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Part 1: Consistency between Sobol indices

and stochastic orders

(Co-authors: A. Cousin, V. Maume-Deschamps, I. Niang)
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Context

◮ Model output with uncertain input parameters:

Y = f (X1, . . . , Xp)

◮ X1, . . . , Xp: independent random variables of known
distributions, encoding parameter uncertainty

◮ Y : random variable, supposed square integrable

◮ For i = 1, . . . , p, first-order Sobol index of Xi :

Si =
VarE(Y |Xi)

VarY
.

Si quantifies the impact of the uncertainty on Xi on the
uncertainty on Y .
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Problem

◮ How to choose distribution of input parameters ?

◮ How do Sobol indices change when input distributions are
changed ?

◮ Qualitatively speaking, how do first-order Sobol indices vary
when Xi is replaced by X ∗

i ?
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Problem

◮ Stochastic ordering between two r.v. X and Y :

X ≤ Y ⇔ X carries "less uncertainty" than Y

◮ Intuitively one would say that

Xi ≤ X ∗
i ⇒ VarY ≤ VarY

and
Xi ≤ X ∗

i ⇒ Si ≤ S∗
i and Sj ≥ S∗

j ∀j 6= i

◮ Is this always the case ?

◮ Under what hypotheses:
◮ on distributions of Xi , X∗

i ?
◮ on the f function ?

◮ And for what ordering between rv ?
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Outline of Part 1

1. Stochastic orderings

2. Effect on variances

3. Effect on Sobol indices:

3.1 additive case,
3.2 multiplicative case,
3.3 “tensor” case
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Stochastic orderings

◮ FX : cdf of a random variable X : FX (x) = P(X ≤ x)

◮ X , Y : two random variables

◮ Dispersive order:

X ≤Disp Y ⇔ F −1
Y − F −1

X is non-decreasing

◮ “Usual” stochastic order:

X ≤st Y ⇔ ∀f bounded, non-decreasing , E(f (X )) ≤ E(f (Y ))

◮ There are others (convex, dilation, Lorenz, excess-wealth,
star,... )...
See [M. Shaked, J. Shanthikumar, Stochastic orders (2006)].
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Stochastic orderings: Properties of Dispersive order

X ≤Disp Y ⇔ F −1
Y − F −1

X is non-decreasing

◮ Measures only dispersion, in fact, it is a “location-free’ order:

X ≤Disp Y → X + a ≤Disp Y ∀a ∈ R

◮ Usual distributions:

U(a, b) ≤Disp U(c , d) ⇔ b − a ≤ d − c

E(λ) ≤Disp E(µ) ⇔ µ ≤ λ

N (m1, σ2
1) ≤Disp N (m2, σ2

2) ⇔ σ2
1 ≤ σ2

2

◮ Ordering of variances:

X ≤Disp Y ⇒ VarX ≤ VarY
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Application to UQ

◮ Let i = 1, . . . , p.

◮ We define

Y = f (X1, . . . , Xp), Y ∗ = f (X1, . . . , Xi−1, X ∗
i , Xi+1, . . . , Xp)

with Xi ≤Disp X ∗
i .

◮ Do we have: VarY ≤ VarY ∗ ?

◮ Y ≤Disp Y ∗ would be sufficient.

◮ However, it is not true in general, even for convex
non-decreasing f .

◮ Take X ∼ U(1; 1.9), X ∗ ∼ U(0; 1). We have

X ≤Disp X ∗ but Var exp(X ) > Var exp(X ∗)

◮ Disp. order alone is not sufficient !
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Stochastic orderings: Properties of Usual st. order

X ≤st Y ⇔ ∀f bounded, non-decreasing , E(f (X )) ≤ E(f (Y ))

◮ Dispersive implies stochastic under a “location condition”:
supp(X ) ⊂ (lX , +∞[, supp(Y ) ⊂ (lY ; +∞[
If lX = lY > −∞ then X ≤st Y ⇒ X ≤Disp Y .

◮ If X ≤Disp Y and X ≤st Y then, for any convex
non-decreasing, or concave non-increasing φ, then

φ(X ) ≤Disp φ(Y )

◮ Curvature hypotheses are necessary. For instance, if
◮ f (t) = t on [0; 1] and 1 on [1; 10],
◮ X ∼ U(0; 1), Y ∼ U(0; 10),
◮ X ≤Disp Y , X ≤st Y but Varf (X ) > Varf (Y ).
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Application to UQ (2)

Y = f (X1, . . . , Xp), Y ∗ = f (X1, . . . , Xi−1, X ∗
i , Xi+1, . . . , Xp)

◮ Hence, if
◮ Xi ≤Disp X∗

i ,
◮ Xi ≤st X∗

i ,
◮ f is convex non-dec, or concave non-inc in its i th argument,

◮ then
VarY ≤ VarY ∗

◮ Can we do the same with Sobol indices ?
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Additive case

◮ We suppose that:

f (X1, . . . , Xp) =
p∑

j=1

fj(Xj) + E(Y )

with:
◮ fi convex non-decreasing, or concave non-increasing.
◮ Xi ≤Disp X∗

i ,
◮ Xi ≤st X∗

i ,
◮ Xi and X∗

i are independent.

◮ Then,

Si ≤ S∗
i

and

Sj ≥ S∗
j ∀j 6= i
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Product case
◮ Now assume that

f (X ) =
p∏

j=1

gj(Xj) + E(Y )

with log gi convex non-decreasing, or concave non-increasing.

◮ If Xi ≤Disp X ∗
i , Xi ≤st X ∗

i , and Xi and X ∗
i are independent,

then
ST

i ≤ ST∗
i

and
ST

j ≥ ST∗
j ∀j 6= i

where ST
j and ST∗

j , are total Sobal indices of

Y = f (X1, . . . , Xp), Y ∗ = f (X1, . . . , Xi−1, X ∗
i , Xi+1, . . . , Xp)

respectively.

◮ Only gi convex non-decreasing, or concave non-increasing is
not sufficient.
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General “tensor” case

We also have a similar theorem for

f (X ) =
∑

ℓ

p∏

j=1

g ℓ
j (Xj) + E(Y )

under similar hypotheses, plus a (seemingly necessary) tangled and
unsatisfactory inequality.
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Part 2: Global optimization using Sobol

indices

15/ 25



Context

◮ Our goal is to minimize a (generally nonconvex) function
f : D = [−1; 1]d → R:

min
D

f

◮ f is computationally expensive to compute, we want to
evaluate it a only a few number of times.

◮ We suppose that we have (even partial) knowledge about
Sobol indices of f : for instance first-order, second-order,
total...

◮ Can we use this knowledge to improve minimization of f ?
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Context (2)

◮ For instance, if all interaction indices are zero, f can be
minimized separately on each variable, allowing substantial
gain.

◮ In general, there is some sparsity-of-effects principle allowing
to neglect high-order interactions.

◮ We will propose an optimization algorithm which can take
advantage of this situation.
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Outline of Part 2

◮ Presentation of the strategy

◮ Implementation details

◮ Numerical “proof of concept” illustration

18/ 25



Presentation of the strategy

Assume:

◮ D = [−1; 1]d endowed with the uniform probability
distribution,

◮ f (X ) has unit variance,

◮ F is a subspace of square integrable functions D → R.

The following strategy is inspired by the one used in [C. Malherbe,
N. Vayatis, Global optimization of Lipschitz functions (2017)].
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Presentation of the strategy (2)

We build a “minimizing” sequence of length n with the following:

◮ Initialization : choose X 1 uniformly on D;

◮ Iteration: for i = 2, . . . , n, repeat:
◮ choose X i uniformly on:

Di = {x ∈ D s.t. ∃g ∈ Fi , g(x) < min
1≤j<i

f (X j)}

where:

Fi = {g ∈ F , ∀1 ≤ j < i , g(X j) = f (X j)}

Fi is the set of “consistent” functions, and Di a set of “interesting”
points to explore, as they might improve the current minimum.
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◮ In our context, F is a set of square-integrable functions
satisfying the “prior knowledge” on Sobol indices.

◮ For instance, if d = 3 and that we assume that there is no
interaction between X1 and X3,

F = {g ∈ L2([−1; 1]3) s.t. Varg(X ) = 1, S2,3 = S1,2,3 = 0}
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Implementation details

To sample uniformly on

Di = {x ∈ D s.t. ∃g ∈ Fi , g(x) < min
1≤j<i

f (X j)}

where:
Fi = {g ∈ F , ∀1 ≤ j < i , g(X j) = f (X j)}

we use a “rejection” algorithm:

1. we sample x uniformly on D,

2. solve for
m(x) = min

Fi

g(x)

3. if m(x) < min1≤j<i f (X j), then x ∈ Di and we accept it; else
we sample a new x .
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Implementation details (2)

◮ Solving
m(x) = min

Fi

g(x)

can be made in practice by introducing a tensor orthonormal
L2 basis (in our case, of normalized Legendre polynomials)
and search for coefficients c of g on this basis.

◮ The objective is a linear function of c , and the constraints of
Fi are:
◮ linear in c for the g(X j) = f (X j) constraints;
◮ positive semi-definite in c (sum of squares) for the Sobol

indices constraints.

◮ This gives a succession (for different x ’s) of high-dimensional
convex problems to solve until some x is accepted.
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Numerical illustration

◮ Rosenbrock function on [−5; 5]3:

f (
X1

5
,
X2

5
,
X3

5
) =

1

26000

2∑

m=1

100(Xm+1 − X 2
m)2 + (1 − Xm)2

◮ Budget of 100 convex problems → variable number Neval of
evaluations of f , Legendre polynomials up to degree 4.

◮ Two families of constraints on the Sobol indices:
◮ Esti1T: estimations of first-order and total Sobol indices (six

indices)
◮ NoInter13: no interaction between X1 and X3 (hence no

third-order interaction)
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Result

Constraints Neval record minimum

unit variance 93 0.0089

unit variance, Esti1T 78 0.0052

unit variance, Esti1T, NoInter13 44 0.0006

unit variance, NoInter3 45 0.0049

◮ Constraints on Sobol indices actually improves optimization.

◮ Great reduction on number of evaluations of f by using that
no interaction occurs between X1 and X3.

◮ Many improvements could be tried...
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