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Summary
At  very  high  Rayleigh  numbers,  a  very  intense  heat  transfer  regime  appears  for  which  the  triggering
mechanisms are  still  poorly understood.  Using HPC numerical  simulations  and physics-guided machine
learning techniques,  we seek to  extract  from data  physical  information bringing to light  the multi-scale
interactions between different turbulent flow structures. 

Context

The Rayleigh-Benard convection is established in a cavity under the effect of a temperature difference 
imposed on the horizontal walls, the bottom wall being heated. The resulting flow in the turbulent regime is a
multi-structured and multi-scale phenomenon characterized by the superposition of small-scale plumes (heat 
vectors), a large-scale mean flow filling the cavity, boundary layers and turbulent fluctuations.

For many years, we have been simulating this physical phenomenon by direct numerical simulation (DNS). 
The transition to massively parallel simulations now allows us to consider calculations at parameter levels 
close to experiments. However, these calculations are very heavy and even if the spatio-temporal description 
of the flow can be very fine, it is difficult to approach statistically all the scales of the flow, to store all the 
computed fields, or to easily replay the sequences.

Despite progress made by careful comparison of experimental and numerical simulations studies, key 
differences remain in the amount and nature of the information provided by each community, making 
conjoint understanding difficult. For instance, experimental data is incomplete (probes time series, 2D fields 
sequences or images), but well converged and can reach high forcings. Numerical simulations are fully 
resolved in space, but reach lower turbulence level and for shorter durations. The tremendous potential 
capabilities of recent physics-informed deep learning (DL) techniques will help in seamlessly integrating the 
benefits of each approach into a new modeling and comprehension of turbulent physics. 

In this project, we will take advantage of both perceptrons or (graph) convolutional neural networks 
frameworks enhanced with physical constraints, in order to mitigate the risks and to speed up and robustify 
the training phase of the models. More specifically, objectives are to infer missing data from experiments, 
and alleviate the cost of expensive numerical simulations by reducing the storage cost. 

Methodology

The project seeks to take advantage of the capabilities of machine learning techniques to reduce the 
complexity of the data. These techniques will be deployed at the interface between numerical models and 
solvers, and experimentally acquired data, not only to facilitate comparison, but also to access 
unmeasured/unquantifiable information in terms of variables or resolution finesse, and to guide physical 
exploration. 

mailto:anne.sergent@lisn.upsaclay.fr
http://www.lisn.fr/
mailto:didier.lucor@lisn.upsaclay.fr


Two types of architecture will be considered based on deep or graph convolution neural networks, in which 
physical constraints enrich the output data for an accelerated convergence, with two distinct objectives. First,
it is about processing multi-source experimental data acquisition to reconstruct hidden quantities fields, and 
test ideas about the super-resolution reconstruction to improve the spatial resolution of measures. Second, it 
is to extract physical informations from experimental images. DNS data are used for preliminary tests, but 
also provide additional information, leading to mixing of experimental and numerical databases. 

Several encouraging internships have already been carried out on the topic [Lucor et al. JCP 2022]. A large 
DNS database already exists [Belkadi et al. JFM 2021], but it will be expanded as needed using the resources
of GENCI’s national supercomputers. The project will focus on hidden scalar or field variables 
reconstruction and/or superresolution using DNS or / and experimental data, useful to better understand 
physical couplings between simultaneous flow quantities. 

PINN  predictive  capabilities  for  Rayleigh-Bénard  flow  at  Ra=2.109 [LAS22].  Left:  Example  of
instantaneous heat dissipation field in a 2D slice from 3D DNS. The domain  over which the PINN
model  is  trained,  is  depicted  as  a  transparent  box.  Right:  probability  density  function  of  the
temperature fluctuations within the training domain. The reference PDF is computed from the full
DNS while the two PINNs PDF are evaluated on the predicted test sample.

Expected profile 

• Master of Science or equivalent in applied mathematics, physics, or mechanical engineering, with 
competences in fluid dynamics, statistics, or scientific computing

• Good programming skills, especially in Python programming
• Good writing skills

Contact and application procedure

For further information, please contact:
Anne Sergent
anne.sergent@lisn.fr 
Didier Lucor
didier.lucor@lisn.fr

Please send preferably before May 15, 2022, a detailed CV, a cover letter, letters of recommendation if any
and a transcript of higher education records (at Master level) 
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