Blackbox optimization: Part 4/4: Practical presentation

Sébastien Le Digabel

POLYTECHNIQUE

ETICS 2023

BBO: Practical

A first basic optimization with NOMAD

The SOLAR simulator

> Benchmarking: From convergence plots to performance and data profiles

First tests

Performance and data profiles

Blackbox conception (batch mode)

Command-line program that takes in argument a file containing x, and displays the values of f(x) and the c_j(x)'s

Can be coded in any language

Typically: > bb.exe x.txt displays f c1 c2 (objective and two constraints)

• Example with $f(\mathbf{x}) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2$ (Rosenbrock function)

Run with NOMAD

- Installation of NOMAD: Download at www.gerad.ca/nomad or from GitHub
- ▶ NOMAD3 [Le Digabel, 2011] vs NOMAD4 [Audet et al., 2022]
- Edit a NOMAD parameter file
- All algorithmic parameters have default values

The SOLAR simulator

Download at www.github.com/bbopt/solar

Compilation

- Demo of the different options
- Optimization of SOLAR6 with NOMAD and CMA-ES [Hansen, 2006]

Benchmarking

► Latin Hypercube Sampling for getting 30 starting points that define 30 instances

- Convergence plots
- Performance and data profiles from [Moré and Wild, 2009]

First tests

Performance and data profiles

Plan O

Profiles: Original version from the M&W paper

- P: set of problems or instances
- \blacktriangleright S: set of solvers, or algorithms, or methods
- Performance measure t_{p,s} > 0 available for each p ∈ P and s ∈ S. Typically the number of evaluations required to satisfy a convergence test
- Small values of the performance measure are preferable
- Performance ratio for problem $p \in \mathcal{P}$ and solver $s \in \mathcal{S}$:

$$r_{p,s} = \frac{t_{p,s}}{\min\{t_{p,a} : a \in \mathcal{S}\}}$$

Convergence test

• One possible convergence test is, for the candidate solution **x**:

$$f(\mathbf{x}_0) - f(\mathbf{x}) \ge (1 - \tau)(f(\mathbf{x}_0) - f_L)$$

Where:

- \triangleright $\tau > 0$: tolerance
- x₀: unique and feasible starting point
- f_L : smallest value of f obtained by any solver within a given budget of evaluations, for each $p \in \mathcal{P}$
- lt requires that the reduction $f(\mathbf{x}_0) f(\mathbf{x})$ achieved by \mathbf{x} be at least 1τ times the best possible reduction $f(\mathbf{x}_0) f_L$
- ▶ τ represents the percentage decrease from $f(\mathbf{x}_0)$. As it decreases, the accuracy of $f(\mathbf{x})$ as an approximation to f_L increases

Plan O

Performance profiles

- ▶ The best solver $s^* \in \mathcal{S}$ for a particular problem $p \in \mathcal{P}$ attains the lower bound $r_{p,s^*} = 1$
- ▶ $t_{p,s} = r_{p,s} = \infty$ when s fails to satisfy the convergence test on p
- The performance profile of s is the fraction of problems where the performance ratio is at most α :

$$\rho_s(\alpha) = \frac{1}{|\mathcal{P}|} \mathsf{size}\{p \in \mathcal{P} : r_{p,s} \le \alpha\}$$

- It is the probability distribution for the ratio r_{p,s}
- $\blacktriangleright~\rho_s(1)$ is the fraction of problems for which s performs the best
- \blacktriangleright For α sufficiently large, $\rho_s(\alpha)$ is the fraction of problems solved by s
- ▶ Solvers with high values for ρ_s are preferable

Data profiles

- We are interested in the percentage of problems that can be solved, for a given tolerance τ with a variable budget of evaluations
- The data profile of Solver s is

$$d_s(\kappa) = \frac{1}{|\mathcal{P}|} \mathsf{size} \left\{ p \in \mathcal{P} : \frac{t_{p,s}}{n_p + 1} \le \kappa \right\},$$

where n_p is the number of variables in Problem p

- It represents the percentage of problems that can be solved with κ groups of n_p + 1 function evaluations, or simplex gradient estimates
- n_p + 1 is the number of evaluations needed to compute a one-sided finite-difference estimate of the gradient

Plan O

References I

 Audet, C., Le Digabel, S., Rochon Montplaisir, V., and Tribes, C. (2022). Algorithm 1027: NOMAD version 4: Nonlinear optimization with the MADS algorithm. ACM Transactions on Mathematical Software, 48(3):35:1-35:22.
Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In Lozano, J., Larrañaga, P., Inza, I., and Bengoetxea, E., editors, Towards a New Evolutionary Computation, volume 192 of Studies in Fuzziness and Soft Computing, pages 75-102. Springer, Berlin, Heidelberg.
Le Digabel, S. (2011). Algorithm 909: NOMAD: Nonlinear Optimization with the MADS algorithm. ACM Transactions on Mathematical Software, 37(4):44:1-44:15.
Moré L and Wild, S. (2009)

Moré, J. and Wild, S. (2009). Benchmarking Derivative-Free Optimization Algorithms. *SIAM Journal on Optimization*, 20(1):172–191.