq j \leq n \right\}$$

We then choose $D_i(N) = H(n) \cup H_i(n)$. $D_i(N)$ allows estimating S_i with the pick freeze approach.

We remark that $D_i(N)$ as a non ordered set of points does not depend on i, and that's the trick.
A central limit Theorem
If M^6 is integrable then for any $i \in \{1, \ldots, d\}$,

$$\sqrt{n}(\hat{S}_{i,n} - S_i)$$

satisfies a central limit theorem with zero-mean normal limit distribution.

Ideas for the proof: we first prove the result for two independent latin hypercubes, and then control the difference by replacing by replicated latin hypercubes.

Main tools: a SLLN and a CLT for latin hypercube sampling [Loh96], a delta method as in [JKL+12].

The asymptotic variance is smaller than the one in [JKL+12].
III- Comparison with randomized QMC approaches

Model: \(Y = f_1(X_1) \times \cdots \times f_d(X_d) \) with \((X_1, \ldots, X_d) \sim \mathcal{U}([0,1]^d)\)

and

\[f_i(X_i) = \frac{|4X_i - 2| + a_i}{1 + a_i}, \quad a_i \geq 0, \quad i = 1, \ldots, d. \]

i) \(d = 3, \ a = (0,1,9) \)

ii) \(d = 12, \ a = (0,0,0,0,1,1,1,1,9,9,9,9) \)

iii) \(d = 24, \ a = (0, \ldots, 0, 1, \ldots, 1, 9, \ldots, 9). \)

\[\text{8 times} \quad \text{8 times} \quad \text{8 times} \]

i) \(S_1 = 0.742, \ S_2 = 0.185, \ S_3 = 0.007 \)

ii) \(S_1 = \cdots = S_4 = 0.098, \ S_5 = \cdots = S_8 = 0.024, \)
\(S_9 = \cdots = S_{12} = 0.001, \)

iii) \(S_1 = \cdots = S_8 = 0.018, \ S_9 = \cdots = S_{16} = 0.004, \)
\(S_{17} = \cdots = S_{24} = 10^{-4}. \)
III- Comparison with randomized QMC approaches

Rand. Sobol’ seq. : a) Cranley-Patterson rotation, b) Owen’s scrambling [Owe95, Owe97a, Owe97b].

Clémentine PRIEUR (joint work with J.Y. Tissot)
III- Comparison with randomized QMC approaches

- mss for S_1, \ldots, S_8
- mse for S_9, \ldots, S_{16}
- mse for S_{17}, \ldots, S_{24}
IV- Conclusion, perspectives

We have proposed a new *pick-freeze* estimator, based on replicated latin hypercube sampling, that allows estimating all the first order Sobol’ indices with a coat independent of the dimension.

Remarks, perspectives:

- the asymptotic variance in the CLT can be estimated (work in progress),
- the estimation procedure can be generalized with replicated latin hypercube sampling based on orthogonal arrays (strength 2 = second order Sobol’ indices, …) [TP12],
- one probably can adapt ideas in [GJK+13] for deriving non asymptotic properties (work in progress),
- …
References

Some references I

Thanks for your attention