
Postdoctoral position offer : optimization in the

presence of uncertainties, application to the energy

efficiency of buildings

Mission description

Despite the long-term research efforts put into numerical optimization, many
practical applications remain difficult. There are three main reasons: most
real problems involve nonlinear models, the objective functions or the con-
straints are numerically costly to evaluate (e.g., when nonlinear finite ele-
ments underlie the optimization criteria), and some of the parameters are
uncertain. Including model and environmental uncertainties in decision aid-
ing methods is often seen as becoming increasingly important.

To ease the computing load, Bayesian Optimization (BO) incorporates
kriging surrogates to save calls to the objective function, as embodied in the
archetypal EGO algorithm [21]. The original optimization problem is trans-
lated into a series of other problems, that of the acquisition of new points
where the costly function will be calculated. The acquisition criterion is
based on the kriging model and it mitigates the optimization of the function
and the learning of the kriging model [10]. BO has rapidly been extended
to encompass constraints [20, 18][9, 11] or multi-objective functions [5].

In this post-doctoral work, we will focus on costly and general nonlinear
constrained multi-objective optimization problems that are affected by un-
certainties. We will consider the case where the uncertain parameters can
be separated from the optimization variables and can be chosen during the
simulations. Because of this separation and providing a probability of oc-
curence of the uncertainties exists, a statistical modeling in the joint design
× uncertain parameters space is possible. This will be the context of the
work.

A key step when optimizing in the presence of uncertainties is the formu-
lation of the problem, i.e., the choice of the robustness criteria. Considering
first unconstrained problems, relevant criteria are the expectation of the ob-
jective [12] or one of its (super-)quantiles [22, 23]. In Robust Optimization,
the uncertainties are handled in terms of specific compromises between the
average performance and its dispersion [16, 4]. When there are constraints
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that depend on the uncertainties, the feasibility of the solutions is typically
measured in probability. Probabilistic models of the constraints are called
chance constraints [15] or reliability constraints [6]. The optimization prob-
lems are formulated in terms of statistical criteria such as probabilities of
satisfying the constraints, expectations or (super-)quantiles or conditional
quantiles of the objective function [22, 13, 19].

In the last decade, numerous contributions to the optimization of costly
functions with uncertainties have relied on the learning of a metamodel of
the true functions, in particular Gaussian processes (GP) [8, 14]. In [12] and
[2], the GP not only helps for the optimization (or for the inversion) of the
design variables, but it also serves to define an optimal sampling scheme.

In [3], the problem of minimizing the mean of a stochastic function under
chance constraints is addressed. The objective function and the constraints
are costly in the sense that they cannot be calculated more than a hundred
times. The uncertainties, which can be described by parameters different
from the optimization variables, can be chosen in the calculations. Gener-
alizing [12], an optimization and sampling Bayesian procedure is proposed.
It is based on the feasible improvement and the associated Stepwise Uncer-
tainty Reduction (SUR) criterion to choose where to evaluate the uncertain
parameters.

The goal of this work is to improve the ideas introduced in [3] by putting
them in the context of multi-objective optimization under uncertainties. The
expected hyper-volume improvement must be adapted to take into account
the uncertainties and a sampling SUR criterion must be devised to choose
the value of the random parameter to be evaluated. As it is done in [17]
a multi-output Gaussian process can be proposed to take into account the
correlation between the objective functions. A wise choice of the correlation
kernel should be done. The results wil be compared to others methods [7].

The methods developed will be applied to the design of energy efficient
buildings, a major contemporary challenge. The criteria are the energy usage
of the building, the thermal comfort and the cost. Important uncertainties
affect the cost (through the cost of energy) and the external conditions
through the climate change. The building models will be done with the
opensource software Energy+ [1].

Practicalities

Dates Renewable 12 months contract. The envisaged start date is flexible
between january and june 2024.

Location Institut Camille Jordan (ICJ), Campus of l’Ecole Centrale de
Lyon, Ecully
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Stays will be expected at Laboratoire d’Informatique, de Modélisation et
d’Optimisation des Système (LIMOS), Campus des Cézeaux de l’université
de Clermont.

Salary : between 33k euros and 36k euros brut

Contacts Céline Helbert, ICJ, celine.helbert@ec-lyon.fr, page web
Christophette Blanchet, ICJ, christophette.blanchet@ec-lyon.fr, page web
Rodolphe Le Riche, leriche@emse.fr, page web

Required skills

• doctoral degree or equivalent in mathematics,

• proven strong background in uncertainty quantification or statistical
learning theory,

• substantial experience in numerical programming.
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bilitation à diriger les recherches, Univ. Clermont-Auvergne, 2018.
https://hal.archives-ouvertes.fr/tel-01737299.

3

https://www.ec-lyon.fr/contacts/celine-helbert
https://cv.hal.science/christophette-blanchet-scalliet?langChosen=fr
https://www.emse.fr/~leriche/
https://energyplus.net/
https://hal-ifp.archives-ouvertes.fr/hal-02986558
https://hal-ifp.archives-ouvertes.fr/hal-02986558


[7] Pietro M. Congedo, Gianluca Geraci, Remi Abgrall, and Gianluca Iac-
carino. Multi-objective Design Optimization Using High-Order Statis-
tics for CFD Applications, pages 111–126. Springer International Pub-
lishing, Cham, 2015.

[8] Vincent Dubourg, Bruno Sudret, and Jean-Marc Bourinet. Reliability-
based design optimization using kriging surrogates and subset simu-
lation. Structural and Multidisciplinary Optimization, 44(5):673–690,
2011.

[9] David Eriksson and Matthias Poloczek. Scalable constrained bayesian
optimization. International Conference on Artificial Intelligence and
Statistics, PMLR, 130:730–738, 2021.

[10] Roman Garnett. Bayesian Optimization. Cambridge University Press,
2022.

[11] Jose Miguel Hernandez-Lobato, Michael Gelbart, Matthew Hoffman,
Ryan Adams, and Zoubin Ghahramani. Predictive entropy search for
bayesian optimization with unknown constraints. 32nd International
Conference on Machine Learning, PMLRnal Conference on Machine
Learning, PMLR, 37:1699–1707, 2015.

[12] Janis Janusevskis and Rodolphe Le Riche. Simultaneous kriging-based
estimation and optimization of mean response. Journal of Global Op-
timization, 2012. DOI 10.1007/s10898-011-9836-5.

[13] Rodolphe Le Riche. Optimization under uncertainties: an overview
with a focus on Gaussian processes. Lecture at the CNRS French-
German University school on Modeling and Numerical Methods for
Uncertainty Quantification, cf. https://hal.archives-ouvertes.fr/
cel-02285533, September 2019.

[14] Maliki Moustapha, Bruno Sudret, Jean-Marc Bourinet, and Benôıt
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