Package ‘sensitivity’
July 15, 2008
Version 1.4-0
Date 2008-07-14
Title Sensitivity Analysis
Author Gilles Pujol
Maintainer Bertrand looss <bertrand.iooss @cea.fr>
Depends R (>=2.7.0), boot
Suggests rgl

Description A collection of functions for factor screening and global sensitivity analysis of model
output.

License CeCILL-2.0

R topics documented:

decoupling 2
fast99 . .. 3
00 10) o £ 5
PCC - o v e e 7
] o 9
sensitivity-package L e 11
sobol2002o e e 12
SODOL . . . L e 13
SIC « v v e e e e e e e e e e e e e e e e e 15
template.replace L L. 17
testmodels 18
Index 19

decoupling

decoupling Decoupling Simulations and Estimations

Description

tell and ask are S3 generic methods for decoupling simulations and sensitivity measures es-
timations. In general, they are not used by the end-user for a simple R model, but rather for an
external computational code. Most of the sensitivity analyses objects of this package overload
tell, whereas ask is overloaded for iterative methods only.

Usage
tell(x, y = NULL, ...)
ask(x, ...)
Arguments
X a typed list storing the state of the sensitivity study (parameters, data, estimates),
as returned by sensitivity analyses objects constructors, such as src, morris,
etc.
v a vector of model responses.
additional arguments, depending on the method used.
Details

When a sensitivity analysis method is called with no model (i.e. argument model = NULL), it
generates an incomplete object x that stores the design of experiments (field X), allowing the user to
launch "by hand" the corresponding simulations. The method tel1l allows to pass these simulation
results to the incomplete object x, thereafter estimating the sensitivity measures.

When the method is iterative, the data to simulate are not stored in the sensitivity analysis object x,
but generated at each iteration with the ask method; see for example sb.

Value

tell doesn’t return anything. It computes the sensitivity measures, and stores them in the list x.
Side effect: tell modifies its argument x.

ask returns the set of data to simulate.

fast99

fast99 Extended Fourier Amplitude Sensitivity Test

Description

fast 99 implements the so-called "extended-FAST" method (Saltelli et al. 1999). This method
allows the estimation of first order and total Sobol’ indices for all the factors (alltogether 2p indices,
where p is the number of factors) at a total cost of n X p simulations.

Usage
fast99 (model = NULL, factors, n, M = 4, omega = NULL,
g = NULL, g.arg = NULL, ...)

S3 method for class 'fast99':

tell (x, y = NULL, ...)

S3 method for class 'fast99':

print(x, ...)

S3 method for class 'fast99':

plot(x, ylim = c(0, 1), L)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

factors an integer giving the number of factors, or a vector of character strings giving
their names.

n an integer giving the sample size, i.e. the length of the discretization of the
s-space (see Cukier et al.).

M an integer specifying the interference parameter, i.e. the number of harmonics
to sum in the Fourier series decomposition (see Cukier et al.).

omega a vector giving the set of frequencies, one frequency for each factor (see details
below).

q a vector of quantile functions names corresponding to wanted factors distribu-
tions (see details below).

g.arg a list of quantile functions parameters (see details below).

X a list of class "fast 99" storing the state of the sensitivity study (parameters,
data, estimates).

v a vector of model responses.

ylim y-coordinate plotting limits.

any other arguments for model which are passed unchanged each time it is
called.

4 fast99

Details

If not given, the set of frequencies omega is taken from Saltelli et al. The first frequency of the
vector omega is assigned to each factor X; in turn (corresponding to the estimation of Sobol’
indices S; and ST,), other frequencies being assigned to the remaining factors.

If the arguments g and q . args are not given, the factors are taken uniformly distributed on [0, 1].
The argument g must be list of character strings, giving the names of the quantile functions (one
for each factor), such as qunif, gnorm...It can also be a single character string, meaning same
distribution for all. The argument g.arg must be a list of lists, each one being additional param-
eters for the corresponding quantile function. For example, the parameters of the quantile function
qunif couldbe 1ist (min=1, max=2), giving an uniform distribution on [1, 2]. If g is a single
character string, then g. arg must be a single list (rather than a list of one list).

Value

fast 99 returns a list of class "fast 99", containing all the input arguments detailed before, plus
the following components:

call the matched call.

X a data.frame containing the factors sample values.

y a vector of model responses.

v the estimation of variance.

D1 the estimations of Variances of the Conditional Expectations (VCE) with respect

to each factor.

Dt the estimations of VCE with respect to each factor complementary set of factors
("all but X;").

References

A. Saltelli, S. Tarantola and K. Chan, 1999, A quantitative, model independent method for global
sensitivity analysis of model output, Technometrics, 41, 39-56.

R. I. Cukier, H. B. Levine and K. E. Schuler, 1978, Nonlinear sensitivity analysis of multiparameter
model systems. J. Comput. Phys., 26, 1-42.

See Also
decoupling
Examples
Test case : the non-monotonic Ishigami function
x <= fast99 (model = ishigami.fun, factors = 3, n = 1000,
g = "qunif", g.arg = list (min = -pi, max = pi))
print (x)

plot (x)

morris 5

morris Morris’s Elementary Effects Screening Method

Description

morris implements the Morris’s elementary effects screening method (Morris 1992). This method,
based on design of experiments, allows to identify the few important factors at a cost of r x (p+ 1)
simulations (where p is the number of factors). This implementation includes some improvements
of the original method: space-filling optimization of the design (Campolongo et al. 2007) and
simplex-based design (Pujol 2008).

Usage
morris (model = NULL, factors, r, design, binf = 0, bsup = 1,
scale = TRUE, ...)
S3 method for class 'morris':
tell (x, y = NULL, ...)
S3 method for class 'morris':
print(x, ...)

S3 method for class 'morris':
plot (x, identify = FALSE, ...)
plot3d.morris (x, alpha = c(0.2, 0), sphere.size = 1)

Arguments

model a function, or a model with a predict method, defining the model to analyze.

factors an integer giving the number of factors, or a vector of character strings giving
their names.

r either an integer giving the number of repetitions of the design, i.e. the number
of elementary effect computed per factor, or a vector of two integers c (r1,
r2) for the space-filling improvement (Campolongo et al.). In this case, r1l is
the wanted design size, and r2 (> r1l) is the size of the (bigger) population in
which is extracted the design (this can throw a warning, see below).

design a list specifying the design type and its parameters:

* type = "oat" for Morris’s OAT design (Morris 1992), with the param-
eters:

— levels : either an integer specifying the number of levels of the de-
sign, or a vector of integers for different values for each factor.

— grid. jump : either an integer specifying the number of levels that are
increased/decreased for computing the elementary effects, or a vector
of integers for different values for each factor. If not given, it is set
to grid. jump = 1. Notice that this default value of one does not
follow Morris’s recommendation of levels/2.

* type = "simplex" for simplex-based design (Pujol 2008), with the
parameter:

6 morris

— scale.factor : a numeric value, the homothety factor of the (iso-
metric) simplexes. Edges equal one with a scale factor of one.

binf either an integer, specifying the minimum value for the factors, or a vector for
different values for each factor.

bsup either an integer, specifying the maximum value for the factors, or a vector for
different values for each factor.

scale logical. If TRUE, the input and output data are scaled before computing the
elementary effects.

x a list of class "morris™" storing the state of the screening study (parameters,
data, estimates).

v a vector of model responses.

identify logical. If TRUE, the user selects with the mouse the factors to label on the

(u*, o) graph (see identify).

any other arguments for model which are passed unchanged each time it is
called.

alpha a vector of three values between 0.0 (fully transparent) and 1.0 (opaque) (see
rgl.material). The first value is for the cone, the second for the planes.

sphere.size anumeric value, the scale factor for displaying the spheres.

Details

plot2d draws the (u*, o) graph.
plot3d.morris draws the (u, u*, o) graph (requires the rgl package). On this graph, the points

are in a domain bounded by a cone and two planes (application of the Cauchy-Schwarz inequality).
Value

morris returns a list of class "morris", containing all the input argument detailed before, plus
the following components:

call the matched call.

X a data.frame containing the design of experiments.
v a vector of model responses.

ee ar X p matrix of elementary effects for all the factors.

Notice that the statitics of interest (u, 4™ and o) are not stored. They can be printed by the print
method, but to extract numerical values, one has to compute them with the following instructions:

mu <- apply(xSee, 2, mean)
mu.star <- apply(xSee, 2, function(x) mean (abs(x)))
sigma <- apply(x$See, 2, sd)

Warning messages

""keeping r’ repetitions out of r'' when generating the design of experiments, identical repetitions
are removed, leading to a lower number than requested.

pce 7

References

M. D. Morris, 1991, Factorial sampling plans for preliminary computational experiments, Techno-
metrics, 33, 161-174.

F. Campolongo, J. Cariboni and A. Saltelli, 2007, An effective screening design for sensitivity,
Environmental Modelling & Software, 22, 1509-1518.

G. Pujol (2008), Simplex-based screening designs for estimating metamodels, submited to Reliabil-
ity Engineering and System Safety.

See Also

decoupling

Examples

Test case : the non-monotonic function of Morris

x <— morris (model = morris.fun, factors = 20, r = 4,

design = list (type = "oat", levels = 5, grid.jump = 3))
print (x)
plot (x)

Not run: morris.plot3d(x) # (requires the package 'rgl')

pcc Partial Correlation Coefficients

Description

pcc computes the Partial Correlation Coefficients (PCC), or Partial Rank Correlation Coefficients
(PRCC), which are sensitivity indices based on linear (resp. monotonic) assumptions, in the case of
(linearly) correlated factors.

Usage

pcc (X, y, rank = FALSE, nboot = 0, conf = 0.95)
S3 method for class 'pcc':

print(x, ...)

S3 method for class 'pcc':

plot(x, ylim = c(-1,1), ...)

Arguments
X a data frame (or object coercible by as.data . frame) containing the design
of experiments (model input variables).
y a vector containing the responses corresponding to the design of experiments
(model output variables).
rank logical. If TRUE, the analysis is done on the ranks.

nboot the number of bootstrap replicates.

conf

ylim

Value

pcce

the confidence level of the bootstrap confidence intervals.
the object returned by pcc.
the y-coordinate limits of the plot.

arguments to be passed to methods, such as graphical parameters (see par).

pcc returns a list of class "pcc™, containing the following components:

call

PCC

PRCC

References

the matched call.

a data frame containing the estimations of the PCC indices, bias and confidence
intervals (if rank = TRUE).

a data frame containing the estimations of the PRCC indices, bias and confi-
dence intervals (if rank = TRUE).

A. Saltelli, K. Chan and E. M. Scott eds, 2000, Sensitivity Analysis, Wiley.

See Also
src
Examples
a 100-sample with X1 ~ U(0.5, 1.5)
X2 ~ U(l1.5, 4.5)
X3 ~ U(4.5, 13.5)
n <- 100
X <- data.frame (X1 = runif(n, 0.5, 1.5),
X2 = runif(n, 1.5, 4.5),
X3 = runif(n, 4.5, 13.5))

linear model

Y = X1 + X2 + X3

y <- with(X, X1 + X2 + X3)

sensitivity analysis

x <— pcc(X, vy,
print (x)

nboot = 100)

#plot (x) # TODO: find another example...

sb 9

sb Sequential Bifurcations

Description

sb implements the Sequential Bifurcations screening method (Bettonvil and Kleijnen 1996). This
is an alpha version that might strongly evolve in the future.

Usage

sb(p, sign = rep("+", p), interaction = FALSE)
S3 method for class 'sb':

ask(x, i = NULL, ...)
S3 method for class 'sb':
tell(x, vy, ...)
S3 method for class 'sb':
print(x, ...)
S3 method for class 'sb':
plot (x, ...)
Arguments
o) number of factors.
sign a vector fo length p filled with "+" and "-", giving the (assumed) signs of the

factors effects.

interaction aboolean, TRUE if the model is supposed to be with interactions, FALSE other-
wise.

x a list of class "sb" storing the state of the screening study at the current itera-
tion.

v a vector of model responses.

i an integer, used to force a wanted bifurcation instead of that proposed by the
algorithm.

not used.

Details

The model without interaction is
P
Y =6+ B:X:
i=1

while the model with interactions is

p
Y:50+ZﬁiX¢+ Z Vi Xi X

i=1 1<i<j<p

10 sb

In both cases, the factors are assumed to be uniformly distributed on [—1,1]. This is a difference
with Bettonvil et al. where the factors vary across [0,1] in the former case, while [—1, 1] in the
latter.

Another difference with Bettonvil et al. is that in the current implementation, the groups are splitted
right in the middle.

Value

sb returns a list of class "sb", containing all the input arguments detailed before, plus the following

components:

i the vector of bifurcations.

y the vector of observations.

ym the vector of mirror observations (model with interactions only).

The groups effects can be displayed with the print method.

References
B. Bettonvil and J. P. C. Kleijnen, 1996, Searching for important factors in simulation models with
many factors: sequential bifurcations, European Journal of Operational Research, 96, 180-194.
Examples

a model with interactions
p <- 50

beta <- numeric(length = p)

beta[l:5] <= runif(n = 5, min = 10, max = 50)

betal[6:p] <- runif(n = p - 5, min = 0, max = 0.3)

beta <- sample (beta)

gamma <- matrix(data = runif(n = p”2, min = 0, max = 0.1), nrow = p, ncol = p)
gamma [lower.tri (gamma, diag = TRUE)] <- 0

gamma[l,2] <- 5

gamma [5, 9] <- 12

f <- function(x) { return(sum(x x beta) + (x %$*% gamma %*% X))}

10 iterations of SB
sa <- sb(p, interaction = TRUE)
for (i in 1 : 10) {
x <— ask(sa)
y <— list()
for (i in names (x
y[l[i]] <= £(x[I[

)) A
ill)
}
tell (sa, vy)
}
print (sa)
plot (sa)

sensitivity-package 11

sensitivity-package
Sensitivity Analysis

Description

Methods and functions for global sensitivity analysis.

Details

The sensitivity package implements some global sensitivity analysis methods:

* Linear regression coefficients: SRC and SRRC (src), PCC and PRCC (pcc).
* Morris’s "OAT" elementary effects screening method (morris).
* Bettonvil’s sequential bifurcations (sb).

* Monte Carlo estimation of Sobol’ indices: Sobol’s scheme (1993) to compute the indices
given by the variance decomposition up to a specified order (sobol), and Saltelli’s scheme
(2002) to compute first order and total indices with a reduced cost (s0b012002).

« Estimation of the Sobol’ first order and total indices with Saltelli’s so-called "extended-FAST"
method (fast 99).

Moreover, some utilities are provided: standard test-cases (testmodels) and template file gener-
ation (template.replace).

Model managing

The sensitivity package works either on R models than on external models (such as executables).

R models must be functions or objects that have a predict method, such as 1m objects. Models
defined as functions will be called once with an expression of the form y <- £ (X) where X is the
design of experiments, i.e. a data.frame with p columns (the input factors) and n lines (each,
an experiment), and vy is the vector of length n of the model responses (we say that such functions
are vectorized).

If the model is external to R, for instance a computational code, it must be analyzed with the
decoupled approach, see decoupling. This approach can also be used on R models that doesn’t
fit the specifications.

References

A. Saltelli, K. Chan and E. M. Scott eds, 2000, Sensitivity Analysis, Wiley.

12 sobol2002

s0b012002 Monte Carlo Estimation of Sobol’ Indices (scheme by Saltelli 2002)

Description

sobo12002 implements the Monte Carlo estimation of the Sobol’ indices for both first-order and
total indices at the same time (alltogether 2p indices), at a total cost of (p+2) x n model evaluations.

Usage
sobol2002 (model = NULL, X1, X2, nboot = 0, conf = 0.95, ...)
S3 method for class 'sobol2002':
tell (x, y = NULL, return.var = NULL, ...)
S3 method for class 'sobol2002':
print(x, ...)
S3 method for class 'sobol2002':
plot(x, ylim = c(0, 1), ...)
Arguments
model a function, or a model with a predict method, defining the model to analyze.
X1 the first random sample.
X2 the second random sample.
nboot the number of bootstrap replicates.
conf the confidence level for bootstrap confidence intervals.
X a list of class "sobol" storing the state of the sensitivity study (parameters,
data, estimates).
y a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

ylim y-coordinate plotting limits.

any other arguments for model which are passed unchanged each time it is
called

Value
sobo12002 returns a list of class "sobo12002", containing all the input arguments detailed

before, plus the following components:

call the matched call.
X adata.frame containing the design of experiments.

y the response used

sobol 13

Y4 the estimations of Variances of the Conditional Expectations (VCE) with respect
to each factor and also with respect to the complementary set of each factor ("all
but X;").

S the estimations of the Sobol’ first-order indices.

T the estimations of the Sobol’ total sensitivity indices.

Users can ask more ouput variables with the argument return.var (for example, bootstrap out-
puts V.boot, S.boot and T.boot).

References

A. Saltelli, 2002, Making best use of model evaluations to compute sensitivity indices, Computer
Physics Communication, 145, 580-297.

Examples

Test case : the non-monotonic Sobol g-function

The method of sobol requires 2 samples

There are 8 factors, all following the uniform distribution
on [0,1]

n <- 1000

X1 <- data.frame (matrix (runif (8 * n), nrow = n))

X2 <- data.frame (matrix (runif (8 » n), nrow = n))

sensitivity analysis

x <— s50b0l2002 (model = sobol.fun, X1, X2, nboot = 100)
print (x)
plot (x)

sobol Monte Carlo Estimation of Sobol’ Indices

Description

sobol implements the Monte Carlo estimation of the Sobol’ sensitivity indices. This method al-
lows the estimation of the indices of the variance decomposition, sometimes referred to as functional
ANOVA decomposition, up to a given order, at a total cost of (N + 1) X n where N is the number
of indices to estimate. This function allows also the estimation of the so-called subset indices, i.e.
the first-order indices with respect to single multidimensional inputs.

14 sobol

Usage

sobol (model = NULL, X1, X2, order = 1, nboot = 0, conf = 0.95,
S3 method for class 'sobol':

tell (x, y = NULL, return.var = NULL, ...)

S3 method for class 'sobol':

print(x, ...)
S3 method for class 'sobol':
plot(x, ylim = c(0, 1), ...)
Arguments
model a function, or a model with a predict method, defining the model to analyze.
X1 the first random sample.
X2 the second random sample.
order either an integer, the maximum order in the ANOVA decomposition (all indices

up to this order will be computed), or a list of numeric vectors, the multidimen-
sional compounds of the wanted subset indices.

nboot the number of bootstrap replicates.
conf the confidence level for bootstrap confidence intervals.
x a list of class "sobol" storing the state of the sensitivity study (parameters,

data, estimates).
v a vector of model responses.

return.var a vector of character strings giving further internal variables names to store in
the output object x.

ylim y-coordinate plotting limits.

any other arguments for model which are passed unchanged each time it is
called.

Value

sobol returns a list of class "sobol", containing all the input arguments detailed before, plus the
following components:

call the matched call.

X adata.frame containing the design of experiments.

v a vector of model responses.

Y the estimations of Variances of the Conditional Expectations (VCE) with respect
to one factor or one group of factors.

D the estimations of the terms of the ANOVA decomposition (not for subset in-
dices).

S the estimations of the Sobol’ sensitivity indices (not for subset indices).

Users can ask more ouput variables with the argument return . var (for example, bootstrap out-
puts V.boot,D.boot and S.boot).

.)

src 15

References

I. M. Sobol, 1993, Sensitivity analysis for non-linear mathematical model, Math. Modelling Com-
put. Exp., 1,407-414.

See Also

sobo12002

Examples

Test case : the non-monotonic Sobol g-function

The method of sobol requires 2 samples
(there are 8 factors, all following the uniform distribution on [0,11])
n <- 1000

X1 <- data.frame (matrix (runif (8 = n), nrow = n))

X2 <- data.frame (matrix (runif (8 * n), nrow

Il
=}

sensitivity analysis

x <—- sobol (model = sobol.fun, X1 = X1, X2 = X2, order = 2, nboot = 100)
print (x)

#plot (x)

src Standardized Regression Coefficients

Description

src computes the Standardized Regression Coefficients (SRC), or the Standardized Rank Regres-
sion Coefficients (SRRC), which are sensitivity indices based on linear or monotonic assumptions
in the case of independent factors.

Usage

src(X, y, rank = FALSE, nboot = 0, conf = 0.95)
S3 method for class 'src':

print(x, ...)
S3 method for class 'src':
plot(x, ylim = c(-1,1), ...)
Arguments
X a data frame (or object coercible by as.data . frame) containing the design
of experiments (model input variables).
y a vector containing the responses corresponding to the design of experiments

(model output variables).

rank logical. If TRUE, the analysis is done on the ranks.

16

nboot

conf

ylim

Value

src

the number of bootstrap replicates.

the confidence level of the bootstrap confidence intervals.
the object returned by src.

the y-coordinate limits of the plot.

arguments to be passed to methods, such as graphical parameters (see par).

src returns a list of class "src", containing the following components:

call
SRC

SRRC

References

the matched call.

a data frame containing the estimations of the SRC indices, bias and confidence
intervals (if rank = FALSE).

a data frame containing the estimations of the SRRC indices, bias and confi-
dence intervals (if rank = TRUE).

A. Saltelli, K. Chan and E. M. Scott eds, 2000, Sensitivity Analysis, Wiley.

See Also
pcc
Examples
a 100-sample with X1 ~ U(0.5, 1.5)
X2 ~ U(l.5, 4.5)
X3 ~ U((4.5, 13.5)
n <- 100
X <- data.frame (X1 = runif(n, 0.5, 1.5),
X2 = runif(n, 1.5, 4.5),
X3 = runif(n, 4.5, 13.5))

linear model

Y = X1 + X2 + X3

y <- with(X, X1 + X2 + X3)

sensitivity analysis

x <- src(X, vy,
print (x)
plot (x)

nboot = 100)

template.replace 17

template.replace Replace Values in a Template Text

Description

template.replace replaces keys within special markups with values in a so-called template
file. Pieces of R code can be put into the markups of the template file, and are evaluated during the
replacement.

Usage

template.replace(text, replacement, eval = FALSE,
key.pattern = NULL, code.pattern = NULL)

Arguments

text vector of character strings, the template text.
replacement the list values to replace in text.

eval boolean, TRUE if the code within code . pattern has to be evaluated, FALSE
otherwise.

key.pattern custom pattern for key replacement (see below)

code.pattern custom pattern for code replacement (see below)

Details

In most cases, a computational code reads its inputs from a text file. A template file is like an
input file, but where some missing values, identified with generic keys, will be replaced by specific
values.

By default, the keys are enclosed into markups of the form $ (KEY) .

Code to be interpreted with R can be put in the template text. Pieces of code must be enclosed
into markups of the form @ {CODE}. This is useful for example for formating the key values (see
example). For interpreting the code, set eval = TRUE.

Users can define custom patterns. These patterns must be perl-compatible regular expressions (see
regexpr. The default ones are:

key.pattern = "\\S$\\ (KEY\\)"
code.pattern = "@\\{CODE\\}"

Note that special characters have to be escaped both (one for perl, one for R).

18 testmodels

Examples

= Q@{S(a)+ts(b)}",
"pi = @{format (pi,digits=5)

txt <- c("Hello $(name)!"™, "S$S(a) + $(b
}ll
replacement <- list (name = "world", a

)
)
=1, b =2)

1. without code evaluation:

txt.rpll <- template.replace(txt, replacement)

print (txt.rpll)

2. with code evalutation:

txt.rpl2 <- template.replace(txt, replacement, eval = TRUE)
print (txt.rpl2)

testmodels Test Models for Sensitivity Analysis

Description

These functions are standard testcase for sensitivity analysis benchmarks: The g-function of Sobol’,
the function of Ishigami and the function of Morris (see Saltelli et al. 2000, section 2.9)

Usage
sobol. fun (X)
ishigami. fun (X)
morris. fun (X)
Arguments

X a matrix (or data . frame) containing the input sample.

Value

A vector of function responses.

References

A. Saltelli, K. Chan and E. M. Scott eds, 2000, Sensitivity Analysis, Wiley.

Index

*Topic 10
template.replace, 16
+Topic design
fast99,2
morris, 4
sb, 8
sobol, 12
sob0l12002, 11
xTopic methods
decoupling,1
*Topic misc
testmodels, 17
xTopic package
sensitivity-package, 10
+Topic regression
pcc, 7
src, 14

ask (decoupling), 1
ask.sb(sb), 8

decoupling, 1,4,6, 11
fast 99,2, 10
ishigami. fun (testmodels), 17

morris, 2,4, 10
morris.fun (testmodels), 17

pcc, 7,10,15

plot.fast99 (fast99),2
plot.morris (morris), 4
plot.pcc (pcc), 7
plot.sb(sb), 8
plot.sobol (sobol), 12
plot.sobol2002 (sobol12002), 11
plot.src(src), 14
plot3d.morris (morris), 4
print.fast99 (fast99),2
print.morris (morris), 4

print.pcc (pcc), 7

print.sb (sh), 8

print.sobol (sobol), 12
print.sobol2002 (sobol12002), 11
print.src(src), 14

regexpr, 16

sb, 2,8, 10

sensitivity
(sensitivity-package), 10

sensitivity-package, 10

sobol, 10, 12

sobol. fun (testmodels), 17

sobol2002, 10,11, 14

src, 2,8, 10, 14

tell (decoupling), 1
tell.fast99 (fast99),?2
tell.morris (morris), 4
tell.sb(sb), 8

tell.sobol (sobol), 12
tell.sobol2002 (sobol2002), 11
template.replace, 10, 16
testmodels, 10, 17

	decoupling
	fast99
	morris
	pcc
	sb
	sensitivity-package
	sobol2002
	sobol
	src
	template.replace
	testmodels
	Index

