Consistency between Sobol indices and stochastic orders

Global optimization using Sobol indices

Alexandre Janon (Université Paris Saclay, labo. de math. d'Orsay)

UQSay June '19

Part 1: Consistency between Sobol indices and stochastic orders

(Co-authors: A. Cousin, V. Maume-Deschamps, I. Niang)

Context

- Model output with uncertain input parameters:

$$
Y=f\left(X_{1}, \ldots, X_{p}\right)
$$

- X_{1}, \ldots, X_{p} : independent random variables of known distributions, encoding parameter uncertainty
- Y : random variable, supposed square integrable
- For $i=1, \ldots, p$, first-order Sobol index of X_{i} :

$$
S_{i}=\frac{\operatorname{VarE}\left(Y \mid X_{i}\right)}{\operatorname{Var} Y}
$$

S_{i} quantifies the impact of the uncertainty on X_{i} on the uncertainty on Y.

Problem

- How to choose distribution of input parameters ?
- How do Sobol indices change when input distributions are changed?
- Qualitatively speaking, how do first-order Sobol indices vary when X_{i} is replaced by X_{i}^{*} ?

Problem

- Stochastic ordering between two r.v. X and Y :

$$
X \leq Y \Leftrightarrow X \text { carries "less uncertainty" than } Y
$$

- Intuitively one would say that

$$
X_{i} \leq X_{i}^{*} \Rightarrow \operatorname{Var} Y \leq \operatorname{Var} Y
$$

and

$$
X_{i} \leq X_{i}^{*} \Rightarrow S_{i} \leq S_{i}^{*} \text { and } S_{j} \geq S_{j}^{*} \forall j \neq i
$$

- Is this always the case ?
- Under what hypotheses:
- on distributions of X_{i}, X_{i}^{*} ?
- on the f function?
- And for what ordering between rv ?

Outline of Part 1

1. Stochastic orderings
2. Effect on variances
3. Effect on Sobol indices:
3.1 additive case,
3.2 multiplicative case,
3.3 "tensor" case

Stochastic orderings

- F_{X} : cdf of a random variable $X: F_{X}(x)=P(X \leq x)$
- X, Y : two random variables
- Dispersive order:

$$
X \leq_{\text {Disp }} Y \Leftrightarrow F_{Y}^{-1}-F_{X}^{-1} \text { is non-decreasing }
$$

- "Usual" stochastic order:
$X \leq_{s t} Y \Leftrightarrow \forall f$ bounded, non-decreasing, $\mathbf{E}(f(X)) \leq \mathbf{E}(f(Y))$
- There are others (convex, dilation, Lorenz, excess-wealth, star,...)... See [M. Shaked, J. Shanthikumar, Stochastic orders (2006)].

Stochastic orderings: Properties of Dispersive order

$$
X \leq_{\text {Disp }} Y \Leftrightarrow F_{Y}^{-1}-F_{X}^{-1} \text { is non-decreasing }
$$

- Measures only dispersion, in fact, it is a "location-free' order:

$$
X \leq_{\text {Disp }} Y \rightarrow X+a \leq_{\text {Disp }} Y \forall a \in \mathbb{R}
$$

- Usual distributions:

$$
\begin{gathered}
\mathcal{U}(a, b) \leq_{\text {Disp }} \mathcal{U}(c, d) \Leftrightarrow b-a \leq d-c \\
\mathcal{E}(\lambda) \leq_{\text {Disp }} \mathcal{E}(\mu) \Leftrightarrow \mu \leq \lambda \\
\mathcal{N}\left(m_{1}, \sigma_{1}^{2}\right) \leq_{\text {Disp }} \mathcal{N}\left(m_{2}, \sigma_{2}^{2}\right) \Leftrightarrow \sigma_{1}^{2} \leq \sigma_{2}^{2}
\end{gathered}
$$

- Ordering of variances:

$$
X \leq_{\text {Disp }} Y \Rightarrow \operatorname{Var} X \leq \operatorname{Var} Y
$$

Application to UQ

- Let $i=1, \ldots, p$.
- We define

$$
Y=f\left(X_{1}, \ldots, X_{p}\right), Y^{*}=f\left(X_{1}, \ldots, X_{i-1}, X_{i}^{*}, X_{i+1}, \ldots, X_{p}\right)
$$

with $X_{i} \leq$ Disp X_{i}^{*}.

- Do we have: $\operatorname{Var} Y \leq \operatorname{Var} Y^{*}$?
- $Y \leq_{\text {Disp }} Y^{*}$ would be sufficient.
- However, it is not true in general, even for convex non-decreasing f.
- Take $X \sim \mathcal{U}(1 ; 1.9), X^{*} \sim \mathcal{U}(0 ; 1)$. We have

$$
X \leq_{\text {Disp }} X^{*} \text { but Var } \exp (X)>\operatorname{Var} \exp \left(X^{*}\right)
$$

- Disp. order alone is not sufficient !

Stochastic orderings: Properties of Usual st. order

$$
X \leq_{s t} Y \Leftrightarrow \forall f \text { bounded, non-decreasing }, \mathbf{E}(f(X)) \leq \mathbf{E}(f(Y))
$$

- Dispersive implies stochastic under a "location condition":
$\operatorname{supp}(X) \subset\left(I_{X},+\infty\left[, \operatorname{supp}(Y) \subset\left(I_{Y} ;+\infty[\right.\right.\right.$ If $I_{X}=I_{Y}>-\infty$ then $X \leq_{s t} Y \Rightarrow X \leq_{\text {Disp }} Y$.
- If $X \leq_{\text {Disp }} Y$ and $X \leq_{s t} Y$ then, for any convex non-decreasing, or concave non-increasing ϕ, then

$$
\phi(X) \leq_{\text {Disp }} \phi(Y)
$$

- Curvature hypotheses are necessary. For instance, if
- $f(t)=t$ on $[0 ; 1]$ and 1 on $[1 ; 10]$,
- $X \sim \mathcal{U}(0 ; 1), Y \sim \mathcal{U}(0 ; 10)$,
- $X \leq_{\text {Disp }} Y, X \leq_{s t} Y$ but $\operatorname{Var} f(X)>\operatorname{Var} f(Y)$.

Application to UQ (2)

$$
Y=f\left(X_{1}, \ldots, X_{p}\right), Y^{*}=f\left(X_{1}, \ldots, X_{i-1}, X_{i}^{*}, X_{i+1}, \ldots, X_{p}\right)
$$

- Hence, if
- $X_{i} \leq_{\text {Disp }} X_{i}^{*}$,
- $X_{i} \leq_{s t} X_{i}^{*}$,
- f is convex non-dec, or concave non-inc in its $i^{\text {th }}$ argument,
- then

$$
\operatorname{Var} Y \leq \operatorname{Var} Y^{*}
$$

- Can we do the same with Sobol indices ?

Additive case

- We suppose that:

$$
f\left(X_{1}, \ldots, X_{p}\right)=\sum_{j=1}^{p} f_{j}\left(X_{j}\right)+\mathbf{E}(Y)
$$

with:

- f_{i} convex non-decreasing, or concave non-increasing.
- $X_{i} \leq$ Disp X_{i}^{*},
- $X_{i} \leq_{s t} X_{i}^{*}$,
- X_{i} and X_{i}^{*} are independent.
- Then,

$$
S_{i} \leq S_{i}^{*}
$$

and

$$
S_{j} \geq S_{j}^{*} \forall j \neq i
$$

Product case

- Now assume that

$$
f(X)=\prod_{j=1}^{p} g_{j}\left(X_{j}\right)+\mathbf{E}(Y)
$$

with $\log g_{i}$ convex non-decreasing, or concave non-increasing.

- If $X_{i} \leq_{\text {Disp }} X_{i}^{*}, X_{i} \leq_{s t} X_{i}^{*}$, and X_{i} and X_{i}^{*} are independent, then

$$
S_{i}^{T} \leq S_{i}^{T *}
$$

and

$$
S_{j}^{T} \geq S_{j}^{T *} \forall j \neq i
$$

where S_{j}^{T} and $S_{j}^{T *}$, are total Sobal indices of

$$
Y=f\left(X_{1}, \ldots, X_{p}\right), Y^{*}=f\left(X_{1}, \ldots, X_{i-1}, X_{i}^{*}, X_{i+1}, \ldots, X_{p}\right)
$$

respectively.

- Only g_{i} convex non-decreasing, or concave non-increasing is not sufficient.

General "tensor" case

We also have a similar theorem for

$$
f(X)=\sum_{\ell} \prod_{j=1}^{p} g_{j}^{\ell}\left(X_{j}\right)+\mathbf{E}(Y)
$$

under similar hypotheses, plus a (seemingly necessary) tangled and unsatisfactory inequality.

Part 2: Global optimization using Sobol indices

Context

- Our goal is to minimize a (generally nonconvex) function $f: \mathcal{D}=[-1 ; 1]^{d} \rightarrow \mathbb{R}$:

$$
\min _{\mathcal{D}} f
$$

- f is computationally expensive to compute, we want to evaluate it a only a few number of times.
- We suppose that we have (even partial) knowledge about Sobol indices of f : for instance first-order, second-order, total...
- Can we use this knowledge to improve minimization of f ?

Context (2)

- For instance, if all interaction indices are zero, f can be minimized separately on each variable, allowing substantial gain.
- In general, there is some sparsity-of-effects principle allowing to neglect high-order interactions.
- We will propose an optimization algorithm which can take advantage of this situation.

Outline of Part 2

- Presentation of the strategy
- Implementation details
- Numerical "proof of concept" illustration

Presentation of the strategy

Assume:

- $\mathcal{D}=[-1 ; 1]^{d}$ endowed with the uniform probability distribution,
- $f(X)$ has unit variance,
- \mathcal{F} is a subspace of square integrable functions $\mathcal{D} \rightarrow \mathbb{R}$.

The following strategy is inspired by the one used in [C. Malherbe, N. Vayatis, Global optimization of Lipschitz functions (2017)].

Presentation of the strategy (2)

We build a "minimizing" sequence of length n with the following:

- Initialization : choose X^{1} uniformly on \mathcal{D};
- Iteration: for $i=2, \ldots, n$, repeat:
- choose X^{i} uniformly on:

$$
\mathcal{D}_{i}=\left\{x \in \mathcal{D} \text { s.t. } \exists g \in \mathcal{F}_{i}, g(x)<\min _{1 \leq j<i} f\left(X^{j}\right)\right\}
$$

where:

$$
\mathcal{F}_{i}=\left\{g \in \mathcal{F}, \forall 1 \leq j<i, g\left(X^{j}\right)=f\left(X^{j}\right)\right\}
$$

\mathcal{F}_{i} is the set of "consistent" functions, and \mathcal{D}_{i} a set of "interesting" points to explore, as they might improve the current minimum.

- In our context, \mathcal{F} is a set of square-integrable functions satisfying the "prior knowledge" on Sobol indices.
- For instance, if $d=3$ and that we assume that there is no interaction between X_{1} and X_{3},

$$
\mathcal{F}=\left\{g \in L^{2}\left([-1 ; 1]^{3}\right) \text { s.t. } \operatorname{Var} g(X)=1, S_{2,3}=S_{1,2,3}=0\right\}
$$

Implementation details

To sample uniformly on

$$
\mathcal{D}_{i}=\left\{x \in \mathcal{D} \text { s.t. } \exists g \in \mathcal{F}_{i}, g(x)<\min _{1 \leq j<i} f\left(X^{j}\right)\right\}
$$

where:

$$
\mathcal{F}_{i}=\left\{g \in \mathcal{F}, \forall 1 \leq j<i, g\left(X^{j}\right)=f\left(X^{j}\right)\right\}
$$

we use a "rejection" algorithm:

1. we sample x uniformly on \mathcal{D},
2. solve for

$$
m(x)=\min _{\mathcal{F}_{i}} g(x)
$$

3. if $m(x)<\min _{1 \leq j<i} f\left(X^{j}\right)$, then $x \in \mathcal{D}_{i}$ and we accept it; else we sample a new x.

Implementation details (2)

- Solving

$$
m(x)=\min _{\mathcal{F}_{i}} g(x)
$$

can be made in practice by introducing a tensor orthonormal L^{2} basis (in our case, of normalized Legendre polynomials) and search for coefficients c of g on this basis.

- The objective is a linear function of c, and the constraints of \mathcal{F}_{i} are:
- linear in c for the $g\left(X^{j}\right)=f\left(X^{j}\right)$ constraints;
- positive semi-definite in c (sum of squares) for the Sobol indices constraints.
- This gives a succession (for different x 's) of high-dimensional convex problems to solve until some x is accepted.

Numerical illustration

- Rosenbrock function on $[-5 ; 5]^{3}$:

$$
f\left(\frac{X_{1}}{5}, \frac{X_{2}}{5}, \frac{X_{3}}{5}\right)=\frac{1}{26000} \sum_{m=1}^{2} 100\left(X_{m+1}-X_{m}^{2}\right)^{2}+\left(1-X_{m}\right)^{2}
$$

- Budget of 100 convex problems \rightarrow variable number $N_{\text {eval }}$ of evaluations of f, Legendre polynomials up to degree 4.
- Two families of constraints on the Sobol indices:
- Esti1T: estimations of first-order and total Sobol indices (six indices)
- Nolnter13: no interaction between X_{1} and X_{3} (hence no third-order interaction)

Result

Constraints	$N_{\text {eval }}$	record minimum
unit variance	93	0.0089
unit variance, Esti1T	78	0.0052
unit variance, Esti1T, NoInter13	44	0.0006
unit variance, NoInter3	45	0.0049

- Constraints on Sobol indices actually improves optimization.
- Great reduction on number of evaluations of f by using that no interaction occurs between X_{1} and X_{3}.
- Many improvements could be tried...

