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Context

» Model output with uncertain input parameters:
Y =f(Xq,...,Xp)

» Xi,...,Xp: independent random variables of known
distributions, encoding parameter uncertainty
» Y': random variable, supposed square integrable
» Fori=1,...,p, first-order Sobol index of X;:
S — VarE(Y\X,-).
VarY

S; quantifies the impact of the uncertainty on X; on the
uncertainty on Y.
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Problem

» How to choose distribution of input parameters ?

» How do Sobol indices change when input distributions are
changed ?

» Qualitatively speaking, how do first-order Sobol indices vary
when X; is replaced by X/ ?
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Problem

» Stochastic ordering between two r.v. X and Y:
X <Y & X carries "less uncertainty" than Y
» Intuitively one would say that
Xi < X7 = VarY < VarY

and
X,SX,*:>5,§5,* andSJESij;éi
» Is this always the case 7
» Under what hypotheses:

» on distributions of X;, X 7
» on the f function ?

» And for what ordering between rv 7
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Outline of Part 1

1. Stochastic orderings

2. Effect on variances

3. Effect on Sobol indices:

3.1 additive case,
3.2 multiplicative case,
3.3 “tensor” case

6/ 25



Stochastic orderings

» Fx: cdf of a random variable X: Fx(x) = P(X < x)

X, Y: two random variables

v

» Dispersive order:
X <pisp Y & F;l - F)Zl is non-decreasing
» “Usual” stochastic order:
X <& Y < Vf bounded, non-decreasing , E(f(X)) < E(f(Y))

» There are others (convex, dilation, Lorenz, excess-wealth,
star,... )...
See [M. Shaked, J. Shanthikumar, Stochastic orders (2006)].
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Stochastic orderings: Properties of Dispersive order

X <pisp Y & F;l - F;l is non-decreasing

» Measures only dispersion, in fact, it is a “location-free' order:
X <pisp Y = X+a<pip YVaeR
» Usual distributions:
U(a, b) <pipU(c,d) & b—-—a<d—-c
E(N) <pisp E(p) & 1 < A
N(my,o?) <pisp N (ma, 03) = 02 < 03
» Ordering of variances:

X <pisp Y = VarX < VarY
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Application to UQ

v

Leti=1,...,p.
We define

Y = (X, Xp), Y5 = F(Xe, .o Xim1, X Xiga, - .-

with Xi <pisp X}
Do we have: VarY < VarY* ?
Y <pisp Y would be sufficient.

However, it is not true in general, even for convex
non-decreasing f.

Take X ~ U(1;1.9), X* ~1(0;1). We have
X <pisp X* but Varexp(X) > Varexp(X™)

Disp. order alone is not sufficient !
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Stochastic orderings: Properties of Usual st. order

X <& Y & Vf bounded, non-decreasing , E(f(X)) < E(f(Y))

» Dispersive implies stochastic under a “location condition”:
supp(X) C (Ix,+oo, supp(Y) C (ly; +oo]
If Ix =1y > —oo then X <& Y = X <pjsp Y.

» If X <pisp Y and X < Y then, for any convex
non-decreasing, or concave non-increasing ¢, then

¢(X) SDisp ¢( Y)

» Curvature hypotheses are necessary. For instance, if
» f(t)=ton [0;1] and 1 on [1;10],
> X ~(0;1), Y ~U(0;10),
> X <pip Y. X <q& Y but Varf(X) > Varf(Y).
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Application to UQ (2)

Y = (Xt X)), Yo = F(Xey o Xie, X Xig1s -2 Xp)

» Hence, if
> Xi SDisp X,'*.
> X <o X,
» f is convex non-dec, or concave non-inc in its it argument,
» then
VarY < VarY*

» Can we do the same with Sobol indices ?
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Additive case

> We suppose that:

with:
» f. convex non-decreasing, or concave non-increasing.
> Xi SDisp X,'*y

> Xi Sst X,'*,
» X; and X are independent.
» Then,
S5 < S/
and

>S5 A
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Product case

» Now assume that

F() = [ LX) + E()

with log g; convex non-decreasing, or concave non-increasing.

> If X; <pisp X, Xi <t X, and X; and X" are independent,
then
SiT S SiT*

and
T T\ :
where SJ-T and SJ-T*, are total Sobal indices of

Y = (X1, Xp), Y5 = F(Xes o Xie, X Xig1s - X))

respectively.

» Only g; convex non-decreasing, or concave non-increasing is
not sufficient.
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General “tensor” case

We also have a similar theorem for

F(X)=> ﬁgf(xj) +E(Y)
V4

Jj=1

under similar hypotheses, plus a (seemingly necessary) tangled and
unsatisfactory inequality.
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Part 2: Global optimization using Sobol
indices
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Context

» Our goal is to minimize a (generally nonconvex) function
f:D=[-117 = R:
min f
D
» f is computationally expensive to compute, we want to
evaluate it a only a few number of times.

» \We suppose that we have (even partial) knowledge about
Sobol indices of f: for instance first-order, second-order,
total...

» Can we use this knowledge to improve minimization of f 7
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Context (2)

» For instance, if all interaction indices are zero, f can be
minimized separately on each variable, allowing substantial
gain.

» In general, there is some sparsity-of-effects principle allowing
to neglect high-order interactions.

» We will propose an optimization algorithm which can take
advantage of this situation.
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Outline of Part 2

P> Presentation of the strategy
» Implementation details

» Numerical “proof of concept” illustration
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Presentation of the strategy

Assume:
» D = [-1;1]¢ endowed with the uniform probability
distribution,

» f(X) has unit variance,
» F is a subspace of square integrable functions D — R.

The following strategy is inspired by the one used in [C. Malherbe,
N. Vayatis, Global optimization of Lipschitz functions (2017)].
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Presentation of the strategy (2)

We build a “minimizing” sequence of length n with the following:

» Initialization : choose X! uniformly on D;
» lteration: for i = 2, ..., n, repeat:
» choose X' uniformly on:

D;={x€Dst. Ig € F;, g(x) < min f(X)}

1<j<i
where:
Fi={geF,Vi<j<i, g(X)=f(X)}

Fi is the set of “consistent” functions, and D; a set of “interesting’
points to explore, as they might improve the current minimum.
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» In our context, F is a set of square-integrable functions
satisfying the "“prior knowledge" on Sobol indices.

» For instance, if d = 3 and that we assume that there is no
interaction between X; and Xj,

F={ge Lz([—l; 1]3) s.t. Varg(X) =1, S03=35123= 0}
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Implementation details

To sample uniformly on
D;={x € Ds.t. Ig € F;, g(x) < min f(X/)}
1<j<i
where: ' ‘
Fi={geF, Vi<j<i, g(X)=Ff(X)}
we use a “rejection” algorithm:
1. we sample x uniformly on D,

2. solve for
m(x) = min g(x)
3. if m(x) < mini<j<; f(X/), then x € D; and we accept it; else
we sample a new x.
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Implementation details (2)

> Solving
m(x) = min g(x)
can be made in practice by introducing a tensor orthonormal
L? basis (in our case, of normalized Legendre polynomials)
and search for coefficients ¢ of g on this basis.
» The objective is a linear function of ¢, and the constraints of
Fi are:
> linear in c for the g(X’) = f(X’) constraints;
> positive semi-definite in ¢ (sum of squares) for the Sobol
indices constraints.
» This gives a succession (for different x's) of high-dimensional
convex problems to solve until some x is accepted.
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Numerical illustration

» Rosenbrock function on [—5; 5]3:

X1 Xg X3 2
f 100(Xm 1-—X
(G g) 260002 11— X5)% 4 ( m)

» Budget of 100 convex problems — variable number N, of
evaluations of f, Legendre polynomials up to degree 4.
» Two families of constraints on the Sobol indices:
» EstilT: estimations of first-order and total Sobol indices (six
indices)
> Nolnterl3: no interaction between X; and X3 (hence no
third-order interaction)
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Result

Constraints Negyar | record minimum
unit variance 93 0.0089
unit variance, EstilT 78 0.0052
unit variance, EstilT, Nolnterl3 44 0.0006
unit variance, Nolnter3 45 0.0049

» Constraints on Sobol indices actually improves optimization.

» Great reduction on number of evaluations of f by using that
no interaction occurs between X; and Xs.

> Many improvements could be tried...
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