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Abstract.
Over the past decade, industrial companies and academic institutions pooled their efforts

and knowledge to propose a generic uncertainty management methodology for computer sim-
ulation. This framework led to the collaborative development of an open source software
dedicated to the treatment of uncertainties, called “OpenTURNS” (Open source Treatment of
Uncertainty, Risk’N Statistics). This paper aims at presenting a new Python package, called
“otbenchmark”, offering tools to evaluate the performance of a large panel of uncertainty
quantification algorithms. It provides benchmark classes containing problems with their refer-
ence values. Two categories of benchmark classes are currently available: reliability estimation
problems (i.e., estimating failure probabilities) and sensitivity analysis problems (i.e., estimat-
ing sensitivity indices such as the Sobol’ indices). This package can either be used for vali-
dating a new algorithm or automatically comparing various algorithms on a set of problems.
Additionally, the package provides several convergence and accuracy metrics to compare the
performance of each algorithm. To face high-dimensional problems, otbenchmark offers
graphical tools to draw multidimensional events, functions and distributions based on cross-
cuts visualizations. Finally, to ensure otbenchmark’s accuracy, a test-driven software devel-
opment method has been adopted (using, among others, Git for collaborative development, unit
tests and continuous integration). Ultimately, otbenchmark is an industrial platform gath-
ering problems with reference values of their solutions and various tools to achieve a robust
comparison of uncertainty management algorithms.
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1 INTRODUCTION

Complex computer simulation often requires implementing uncertainty management meth-

ods to evaluate associated risks, robustness and design margins. Several industrial companies

and academic institutions pooled their efforts and knowledge to propose a generic uncertainty

management methodology for computer simulation. This framework led to the collaborative

development of an open source software dedicated to the treatment of uncertainties, called

“OpenTURNS” (Open source Treatment of Uncertainty, Risk’N Statistics) [3]. Initially created

by EDF R&D, Airbus Group and Phimeca Engineering, later joined by IMACS and ONERA,

OpenTURNS is a generic, modular, transparent and multi-accessibility industrial software ded-

icated to serve several purposes (e.g., uncertainty quantification, uncertainty propagation, sur-

rogate modeling, reliability, sensitivity analysis and calibration).

In the vein of a first bennchmark challenge organized in 2019 (the “Black-box Reliability

Challenge” [12]), this paper aims at presenting a new Python module, called “otbenchmark”1,

which aims at providing several automatic tools to evaluate the performance of a large panel

of uncertainty quantification algorithms by relying on the probabilistic programming frame-

work offered by OpenTURNS. In other words, this module provides benchmark classes for

OpenTURNS. It sets up a framework to create use-cases or problems associated with reference

values. Such a benchmark problem may be used in order to check that a given algorithm works

as expected and to measure its performance in terms of speed and accuracy.

Two categories of benchmark classes are currently provided: the first one is devoted to re-

liability estimation problems (i.e., estimating failure probabilities), the second one is devoted

to sensitivity analysis problems (i.e., estimating sensitivity indices such as the Sobol’ indices).

otbenchmark is currently composed of 26 reliability problems and 4 sensitivity problems.

For all these problems, reference solutions are provided. These solutions are obtained, either

from a crude Monte Carlo estimation with a controlled convergence, or using (when possible)

an exact resolution (e.g., provided by algebraic operations on input distributions). Addition-

ally, otbenchmark provides several convergence and accuracy metrics to compare the per-

formance of each algorithm. Finally, in order to perform a complete benchmark, a loop can be

automatically set to evaluate a large panel of algorithms over the complete set of examples.

Graphical representations are often useful to help the analyst to understand the underlying

behavior of complex reliability or sensitivity problems. Since many of these problems have di-

mensions larger than two, it raises numerous practical issues. otbenchmark offers graphical

tools to draw multidimensional events, functions and distributions based on cross-cuts. Finally,

to ensure otbenchmark’s accuracy, a test-driven software development method was followed

(using, among others, Git and github.com for collaborative development, unit tests and contin-

uous integration).

Thus, otbenchmark is an industrial benchmark platform for uncertainty management al-

gorithms, and can be seen as a versatile tool offering diverse problems with corresponding

solutions, robust metrics and graphical representations for high-dimensional problems.

In this paper, section 2 gives a formulation reminder for reliability and sensitivity prob-

lems, presents the probabilistic programming framework of OpenTURNS and demonstrates the

added value of otbenchmark over the existing benchmark repositories. Section 3 defines the

package’s object-oriented architecture by detailing its main classes. Section 4 introduces the

benchmark problems and the research for the most accurate associated reference values. Fi-

nally, section 5 is an illustrative example of the results automatically produced by the package

1Official repository: https://github.com/mbaudin47/otbenchmark
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for a range of problems and algorithms.

2 MOTIVATIONS AND OBJECTIVES

2.1 Reliability analysis and sensitivity analysis formulations

Formally, the general scope of this paper is to address typical problems defined by consid-

ering a model given by 𝑔 : R𝑑 → R
𝑝, for which one considers a set of 𝑑 uncertain inputs 𝑋𝑖

(𝑖 ∈ {1, . . . , 𝑑}) gathered in a random vector 𝑿 ∈ R𝑑 . This random vector is associated to its

joint probability distribution denoted in the following by the joint probability density function

(PDF) 𝑓𝑿 , built from marginal densities and a copula. Propagating the uncertainties can be

achieved through the following relationship:

𝑌 = 𝑔(𝑿) (1)

where the model output 𝑌 is a random variable (either univariate or multivariate). In the follow-

ing, one will only assume a scalar output variable for the sake of clarity (note that OpenTURNS

is not limited to scalar outputs since most of its classes are designed to naturally handle mul-

tivariate outputs). Based on this formulation, several types of analyses, associated to various

quantities of interests can be solved. Among others, one will focus in this paper only on the

following two types of analyses:

• Reliability analysis: in this case, one desires to compute a failure probability, denoted by

𝑝f and defined through a threshold event 𝐸 which characterizes the failure. This quantity

of interest simply reads:

𝑝f =
∫
R𝑑
�𝐸 (x) 𝑓𝑿 (x)dx. (2)

Many standard or advanced algorithms can be used such as, typically, simulation-based

ones (e.g., Monte Carlo sampling, importance sampling, subset sampling), approximation-

based methods (FORM/SORM) or hybrid algorithms (e.g., FORM coupled with impor-

tance sampling, surrogate-model based strategies).

• Sensitivity analysis: in such as case, one desires to compute a sensitivity index (or a set

of indices) which reflects the way an input (or a set of inputs) influence the variability

of an output quantity of interest. For instance, by considering the variance of 𝑌 , one can

compute the well-known Sobol’ indices [14] as follows:

𝑆𝑖 =
Var [E[𝑌 |𝑋𝑖]]

Var[𝑌 ] , 𝑆𝑇𝑖 =
E [Var[𝑌 |𝑿−𝑖]]

Var[𝑌 ] , (3)

where 𝑆𝑖 is the first-order index, 𝑆𝑇𝑖 the total-order index of the variable 𝑋𝑖 and 𝑿−𝑖
stands for 𝑿 without the 𝑖-th component. Several algorithms can be used to estimate

these indices (e.g., sampling-based, surrogate-based or given-data algorithms) [8].

Other types of analyses (e.g., estimating the mean and variance of the model output, calibration,

surrogate model fitting) will be further considered in future work.

These two types of analyses can be performed by using dedicated algorithms proposed in

various open source or commercial software. OpenTURNS is one of them and provides several

classes and algorithms to do so. In the next paragraph, one specifically focuses on a few core

elements of the library and briefly explains why OpenTURNS is particularly well-dedicated to

solve efficiently the problems presented hereabove.
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2.2 OpenTURNS as a tool for uncertainty quantification

Originally founded by an industrial partnership between EDF R&D, Airbus and Phimeca

Engineering in 2005, IMACS joined the OpenTURNS partnership in 2014, followed by ON-

ERA in 2019. As an open source software developed under the LGPL license, OpenTURNS

offers several features: if the core is written in C++, the application programming interface is

in Python which makes it usable as a standard Python library. The architecture of the code is

fully object-oriented and provide a large panel of classes and methods which are supported by

a rigorous continuous integration process which provides a high-quality code for both indus-

trial studies and research projects. The tool, in addition to its development and maintenance,

is intensively used to support several industrial uncertainty quantification studies of the various

partners.

OpenTURNS provides tools for what is usually called “probabilistic programming”, a pro-

gramming paradigm which facilitates the combination of probabilistic objects for statistical

modeling. Among the OpenTURNS probabilistic object used in otbenchmark, the most

iconic ones must be introduced for a better understanding.

The Distribution class defines the probability distribution function of a random vari-

able. It provides more than one hundred methods, including getMean, getStandardDe-
viation, computePDF, computeQuantile, drawPDF, getSample, computeCon-
ditionalCDF, etc. Dealing with a set of random variables (a.k.a marginals) intertwined with

a dependency model (e.g., variance-covariance matrix or copulas) a.k.a a random vector, can

easily be modeled using OpenTURNS.

The SymbolicFunction is an efficient tool one can use when an analytical expression

of the function is known. The additional advantage of this class is evaluating the gradient and

hessian when mathematically defined.

The ThresholdEvent class defines the event which probability is to be estimated. It is

based on a RandomVector, an operator and a threshold. The event occurs when the realiza-

tion of the random vector exceeds the threshold.

Together with these fundamental tools, OpenTURNS contains several algorithms designed

for efficiently solving a large variety of problems as the ones given in Eq. (2) and Eq. (3).

However, such an environment would benefit from a dedicated benchmark platform to assess

the performance of both the existing algorithms in the library together with any new proposed

method which needs to be tested.

2.3 From current benchmark repositories to the otbenchmark package

According to Oxford English dictionary, a “benchmark” is “something that can be measured

and used as a standard that other things can be compared with”. As shown in this section, there is

a long history of benchmark problems in various fields of applied mathematics (e.g., numerical

methods, statistical software, optimization, design of computer experiments and uncertainty

quantification).

Several fields in applied mathematics (e.g., linear algebra, numerical analysis) and computer

simulation benefited from the development of test problems libraries (see, e.g., [17, 7, 6]).

Uncertainty quantification naturally benefited from all the tools developed in those fields. How-

ever, uncertainty quantification problems have something specific that they can involve both of

the previous fields (i.e., statistical inference, numerical integration, optimization). In the re-

cent years, much effort has been put in the development of open source or commercial efficient

uncertainty quantification platforms. However, benchmarking tools have not been deeply ex-
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plored. Well-known repositories of benchmark problems are the Virtual Library of Simulation

Experiments2 managed by S. Surjanovic and D. Bingham [15]. [15], or the one maintained by

the GDR Mascot-Num3 research group. However, as a remark, one can mention that these two

repositories mainly propose test functions in Matlab and R (not Python), but without aiming at

providing an automated benchmark framework.

In 2018, concluding a workshop4 organized by the Department of Structural Reliability at

TNO (Netherlands Organization for Applied Scientific Research) about the computational chal-

lenges and aspects in the reliability analysis of engineering structures, several members of the

community decided to create the first “Black-box Reliability Challenge”, whose first edition

happened in 2019 [12]. For this challenge, almost thirty benchmark problems have been pro-

vided to participants on a public repository5. More details about this challenge and the results

can be found in the websites of the second workshop in 20206. Thus, by providing a set of

reliability problems in open source (available in their original form here7), this first initiative

offered a great opportunity to start with the project of a dedicated benchmark tool: namely the

proposed otbenchmark package.

2.4 Objectives of the proposed tool

The objective of the proposed package is twofold: firstly, the idea is to provide a bench-

mark tool for any potential external user (either an OpenTURNS user or anyone interested in

performing a benchmark); secondly, to provide to the OpenTURNS development team a tool

helping the implementation of new algorithms.

From the external user point of view, one can imagine mostly two possible scenarios:

• (Scenario #1) A user would like to design, implement and test a new algorithm which

is not proposed in the library yet. Then, otbenchmark would provide a range of test

problems and reference values so as to compare the performance of the new algorithm

with respect to reference results (or other existing algorithms);

• (Scenario #2) A user would like to apply, all (or part of) the algorithms available in the

library on a given user-defined problem (e.g., either an analytical or a real industrial black-

box problem).

More generally, in the context of a real industrial problem (e.g., typically a reliability or sen-

sitivity analysis of a complex, potentially costly-to-evaluate, simulation model), a user could

be interested in using this benchmark module as a catalogue of test functions displaying vari-

ous features (e.g., input dimension, independence/dependence of the inputs, distribution types,

rareness of the failure probability) which could help him/her to test, choose and validate a choice

of several “candidate algorithms”.

In the next section, the core architecture of the otbenchmark package is presented.

2http://www.sfu.ca/ ssurjano/index.html
3https://www.gdr-mascotnum.fr/benchmarks.html
4https://www.reliabilitytno.com/
5https://rprepo.readthedocs.io/en/latest/index.html
6https://reliabilityworkshop2020.com/
7https://gitlab.com/rozsasarpi/rprepo/
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3 ARCHITECTURE OF THE PACKAGE

3.1 Classes for reliability problems

In the sequel, ot denotes the short name for the OpenTURNS platform and associated

classes. The basic class for reliability problems is the ReliabilityBenchmarkProblem,

which defines a generic reliability problem. This class defines three constructor parameters:

• name: a string representing the name of the benchmark problem. This is a short string,

typically less than a dozen of characters;

• thresholdEvent: a ot.ThresholdEvent object representing the event to esti-

mate;

• probability: a float which represents the exact probability.

The essential information is the reference probability 𝑝f,ref, which should be as accurate as

possible. The best possible accuracy for a Python float is 53 significant (binary) bits, which

approximately corresponds to 15 (up to 17) decimal digits. If this accuracy is not available,

then a reference value may be used, for example, obtained from a large Monte Carlo sample. In

general, the exact probability should be a constant value, e.g., 0.123456789. However, we may

be forced to compute this probability at the creation of the problem, for example if the threshold

of the problem can be set at the creation of the object. In this case, the unit test must check that

the default value of the parameters correspond to a reference constant value.

The ReliabilityBenchmarkProblem provides several methods, including get-
Event, getProbability and getName, which returns the corresponding attributes. More-

over, other methods are provided, including pretty printing services. More importantly, the

computeBeta method, which computes the Hasofer-Lind reliability index 𝛽HL using the

relationship 𝑝f = Φ(−𝛽HL) [10] based on the reference probability value.

In order to implement a specific reliability problem, a derived class is defined from the

ReliabilityBenchmarkProblem mother class. For example, one can mention the

ReliabilityProblem54 derived from the ReliabilityBenchmarkProblem class

to implement the so-called “RP54” problem. The practical implementation involves the defini-

tion of the input distribution of 𝑿, the model function 𝑔(·) and the threshold value 𝑠. All these

elements are defined within an instance of the ThresholdEvent class.

Specific reliability problems have specific attributes which can be provided in the constructor

of the problem. For example, the ReliabilityProblem28 class provides, as an optional

extra, an attribute to set the mean and standard deviations of the input Gaussian distributions.

The default values of these parameters are the ones which originally defines the reliability prob-

lem, but the user may want to modify these default values, for example to make the problem

easier or more difficult or easier. Thus, the user can tune the problem regarding his specific

needs, but has the drawback to require to update the reference probability 𝑝f,ref depending on

the actual parameters values: this cannot be done with guaranteed accuracy, but for a very

limited number of problems.

The following piece of code provides a step-by-step illustration of how to create a problem,

run an algorithm and compare the computed probability with a reference probability 𝑝f,ref. For

the RminusSReliability (Resistance-Sollicitation) benchmark problem, the Probabi-
litySimulationAlgorithm class from OpenTURNS is used to estimate the probability

based on a sequential Monte Carlo algorithm. After running the algorithm, the probability is

estimated with the getProbabilityEstimate method and the absolute error computed
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using the reference probability provided by the getProbability of the benchmark prob-

lem.

1 # Import the packages
2 import openturns as ot
3 import otbenchmark as otb
4 # Select a problem, get the associated event and the reference probability
5 problem = otb.RminusSReliability()
6 event = problem.getEvent()
7 pfReference = problem.getProbability()
8 # Create a Monte Carlo algorithm and set its stopping criteria
9 algoProb = ot.ProbabilitySimulationAlgorithm(event)

10 algoProb.setMaximumOuterSampling(1000)
11 algoProb.setMaximumCoefficientOfVariation(0.01)
12 # Run the algorithm
13 algoProb.run()
14 # Get the result and compare it to the reference
15 resultAlgo = algoProb.getResult()
16 pf = resultAlgo.getProbabilityEstimate()
17 absoluteError = abs(pf - pfReference)

3.2 Classes for sensitivity analysis problems

The SensitivityBenchmarkProblem class defines a generic sensitivity analysis

problem, depending on the following constructor parameters:

• name: a string representing the name of the benchmark problem. This is a short string,

typically less than a dozen of characters;

• distribution: a ot.Distribution which represents the input distribution of the

random vector 𝑿;

• function: a ot.Function to define the model 𝑔(·);
• firstOrderIndices: a ot.Point representing the exact first-order Sobol’ indices;

• totalOrderIndices: a ot.Point representing the exact total-order Sobol’ in-

dices.

The corresponding get methods provides a way to get the current values of the parameters,

e.g., getFirstOrderIndices and getTotalOrderIndices.

In order to implement a specific sensitivity analysis problem, a derived class of the Sensi-
tivityBenchmarkProblem mother class is provided. This requires to know the reference

first-order and total-order Sobol’ indices for the problem of interest. For some sensitivity anal-

ysis problems, the user is given a leeway to customize more specific parameters. As an exam-

ple, one can mention the G-Sobol’ test function, for which the GSobolSensitivity class

provides the optional parameter a which, by default, contains an array of three floating point

numbers (equal respectively to 0, 9 and 99). In this case, the reference first- and total-order

order Sobol’ indices must be updated according to the actual values of these tuning parameters,

which is easy for the G-Sobol’ test function, but might be more difficult or impossible for some

other problems.
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3.3 Classes to manage the results of a benchmark

When a benchmark problem is run, it is interesting to compare the results obtained by various

algorithms on this problem. To do so, one needs to define the set of features that one wants to

assess.

The ReliabilityBenchmarkResult class is used to define the output of a reliability

benchmark problem. Its constructor parameters are:

• exactProbability: a floating point number representing the exact probability;

• computedProbability: a floating point number representing the estimated proba-

bility;

• numberOfFunctionEvaluations: an integer representing the number of function

evaluations.

Based on these parameters, the class computes several attributes:

• absoluteError: a floating point number representing the absolute error of the esti-

mated probability;

• numberOfCorrectDigits: a floating point number representing the log-relative er-

ror in base 10;

• numberOfDigitsPerEvaluation: a floating point number representing the num-

ber of correct digits per function evaluation.

This last attribute measures the efficiency of the algorithm in computing the significant digits of

the probability (typically, the larger the better).

3.4 Classes to perform a benchmark

The ReliabilityBenchmarkProblemList static method returns a list of benchmark

problems available in the library. In the following example, one gets the list of problems and

compute its length:

14 benchmarkProblemList = otb.ReliabilityBenchmarkProblemList()
15 numberOfProblems = len(benchmarkProblemList)

The number of problems is currently equal to 26. Then the following script performs a loop

over the problems and prints the name, the reference probability 𝑝f,ref and the dimension of

each problem:

16 for i in range(numberOfProblems):
17 problem = benchmarkProblemList[i]
18 name = problem.getName()
19 pfReference = problem.getProbability()
20 event = problem.getEvent()
21 antecedent = event.getAntecedent()
22 distribution = antecedent.getDistribution()
23 dimension = distribution.getDimension()
24 print("#", i, ":", name, " : pfReference = ", pfReference, ",
25 dimension=", dimension)

As a result, the previous script prints:
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Distribution Symbol Parameters PDF

Uniform U (a, b) 𝑓𝑋 (𝑥) =
{ 1

𝑏−𝑎 , 𝑥 ∈ [𝑎, 𝑏]
0 , 𝑥 ∉ [𝑎, 𝑏]

Normal N (𝜇, 𝜎) 𝑓𝑋 (𝑥) = 1√
2𝜋𝜎2 𝑒

− (𝑥−𝜇)2
2𝜎2

Log-normal LN (𝜇, 𝜎) 𝑓𝑋 (𝑥) = 1
𝑥

1
𝜎
√

2𝜋
exp

(
− (ln(𝑥)−𝜇)2

2𝜎2

)
Exponential E 𝜆 𝑓𝑋 (𝑥) = 𝜆𝑒−𝜆𝑥

Gumbel G (𝜇, 𝛽) 𝑓𝑋 (𝑥) = 1
𝛽 exp

(
− 𝑥−𝜇

𝛽 − exp
(
− 𝑥−𝜇

𝛽

))
Table 1: Probability distribution parametrization used in otbenchmark.

# 0 : RP8 : pfReference = 0.000784 , dimension = 6
# 1 : RP14 : pfReference = 0.00752 , dimension = 5
# 2 : RP22 : pfReference = 0.00416 , dimension = 2
[...]

4 DESCRIPTION OF THE BENCHMARK PROBLEMS

4.1 Input random variable parametrization

The first element of a benchmark problem is the input random vector X = (𝑋1, . . . , 𝑋𝑑) ∈
R
𝑑 . Although it might look obvious, precising the way random variables are defined is cru-

cial in the context of a benchmark, especially since several distributions can be parametrized

differently (e.g., the log-normal distribution). Table 1 provides the parametrization used in

otbenchmark. All together, OpenTURNS provides 36 basic probability distributions, which

allow the user to build an infinite number of distributions by truncating, transforming and com-

bining them. Moreover, a large panel of copulas can be used to model input dependency.

4.2 Reliability problems description

As described in the previous sections, a reliability problem is defined by an input random

vector 𝑿, a function 𝑔(·), a threshold 𝑠 and the corresponding reference failure probability 𝑝f,ref.

One of the major challenge of a reliability benchmark is getting the most accurate reference

failure probability. Without such an accurate reference solution, the benchmark is worthless.

Depending on the complexity of the function, the distribution of the input random vector and

the rareness of the failure event, computing 𝑝f,ref can be more or less challenging. The safest

way to achieve this regardless of the previous parameters is using the a very large crude Monte

Carlo simulation, however, this method is very costly.

For some specific cases, one can compute an exact solution using quadrature methods. These

techniques are extremely powerful since they allows to exactly compute the full output distri-

bution 𝑌 without sampling the function. Overall, among the reference probabilities provided in

otbenchmark, some are estimated with a huge Monte Carlo sampling, some are borrowed

from [12] (and the associated references from the literature), while others are computed exactly

using quadrature methods on the input distributions.

The implementation of the exact quadrature computation is problem-dependent and should

progressively be applied to as many problems as possible. These reference values are continu-

ously improved and offer interesting work perspectives. Table 2 presents the current reference

values for 𝑝f,ref available in otbenchmark and the corresponding values of the Hasofer-Lind
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reliability index 𝛽HL. Note that the values tagged with an asterisk (*) differ from the initial

reference probabilities provided by [12].

Table 2: Reliability problems definition.

Problem label 𝑑 𝑝f,ref 𝛽HL

RP8 6 7.84e-04 3.16

RP14 5 7.52e-03 2.42

RP22 2 4.16e-03 2.64

RP24 2 2.86e-03 2.76

RP25 2 6.14e-06 4.36

RP28 2 1.46e-07 5.11

RP31 2 1.8e-04 3.58

RP33 3 2.57e-03 2.8

RP35 2 3.54e-03 2.7

RP38 7 8.1e-03 2.48

RP53 2 3.13e-03 1.86

RP54 20 9.98e-04 3.09

RP55 2 5.6e-01∗ -0.15

RP57 2 2.84e-02 1.91

RP60 5 4.56e-02 1.7

RP63 100 3.79e-04 3.36

RP75 2 1.07e-02 2.33

RP77 3 2.87e-07 5.0

RP89 2 5.43e-03 2.55

RP91 5 6.97e-04 3.19

RP107 10 2.92e-07 5.0

RP110 2 3.19e-05 4.0

RP111 2 7.65e-07 4.81

R-S 2 7.86e-02 1.41

Axial stressed beam 2 2.92e-02 1.89

Four-branch serial system 2 2.19e-03 2.85

4.3 Sensitivity problems description

The otbenchmark package currently contains 4 sensitivity analysis problems. More pre-

cisely, it includes the sum of several Gaussian random input variables, the product of several

Gaussian random input variables, the G-Sobol’ function [13] and the Ishigami function [9].

The first two test functions have variable dimensions. More sensitivity analysis problems will

be added in the next release.

5 BENCHMARK RESULTS

This section presents how otbenchmark allows to compute and compare various metrics

on multiple problems with several algorithms. At first, a simple “for” loop is performed to
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solve each problem with a list of algorithms (e.g., Monte Carlo, FORM, SORM, FORM-IS

and Subset) and compute a list of metrics (e.g., failure probability, number of correct digits,

absolute error). This loop uses the same structure as the one described in subsection 3.4 and

various metrics can be directly computed using the methods described in the subsection 3.3.

In the following, a maximum simulation budget is set to 𝑛max = 104 calls. Such a value is

set for illustration purposes here, even if this budget is clearly not enough to reach low failure

probabilities proposed by some problems. The Monte Carlo algorithm stopping criterion used

is this maximum number of function evaluations (i.e., 𝑛max). FORM and SORM methods are

used with the Abdo-Rackwitz algorithm for the search of the design point [10, 1]. Regarding

SORM, the Breitung approximation formula is used [4]. For the two approximation methods,

the maximum number of function evaluations is set to 𝑛max, the maximum absolute error, maxi-

mum relative error, maximum residual error and maximum constraint error are set to 10−3. The

FORM-IS algorithm [10] first uses the FORM analysis to find the design point and then uses

importance sampling with a Gaussian importance distribution in the standard space, centered

on the design point. The FORM-IS and Subset algorithms [2] are used with the same stopping

criterion as the Monte Carlo algorithm.

Overall, the results are in three dimensions and summarize both the problems, the algorithms

and the metrics. To handle such a complex data structure, the multi-columns DataFrame
class offered by the pandas package [16] is used. In addition to being a reference for data

manipulation, pandas is known to well perform with multi-columns, provides powerful styling

options and allows one to export any DataFrame to a LATEX table. Table 3 is the result of an

automated pandas export of the failure probabilities. It is obvious here that, with such a

limited budget (i.e., 𝑛max), some problems are too difficult for some algorithms which fail to

converge towards the reference failure probabilities. This explains the numerous zero values in

Table 3 (or with an hyphen symbol when one does not want to run the Monte Carlo algorithm

since one already knows it will not converge). Note that the purpose here is not to solve the

problems but discuss the way otbenchmark works, produces, displays and compares the

results.

This short illustration was performed on five algorithms but could easily be extended to

many more reliability analysis algorithms available in OpenTURNS, including the adaptive

directional stratification [11], the multiple design points strategy adapted to FORM/SORM [5]

or FORM-system algorithm [10]. Adaptive surrogate-based algorithms will also be added in

future work.

6 CONCLUSION

The otbenchmark package offers a open source benchmark tool for any user interested in

performing reliability or sensitivity analysis, but more generally, to much more analyses usually

encountered in uncertainty quantification. This versatile tool can serve many objectives such

as helping in the development, testing and validation of new algorithms, or applying several

algorithms to a given problem. It mainly relies on powerful classes and methods inherited from

the OpenTURNS library, but also propose several new classes and dedicated tools specifically

derived for benchmarking purposes. It gives access to a collection of problems with their refer-

ence solutions and allows to compare the performances of algorithms. Moreover, various tools

to make this comparison more automated, robust and visual are available. Several convergence

and accuracy metrics are provided to compare the algorithms performances, graphical tools and

result tables are proposed to ease the results analysis. The quality of the reference values and,

more generally, of the software are of paramount importance to ensure a consistent benchmark.
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Table 3: Estimation of 𝑝f for all the problems using 5 algorithms (𝑛max = 104 calls).

𝑝f,ref Monte Carlo FORM SORM FORM-IS Subset

RP8 7.840e-04 9.000e-04 6.599e-04 7.837e-04 7.737e-04 8.863e-04

RP14 7.520e-03 9.000e-04 7.003e-04 6.988e-04 7.598e-04 8.720e-04

RP22 4.160e-03 3.500e-03 6.210e-03 4.391e-03 4.259e-03 4.117e-03

RP24 2.860e-03 3.600e-03 6.209e-03 6.209e-03 2.749e-03 2.486e-03

RP25 6.140e-06 1.000e-04 2.105e-03 1.064e-05 4.644e-05 3.415e-05

RP28 1.460e-07 – 2.850e-08 0.000e+00 1.332e-07 1.756e-07

RP31 1.800e-04 2.300e-03 2.275e-02 2.275e-02 3.319e-03 3.919e-03

RP33 2.570e-03 1.600e-03 1.350e-03 1.350e-03 2.322e-03 2.718e-03

RP35 3.540e-03 3.000e-03 1.350e-03 2.134e-03 2.377e-03 3.430e-03

RP38 8.100e-03 8.500e-03 7.902e-03 8.029e-03 8.146e-03 7.848e-03

RP53 3.130e-02 3.260e-02 1.180e-01 2.986e-02 3.143e-02 2.971e-02

RP55 5.600e-01 5.660e-01 5.000e-01 1.093e-05 5.645e-01 5.655e-01

RP54 9.980e-04 1.100e-03 5.553e-02 3.552e-03 9.767e-04 9.611e-04

RP57 2.840e-02 2.950e-02 4.504e-01 0.000e+00 2.746e-02 2.772e-02

RP75 1.070e-02 1.030e-02 0.000e+00 0.000e+00 0.000e+00 9.409e-03

RP89 5.430e-03 5.000e-03 2.009e-09 2.009e-09 9.002e-05 5.460e-03

RP107 2.920e-07 – 2.867e-07 2.867e-07 2.896e-07 2.337e-07

RP110 3.190e-05 – 3.167e-05 3.167e-05 3.078e-05 7.116e-06

RP111 7.650e-07 – 0.000e+00 0.000e+00 0.000e+00 7.308e-07

RP63 3.790e-04 1.000e-04 1.000e+00 0.000e+00 0.000e+00 4.063e-04

RP91 6.970e-04 1.000e-03 6.984e-04 7.001e-04 6.964e-04 6.838e-04

RP60 4.560e-02 4.860e-02 4.484e-02 4.484e-02 4.503e-02 4.230e-02

RP77 2.870e-07 – 6.687e-02 6.687e-02 4.002e-07 3.683e-07

Four-branch

serial system

2.186e-03 2.900e-03 0.000e+00 0.000e+00 0.000e+00 2.428e-03

R-S 7.865e-02 7.870e-02 7.865e-02 7.865e-02 7.792e-02 7.633e-02

Axial stressed

beam

2.920e-02 2.690e-02 2.998e-02 2.933e-02 2.867e-02 2.936e-02
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This is managed first by providing reference values as accurate as possible (which may involve,

for example and when possible, exact quadrature calculations). Furthermore, this quality expec-

tation is made achievable using software development methods which includes source version

control (using Git), unit tests, continuous integration and collaborative development. As part

of the otbenchmark development roadmap, one can mention the following prospects: some

of the reference values will be updated using, as much as possible, exact quadrature methods

to get the largest possible number of significant digits for reference values; sensitivity analysis

will be extended to new problems and more investigated; other types of analyses will be also

investigated (e.g., central tendency, calibration).
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