

Calage bayésien pour la quantification de l'incertitude conditionnelle des paramètres d'entrée dans les modèles numériques chaînés

VVF Lège Cap-Ferret, 12 Octobre 2023

O. BALDÉ (oumar.balde@cea.fr), G. DAMBLIN, A. MARREL, A. BOULORÉ and L. GIRALDI CEA CENTRE SACLAY

Calage d'un modèle numérique Calage de modèle Estimation bayésienne

Calage des modèles numériques interconnectés Calage de modèles numériques chaînés Cas applicatif : application ALCYONE Calage bayésien conditionnel

Nouvelle méthode GP-LinCC Principe En pratique

Conclusion et perspectives

Calage d'un modèle numérique

Calage des modèles numériques interconnectés

Nouvelle méthode GP-LinCC

Conclusion et perspectives

Calage de modèle

- Modèles numériques : outils essentiels pour mimer des systèmes physiques (ex : les centrales nucléaires).
- Nombre important de paramètres d'entrée, caractérisant les systèmes physiques étudiés.
- Paramètres d'entrée le plus souvent incertains ainsi que les sorties [de Rocquigny et al., 2008].
- Calage de modèle :
 - But : quantifier l'incertitude des paramètres en fonction des données expérimentales disponibles du système physique étudié.
 - Deux types de calage : calage déterministe et calage bayésien.

Calage bayésien d'un modèle numérique

- But : quantifier l'incertitude paramétrique par des distributions de probabilité [Kennedy and O'Hagan, 2001] :
 - La distribution *a priori* des paramètres incertains $\theta \in \mathcal{D}_{\theta} \subset \mathbb{R}^{p} : \pi(\theta)$.
 - La vraisemblance des données observées z du système physique : $\mathcal{L}(z \mid \theta)$
 - **La distribution** *a posteriori* $\pi(\theta \mid z)$ est obtenue à partir de la formule de Bayes :

 $\pi(\theta \mid z) \propto \mathcal{L}(z \mid \theta) \pi(\theta).$

- $\pi(\theta \mid z)$: mise à jour de $\pi(\theta)$ en utilisant l'information fournie par z.
- Un estimateur de paramètres largement utilisé est maximum a posteriori (MAP) : $\hat{\theta} := \underset{\theta \in \mathcal{D}_{\theta}}{\operatorname{argmax}} \pi(\theta \mid z).$

Calage d'un modèle numérique

Calage des modèles numériques interconnectés

Nouvelle méthode GP-LinCC

Conclusion et perspectives

Calage de modèles chaînés

- Focus sur les deux modèles chaînés M1 et M2 de la figure 1 :
 - $x \in \mathbb{R}^d$ $(d \ge 1)$: variables de contrôle,
 - $\theta \in \mathcal{D}_{\theta} \subset \mathbb{R}^{p}$ ($p \ge 1$) et $\lambda \in \mathcal{D}_{\lambda} \subset \mathbb{R}^{q}$ ($q \ge 1$) : paramètres incertains respectifs de M1 et M2.
- Comment caler θ et λ en fonction des données observées (W = w, Z = z)?
 - 1 Calage joint :

 $\pi_{\text{full}}(\theta, \lambda \mid z, w) = \pi(\theta \mid \lambda, z)\pi(\lambda \mid w, z)$ [Marque-Pucheu et al., 2016].

2 Calage basé sur des modèles de coupure (ligne rouge en pointillé) :

 $\pi_{\text{cut}}(\theta, \lambda \mid z, w) := \pi(\theta \mid \lambda, z)\pi(\lambda \mid w)$ [Plummer, 2015, Jacob et al., 2017].

Cas applicatif \implies **estimation de** $\pi_{cut}(\theta, \lambda \mid z, w)$.

Cas applicatif : ALCYONE

- Focus sur les modèles thermique et de comportement des gaz de fission.
- Modèle thermique (MT) : calcul de l'évolution de la température T dans le cœur du réacteur à eau pressurisée :
 - *T* fonction du paramètre incertain $\lambda \in \mathcal{D}_{\lambda}\mathbb{R}$ (conductivité thermique du combustible).
 - π(λ | w) bien estimée à partir des mesures directes w de MT [Bouloré et al., 2023].
- Modèle de comportement des gaz de fission : représentation continue du comportement des produits de fission gazeux.
- $\theta \in \mathcal{D}_{\theta}$: paramètres incertains du modèle de comportement des gaz de fission.

Figure 2 – Chaînage des modèles thermiques et de comportement des gaz de fission de l'application ALCYONE [Michel et al., 2021].

Modèle de comportement des gaz de fission

Sortie d'intérêt : **Fraction de gaz relâchée** (RGF)

$$y_{\theta,\lambda}(x) := y_{\theta}^2(y_{\lambda}^1(x)).$$

Relation entre les mesures expérimentales z et les sorties du modèle de comportement des gaz de fission :

$$z_i = y_{\theta,\lambda}(x_i) + \epsilon_{\exp, i}, i = 1, \cdots, n,$$

$$\epsilon_{\exp, i} \sim \mathcal{N}(0, \sigma_{\epsilon_{\exp, i}}^2).$$

Objectif : estimer $\pi_{cut}(\theta, \lambda \mid z, w) \iff$ estimer $\pi(\theta \mid \lambda, z)$ car $\pi(\lambda \mid w)$ bien estimée :

 $\pi(\theta \mid \lambda, z) \propto \mathcal{L}(z \mid \theta, \ \lambda) \pi(\theta \mid \lambda).$

En réécrivant par :

 $\pi(\theta(\lambda) \mid z) \propto \mathcal{L}(z \mid \theta(\lambda))\pi(\theta(\lambda)).$

Calage bayésien conditionnel

- En général, une distribution *a posteriori* est connue jusqu'à une constante \implies besoin des algorithmes MCMC.
- Approche standard : exécuter autant de MCMC indépendants que le nombre d'échantillons d'intérêt de λ ⇒ pose deux problèmes :
 - Le calcul des RGF étant coûteux \implies exécution des MCMC faite uniquement que pour quelques valeurs de λ .
 - La non prise en compte du fait que $\pi(\theta(\lambda) | z)$ peut donner des informations sur $\pi(\theta(\lambda') | z)$ si λ n'est pas trop éloigné de λ' .
- La méthode proposée, appelée GP-LinCC (pour Gaussian Process and Linearization-based Conditionnal Calibration), fournit une distribution de probabilité prédictive a posteriori de θ conditionnellement à tout λ.

Calage d'un modèle numérique

Calage des modèles numériques interconnectés

Nouvelle méthode GP-LinCC

Conclusion et perspectives

11

Approche GP-LinCC

Méthodologie :

- Pour estimer $\theta(\lambda)$, elle s'appuie sur :
 - la représentation *a priori* de chaque composante de $\theta(\lambda)$ par une trajectoire d'un processus gaussien indépendant [Rasmussen et al., 2006].
 - La linéarité du modèle de comportement des gaz de fission par rapport à $\theta(\lambda)$.
 - L'hypothèse de compensation, avis d'expert, stipule que z est peu informative (comparée à w) sur l'incertitude de λ. Ceci est équivalent à dire que

$$\pi_{\mathsf{cut}}(\theta, \ \lambda \mid z, \ w) \approx \pi_{\mathsf{full}}(\theta, \ \lambda \mid z, \ w)$$

au sens d'une dissimilarité :

1 relation entre
$$\pi_{cut}(\theta, \lambda \mid z, w)$$
 et $\pi_{full}(\theta, \lambda \mid z, w)$:

$$\pi_{\mathsf{cut}}(\theta, \ \lambda \mid z, \ w) = \pi_{\mathsf{full}}(\theta, \ \lambda \mid z, \ w) \frac{\pi(z \mid w)}{\pi(z \mid \lambda)}.$$

2 L'hypothèse de compensation sera satisfaite si $\mathcal{L}(z \mid \theta, \lambda)$ est non identifiable en (θ, λ) .

En pratique

Ingrédients :

- Un ensemble de données expérimentales z ∈ ℝⁿ à utiliser pour le calage.
- Un ensemble de simulations du modèle numérique $\left\{ y_{\theta^{(l)}, \lambda_k}(x_i) \right\}_{l=1}^{n_{sim}} \in \mathbb{R}^{n_{sim}}$ pour estimer tous les coefficients des différents modèles linéaires correspondant à chaque valeur de $D_m := \{\lambda_k\}_{k=1}^m$ et à chaque x_i ($1 \le i \le n$):

$$\mathbf{y}_{\theta^{(l)}, \lambda_k}(\mathbf{x}_i) = \beta_0(\mathbf{x}_i, \lambda_k) + \beta_1^t(\mathbf{x}_i, \lambda_k)\theta^{(l)} + \epsilon_{\mathbf{x}_i, \lambda_k},$$

où $\epsilon_{x_i, \lambda_t} \sim \mathcal{N} \left(0, \ \sigma^2(x_i, \ \lambda_k) \right).$

Différentes étapes :

- Étape 1 : Analyse de sensibilité globale : réduction du nombre de paramètres d'entrée du modèle de comportement des gaz de fission

 p = 11 à *p* = 4.
- Étape 2 : construction de modèles linéaires.
- Étape 3 : Application de la méthode GP-LinCC pour calibrer $\theta(\lambda) = (\theta_1(\lambda), \cdots, \theta_p(\lambda))^t \in \mathbb{R}^p$.
- Budget total des simulations utilisées : $n \times m \times n_{sim} = 40 \times 20 \times 200 = 160000$ (2 mois).

Comparaison des trois densités à une nouvelle valeur de la conductivité thermique $\lambda^{\star} = 1.099$

Figure 3 – Comparaison des trois densités pour une nouvelle valeur de la conductivité $\lambda^* = 1.099$.

Hypothèse de compensation vérifiée pour $\lambda_{nom} = 1$, $\lambda_{nom} - 5\%$ et $\lambda_{nom} + 5\%$.

Figure 4 – Comparaison des distributions des 40 log-RGF pour ces trois valeurs de λ . ETICS-2023 - 0. BALDÉ VVF Lège Cap-Ferret, 12/10/23

NO WY

Comparaison des log-RGF mesurées et calculées en $\lambda_{nom} = 1$, $\lambda_{nom} - 5\%$ et $\lambda_{nom} + 5\%$.

16

Calage d'un modèle numérique

Calage des modèles numériques interconnectés

Nouvelle méthode GP-LinCC

Conclusion et perspectives

17

Conclusion

- La méthode GP-LinCC peut apprendre la relation entre θ et λ via la fonction de calage $\theta(\lambda)$ à partir des données expérimentales disponibles et d'un plan d'expériences numériques du modèle pour un ensemble de λ .
- La distribution prédictive fournie par GP-LinCC est proche de la distribution a posteriori de θ conditionnellement à de nouvelles réalisations λ* de la conductivité thermique.
- Les intervalles crédibles de la distribution prédictive sont parfois plus petits que ceux des autres. Cela peut s'expliquer par l'estimation *Empirical Bayes* des hyperparamètres des *p* processus gaussiens [Reich and Ghosh, 2019] ainsi que le choix des fonctions de covariance pour chaque composante de θ(λ) (ici Matérn 5/2).
- Preprint de la méthode GP-LinCC https://doi.org/10.48550/arXiv.2307.01111.

Perspectives

- L'extension au cadre non linéaire.
- La prise en compte d'une éventuelle erreur de modèle.

References |

- A. Bouloré, C. Struzik, V. Bouineau, F. Gaudier, G. Damblin, and S. Bernaud. Modelling of UO₂ thermal conductivity : Improvement of the irradiation defects contribution and uncertainty quantification. *Nuclear Engineering and Design*, 407 :112304, 2023.
- E. de Rocquigny, N. Devictor, and S. Tarantola. *Uncertainty in industrial practice : a guide to quantitative uncertainty management.* John Wiley & Sons, 2008.
- P. E. Jacob, L. M. Murray, C. C. Holmes, and C. P. Robert. Better together? Statistical learning in models made of modules. *arXiv preprint arXiv :1708.08719*, 2017.
- M. C. Kennedy and A. O'Hagan. Bayesian calibration of computer models. *Journal of the Royal Statistical Society : Series B (Statistical Methodology)*, 63(3) :425–464, 2001.
- S. Marque-Pucheu, G. Perrin, and J. Garnier. Calibration of Nested Computer Models. In *VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress), Crete Island, Greece, 5-10 June 2016*, 2016.

References II

- B. Michel, I. Ramière, I. Viallard, C. Introini, M. Lainet, N. Chauvin, V. Marelle, A. Boulore, T. Helfer, R. Masson, et al. Two fuel performance codes of the PLEIADES platform : ALCYONE and GERMINAL. In *Nuclear Power Plant Design and Analysis Codes*, pages 207–233. Elsevier, 2021.
- M. Plummer. Cuts in Bayesian graphical models. *Statistics and Computing*, 25:37–43, 2015.
- C. E. Rasmussen, C. K. Williams, et al. *Gaussian processes for machine learning*, volume 1. Springer, 2006.
- B. J. Reich and S. K. Ghosh. *Bayesian statistical methods*. Chapman and Hall/CRC, 2019.

Merci pour votre attention. Des questions ?

Modélisation statistique de l'approche GP-LinCC

■ Modèle statistique : $z_i = r(x_i) + \epsilon_i$, $1 \le i \le n$, $\epsilon_{exp, i} \sim \mathcal{N}(0, \sigma^2_{\epsilon_{exp, i}})$ avec $\sigma^2_{\epsilon_i}$ connue.

Hypothèse de linéarité : $\exists \theta(\lambda) \in \mathbb{R}^{p}$: $y_{\theta(\lambda)}(x_{i}) = \widehat{\beta}_{0}(x_{i}, \lambda) + \widehat{\beta}_{1}^{t}(x_{i}, \lambda)\theta(\lambda) = r(x_{i}), \forall x_{i} \in \mathbb{R}^{d}$ et on a :

$$z_i = \widehat{\beta}_0(x_i, \lambda) + \widehat{\beta}_1^t(x_i, \lambda)\theta(\lambda) + \epsilon_{i, \lambda}.$$
⁽¹⁾

avec $\epsilon_{i, \lambda} := \epsilon_{\exp, i} + \epsilon_{x_i, \lambda} \sim \mathcal{N}(0, \sigma^2_{\epsilon_{\exp, i}}, \widehat{\sigma}^2_{i, \lambda})$. L'équation (1) en format vectoriel :

$$z = \widehat{\beta}_0(x, \lambda) + \widehat{\beta}_1(x, \lambda)\theta(\lambda) + \epsilon_\lambda$$
(2)

où
$$z = (z_1, \dots, z_n)^t \in \mathbb{R}^n$$
, $\widehat{\beta}_1(x, \lambda) := \left(\widehat{\beta}_1^t(x_1, \lambda), \dots, \widehat{\beta}_1^t(x_n, \lambda)\right)^t \in \mathbb{R}^{n \times p}$, $\widehat{\beta}_0(x, \lambda) := \left(\widehat{\beta}_0(x_1, \lambda), \dots, \widehat{\beta}_0(x_n, \lambda)\right)^t$
et $\epsilon_{\lambda} = (\epsilon_{1, \lambda}, \dots, \epsilon_{n, \lambda})^t$.

Les quantités $\widehat{\beta}_0(x, \lambda)$ et $\widehat{\beta}_1(x, \lambda)$ sont connus uniquement pour $\lambda \in \{\lambda_1, \dots, \lambda_m\}$.

Le modèle numérique y_{θ(λ)}(x) est coûteux en temps de calcul → il ne peut être linéarisé que pour un nombre finis de λ.

Approche GP-LinCC

Étape d'estimation : apprentissage de la fonction $\theta(\lambda)$:

1 Distribution a priori : chaque $\theta_j(\lambda) \sim \mathcal{GP}(m_{\beta_j}(\lambda), \sigma_j^2 K_{\psi_j}(\lambda, \lambda')), 1 \le j \le p, \phi := (\beta_j, \sigma_j^2, \psi_j)_{j=1}^p$.

2 Hypothèse de compensation : propagation de *m* réalisations de λ dans (2) \implies *m* équations :

$$\begin{aligned} z &= \widehat{\beta}_0(x, \ \lambda_k) + \widehat{\beta}_1(x, \ \lambda_k)\theta(\lambda_k) + \epsilon_{\lambda_k}, \ 1 \leq k \leq m \\ (z, \cdots, z) &= \left(\widehat{\beta}_0(x, \ \lambda_1), \cdots, \widehat{\beta}_0(x, \ \lambda_m)\right) + \left(\widehat{\beta}_1(x, \ \lambda_1)\theta(\lambda_1), \cdots, \widehat{\beta}_1(x, \ \lambda_m)\theta(\lambda_m)\right) + (\epsilon_{\lambda_1}, \cdots, \epsilon_{\lambda_m}). \end{aligned}$$

On pose $\mathbf{z} := (z, \cdots, z) \in \mathbb{R}^{n \times m}$ et $\Theta_m := (\theta(\lambda_1), \cdots, \theta(\lambda_m))^t \in \mathbb{R}^{m \times p}$.

3 Distribution a posteriori $\pi(\Theta_m | \mathbf{z}, \phi)$ par la formule de Bayes :

$$\pi(\Theta_m | \mathbf{z}, \phi) \propto \mathcal{L}(\mathbf{z} | \Theta_m) \pi(\Theta_m | \phi).$$
(3)

Étape de prédiction :

Distribution prédictive $\pi_{pred}(\theta(\lambda^*)|\mathbf{z}, \phi)$ pour de nouvelles réalisations λ^* :

$$\pi_{\text{pred}}(\theta(\lambda^*)|\mathbf{z},\phi) = \int \pi(\theta(\lambda^*)|\Theta_m,\phi)\pi(\Theta_m|\mathbf{z},\phi)d\Theta_m,\phi$$
$$\widehat{\theta}_{\text{pred}}(\lambda^*) = \operatorname{argmax} \pi_{\text{pred}}(\theta(\lambda^*)|\mathbf{z},\phi).$$

ETICS-2023 - O. BALDÉ

VVF Lège Cap-Ferret, 12/10/23