App4: SOLAR

Blackbox optimization: Part 3/4: Applications

Sébastien Le Digabel

ETICS 2023

App4: SOLAR

References

Presentation outline

Example 1: Aircraft takeoff trajectories

Example 2: Characterization of objects from radiographs

Example 3: Hyperparameters Optimization

Example 4: Solar thermal power plant

Example 1: Aircraft takeoff trajectories

Example 2: Characterization of objects from radiographs

Example 3: Hyperparameters Optimization

Example 4: Solar thermal power plant

App4: SOLAR

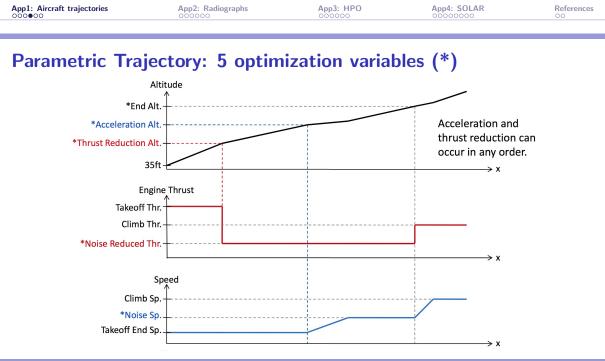
Aircraft takeoff trajectories

- ▶ [Torres et al., 2011]
- AIRBUS problem involving (among others): O. Babando, C. Bes, J. Chaptal, J.-B. Hiriart-Urruty, B. Talgorn, B. Tessier, and R. Torres

Biobjective optimization problem

Definition of the optimization problem

- Concept : Optimization of vertical flight path based on procedures designed to reduce noise emission at departure to protect airport vicinity
- Minimization of environmental and economical impact: Noise and fuel consumption
- Variables define the NADP (Noise Abatement Departure Procedure): During departure phase, the aircraft will target its climb configuration:
 - Increase the speed up to climb speed (acceleration phase)
 - Reduce the engine rate to climb thrust (reduction phase)
 - Gain altitude

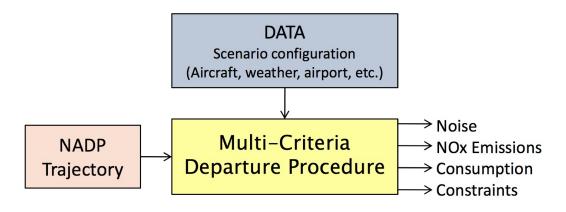


BBO: Applications

App4: SOLAR

References

The blackbox: Multi-Criteria Departure Procedure



One evaluation \simeq 2 seconds

Special features

- Must execute on different platforms including some old Solaris distributions
- ► The best trajectory parameters are returned to the pilot who enters them in the aircraft system manually → the less decimals the better
- ► Finite precision on optimization parameters: Discretization of optimization variables → granular variables [Audet et al., 2019]

Example 1: Aircraft takeoff trajectories

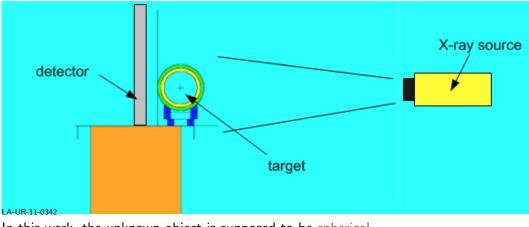
Example 2: Characterization of objects from radiographs

Example 3: Hyperparameters Optimization

Example 4: Solar thermal power plant

Characterization of objects from radiographs - LANL

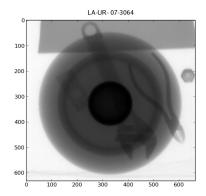
We want to identify an unknown object inside a box, using a x-ray source that gives an image on a detector



In this work, the unknown object is supposed to be spherical

Radiograph

A radiograph is the observed image on the detector. For example:



Description of the problem

- The problem consist to identify the unknown object with sufficient precision so that the object can be classified as dangerous or not
- Must work rapidly
- Must work for radiographs not created on a well-controlled experimental environment
- Must not crash for unreasonable user inputs

Definition of the optimization problem

Variables:

- They represent a spherical object
- Meta variables: Number of layers and type of material of each layer
- Continuous variables: Radius of each layer
- The number of variables can change depending on the number of layers

Objective function:

- A score associated to the difference between the observed image on the detector, and a simulated image obtained from the candidate object (inverse problem)
- A numerical code the blackbox produces this simulated radiograph, using raytracing

App4: SOLAR

Motivations for MADS and NOMAD

- A blackbox is involved
- Presence of meta variables
- Robustness of the code regarding the uncertainty and noise in the data

Example 1: Aircraft takeoff trajectories

Example 2: Characterization of objects from radiographs

Example 3: Hyperparameters Optimization

Example 4: Solar thermal power plant

App3: HPO ○●○○○○ App4: SOLAR

References

HPO with HyperNOMAD

- PhD project of Dounia Lakhmiri
- Published in TOMS [Lakhmiri et al., 2021]
- We focus on the HPO of deep neural networks
- Our advantages:
 - Blackbox optimization problem:

One blackbox call = Training + validation + test, for a fixed set of hyperparameters

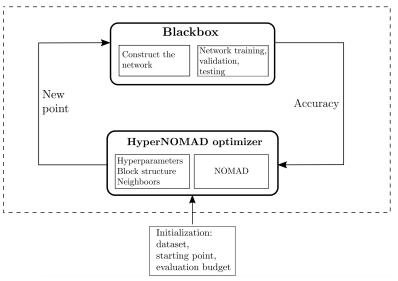
- Presence of categorical variables (ex.: number of layers)
- Existing methods are mostly heuristics

(grid search, random search, GAs, etc.)

Based on the NOMAD implementation of MADS

App3: HPO ○○●○○○ App4: SOLAR

Principle



App1: Aircraft trajectories	App2: Radiographs	App3: HPO	App4: SOLAR	References

Hyperparameters for the architecture $(5n_1 + n_2 + 4)$

Hyperparameter	Туре Scope		
Number of convolutional layers (n_1)	Meta	[0;20]	
Number of output channels	Integer	[0;50]	
Kernel size	Integer	[0;10]	
Stride	Integer	[1;3]	
Padding	Integer	[0;2]	
Do a pooling	Boolean	0 or 1	
Number of full layers (n_2)	Meta	[0;30]	
Size of the full layer	Integer	[0;500]	
Dropout rate	Real	[0;1]	
Activation function	Categorical	ReLU, Sigmoid, Tanh	

App3: HPO ○○○○●○

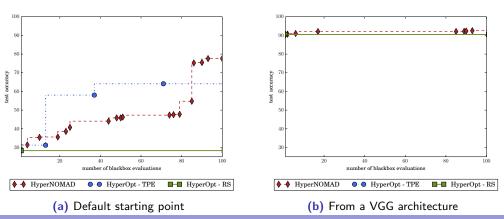
Hyperparameters for the optimizer (5)

Optimizer	Hyperparameter	Туре	Scope
Stochastic Gradient Descent (SGD)	Learning rate	Real	[0;1]
	Momentum	Real	[0;1]
	Dampening	Real	[0;1]
	Weight decay	Real	[0;1]
Adam	Learning rate	Real	[0;1]
	β_1	Real	[0;1]
	β_2	Real	[0;1]
	Weight decay	Real	[0;1]
Adagrad	Learning rate	Real	[0;1]
	Learning rate decay	Real	[0;1]
	Initial accumulator	Real	[0;1]
	Weight decay	Real	[0;1]
RMSProp	Learning rate	Real	[0;1]
•	Momentum	Real	[0;1]
	α	Real	[0;1]
	Weight decay	Real	[0;1]

App1: Aircraft trajectories

Results on CIFAR-10 (vs Hyperopt)

- Training with 40,000 images, validation/test on 10,000 images
- One evaluation (training+test) ~ 2 hours (i7-6700@3.4 GHz, GeForce GTX 1070)



App3: HPO 00000● App4: SOLAR

Example 1: Aircraft takeoff trajectories

Example 2: Characterization of objects from radiographs

Example 3: Hyperparameters Optimization

Example 4: Solar thermal power plant

App4: SOLAR

References

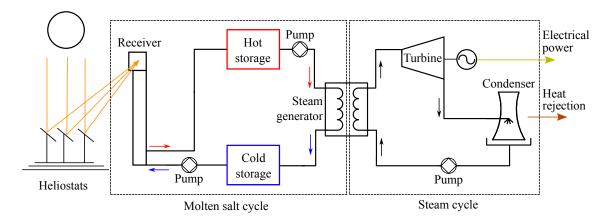
CSP tower plant with molten salt thermal energy storage

- A large number of mirrors (heliostats) reflects solar radiation on a receiver at the top of a tower
- The heat collected from the concentrated solar flux is removed from the receiver by a stream of molten salt
- Hot molten salt is then used to feed thermal power to a conventional power block
- The photo shows the Thémis CSP power plant, the first built with this design

Source: https://commons.wikimedia.org/wiki/File:Themis_2.jpg

App4: SOLAR ○○●○○○○○

System dynamics



App4: SOLAR 000●0000

Ten instances

Instance	#	[∉] of variables		# of obj.	#	of constraints		# of stoch. outputs	Static
	cont.	discr. (cat.)	n	p	simu.	a priori (lin.)	m	(obj. or constr.)	surrogate
solar1	8	1 (0)	9	1	2	3 (2)	5	1	no
solar2 ¹	12	2 (0)	14	1	9	4 (2)	13	3	yes
solar3	17	3 (1)	20	1	8	5 (3)	13	5	yes
solar4	22	7 (1)	29	1	9	7 (5)	16	6	yes
solar5	14	6(1)	20	1	8	4 (3)	12	0	no
solar6	5	0 (0)	5	1	6	0 (0)	6	0	no
solar7	6	1 (0)	7	1	4	2 (1)	6	3	yes
solar8	11	2 (0)	13	2	4	5 (3)	9	3	yes
solar9	22	7 (1)	29	2	10	7 (5)	17	6	yes
solar10 ²	5	0 (0)	5	1	0	0 (0)	0	0	yes

¹analytic objective

²unconstrained

Features for BBO benchmarking

- Several numerical methods: real-world blackbox
- Reproducibility accros all platforms
- Continuous and discrete variables
- Different types of constraints (quantifiable, relaxable, a priori, hidden)
- Stochastic and deterministic outputs
- Static surrogates with variable fidelity
- Number of replications is controlable

App4: SOLAR

References

Feasibility with sampling and NOMAD

Instance	LH search (10k	points)	NOMAD3			
	satisf. ap constr.	feas. pts	satisf. ap constr.	feas. pts	number of eval.	
solar1	30%	0.35%	96%	74%	3,792	
solar2	0%	0%	97%	0%	1,635	
solar3	0.49%	0%	99%	9%	30,525	
solar4	0%	0%	83%	0%	44,303	
solar5	0%	0%	83%	59%	3,405	
solar6	90%	5%	99%	0%	3,539	
solar7	2%	1%	74%	72%	2,224	
solar8	1%	0.03%				
solar9	1%	0%				

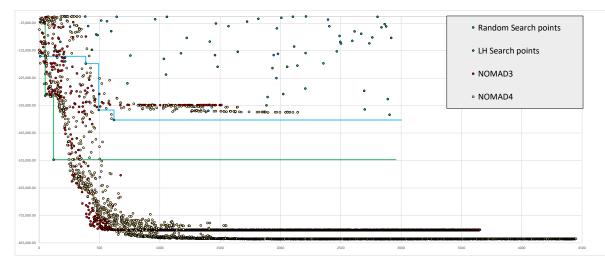
there has been no violation of hidden constraints during the construction of this table

App2: Radiographs

App3: HPO

App4: SOLAR ○○○○○○●○

Optimization on solar1



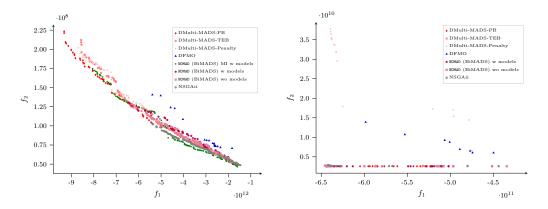
App2: Radiographs

App3: HPO

App4: SOLAR

References

Biobjective optimization (by L. Salomon)



Pareto front approximations for solar8 (left) and solar9 (right) with different solvers with a budget of 5K evaluations. Taken from [Bigeon et al., 2022]

Example 1: Aircraft takeoff trajectories

Example 2: Characterization of objects from radiographs

Example 3: Hyperparameters Optimization

Example 4: Solar thermal power plant

App4: SOLAR

References I

Audet, C., Le Digabel, S., and Tribes, C. (2019).

The Mesh Adaptive Direct Search Algorithm for Granular and Discrete Variables. *SIAM Journal on Optimization*, 29(2):1164–1189.

Bigeon, J., Le Digabel, S., and Salomon, L. (2022).

Handling of constraints in multiobjective blackbox optimization. Technical Report G-2022-10, Les cahiers du GERAD.

Lakhmiri, D., Le Digabel, S., and Tribes, C. (2021).

HyperNOMAD: Hyperparameter Optimization of Deep Neural Networks Using Mesh Adaptive Direct Search. ACM Transactions on Mathematical Software, 47(3).

Torres, R., Bès, C., Chaptal, J., and Hiriart-Urruty, J.-B. (2011). Optimal, Environmentally-Friendly Departure Procedures for Civil Aircraft. *Journal of Aircraft*, 48(1):11–22.