metric-learn-etics

September 26, 2019

1 ETICS 2019 - Practical session on metric learning

You will need to install metric-learn with pip (in command-line or Anaconda prompt):
pip install metric-learn
[from metric_learn import LMNN, NCA, MMC_Supervised, ITML_Supervised
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import make_pipeline, Pipeline
from sklearn.cluster import KMeans
from sklearn.metrics import adjusted_rand_score
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.model_selection import cross_validate, cross_val_score, GridSearchCV

[]: def plot_2d(X, y, colormap=plt.cm.Paired):
" Plot wn 2D the dataset X with colors according to the
class given by the wvector y """
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=colormap)
plt.show()

Useful links:

metric-learn documentation: http://contrib.scikit-learn.org/metric-learn/

scikit-learn documentation: https://scikit-learn.org/stable/documentation.html (there is a
search field in top right corner)

1.1 Supervised metric learning

We will start with the classic supervised learning scenario. We use the toy dataset digits.
[]: # Load digits dataset

digits = datasets.load_digits()

X = digits.data

y = digits.target

We keep only 7 classes for easier visualization

[]:

<
Il

X[y < 7]
yly < 7]

<
1

We can print the shape of the data matrix X to see the number of data points and the dimension.

: print(X.shape)

We can also print the set of classes using the unique method of numpy.

. print(np.unique(y))

The first step is to split the dataset into a training set and a test set using sklearn’s
train_test_split, and to standardize the features.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.25,,
—random_state=0)
print(X_train.shape, X_test.shape)

We standardize the features

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

1.1.1 Dimensionality reduction and visualization

We would like to reduce the dimension of the data to 2D. A standard way to do this is PCA. We
can easily use scikit-learn to fit on the training set and then transform the training and test sets (to
set the dimension to 2, use n_components=2). We can then visualize the data using the function
plot_2d defined at the top of the notebook.

Let’s use metric learning instead to transform the data in 2D. You can try for instance LMNN
and NCA: you can check the doc to see the usage, the available methods, default parameters, etc.
They essentially follow the same API as a Transformer in scikit-learn, with fit, transform, and
fit_transform. The parameter to choose the dimension of the transformed data is n_components,
as in PCA.

Note: You may get some ChangedBehaviorWarning, this to warn users about the changes in
the last release. If you want to ignore warnings, you can use:

import warnings
warnings.filterwarnings('ignore')

You can then plot the transformed data and compare visually to PCA.

From the trained metric learner, you can easily get a copy of the Mahalanobis matrix that
was learned (method get_mahalanobis_matrix), and a pairwise function that corresponds to the
learned metric (method get_metric) and can be easily plugged into other machine learning algo-
rithms in scikit-learn.

1.1.2 Combination of metric learning with k-nearest neighbors classification

Scikit-learn (and by extension metric-learn) allows to use pipelines to combine transformers with
classifiers or other machine learning models. Using make_pipeline or Pipeline, create a com-
bination of PCA with KNeighborsClassifier (you can use n_neighbors=1) and use fit on the
training set and score on the test set to obtain the prediction accuracy.

#apca_knn = make_pipeline()

You can do the same with LDA (LinearDiscriminantAnalysis) which is a supervised dimen-
sionality reduction algorithm and therefore a stronger baseline than PCA.

Now do the same for the metric learners you have used above, and compare the test accuracy.

Combination of metric learning with KMeans clustering

We can also combine metric learning with K-Means clustering (KMeans), again using a pipeline.
For this you may try weakly supervised algorithms such as ITML or MMC: all weakly-supervised
algorithms have a supervised version which creates pairs from labels. Check for instance
ITML_Supervised and MMC_Supervised. MMC training is a bit unstable, sometimes leading to
suboptimal performance. You may increase the number of pairwise constraints and maybe fit
only a diagonal metric.

After you have fit, you can get the cluster labels given to the data by K-Means by calling
the predict method, and use adjusted_rand_score between the predicted labels and the ground
truth labels to measure the clustering performance. You can compare the score to K-Means on the
original representation (without metric learning).

For all K-Means models we can simply set the number of clusters (n_clusters) to the number
of classes in the dataset.

1.1.3 Cross validation, grid search, etc

In machine learning, it is very important to tune hyperparameters and more generally to do model
selection. With metric-learn it is easy to run cross validations and grid searches to tune hyperpa-
rameters in the same way as normally done in scikit-learn.

First, you can use cross_val_score or cross_validate to quickly have cross validation scores
for any metric learner (or pipeline). Check the scikit-learn documentation and give it a try. The
number of CV folds can be set using the argument cv (e.g., cv=3 for 3-fold cross validation). With
cross_validate you can use the option return_train_score=True to show the training accuracy,
which is convenient to check for possible overfitting.

You can also use GridSearchCV to tune hyperparameters using cross validation. Check the
documentation of scikit-learn and use it to tune the parameters of one of your pipelines. For
instance, you could use the pipeline LMNN+KNN and tune the parameter k of LMNN (between
1 and 3 for instance) and the parameter n_neighbors of KNN (in the same range). It may be slow
as one needs to train as many models as the number of CV folds times the number of possible
combinations of hyperparameter values.

Note: to be able to specify the parameters to tune in the dictionary, you need to give a name to
each component of the pipeline with Pipeline. Example:

lmnn_knn = Pipeline(steps=[('lmnn', LMNN(n_components=2)), ('knn', KNeighborsClassifier())])

Then you can refer to parameters of each using the name as prefix, for instance 'lmnn__k'.

We can then show the best combination of hyperparameters found by cross validation by print-
ing the attribute best_params_ of the GridSearchCV object.

You can then easily compute the test error of the tuned combined model by calling the score
method of the GridSearchCV object.

2 Weakly-supervised metric learning

If you have time, you may experiment with other datasets, such as “Labeled Faces in the Wild”.
One version of this dataset only give weak supervision in the form of pairs (pairs of face images
of same/different persons). You can load it with the following code. It may take some time as the
images need to be downloaded first.

: pairs, y_pairs = [datasets.fetch_lfw_pairs() [key] for key in ['pairs', 'target']]

pairs = pairs.reshape(2200, 2, 2914)
y_pairs = 2 * y_pairs - 1

: print(pairs.shape, np.unique(y_pairs))

You can see that there is 2200 pairs with binary labels (similar / dissimilar), and each data
point is in dimension 2914. To reduce the computational load as well as overfitting it may be a
good idea to reduce the data dimension first, using PCA for instance... This is not ideal but easier
to work with. There is a bit of nasty reshaping job to do, so I'll give the code for applying PCA (25
dimensions, you can easily change this)

: pairs = PCA(n_components=25) .fit_transform(pairs.reshape(4400, -1)).reshape(-1,,

-2, 25)
print(pairs.shape)

You can take a look at the scoring functions used for the weakly supervised setting (in particu-
lar the default, which is the Area under the ROC Curve, or AUC), and explore the other algorithms
on this dataset or others. Have fun!

	ETICS 2019 - Practical session on metric learning
	Supervised metric learning
	Dimensionality reduction and visualization
	Combination of metric learning with k-nearest neighbors classification
	Cross validation, grid search, etc

	Weakly-supervised metric learning

