SINCLAIR

Black-Box Model Decomposition with Dependent Random Inputs

The (SURPRISING) LINEAR NATURE OF NON-LINEARITY
${ }^{1}$ EDF R\&D - Lab Chatou - PRISME Department
${ }^{2}$ Institut de Mathématiques de Toulouse
${ }^{3}$ SINCLAIR AI Lab

École Thématique sur les Incertitudes en Calcul Scientifique 2023
GdR MASCOT-NUM - Cap Ferret, France.
October 12, 2023

Context

Does Hoeffding's functional decomposition hold when the inputs are not mutually independent?

Hoeffding's decomposition:

$$
G(X)=\sum_{A \in \mathcal{P}_{D}} G_{A}\left(X_{A}\right)
$$

Context

Does Hoeffding's functional decomposition hold when the inputs are not mutually independent?

Hoeffding's decomposition:

$$
G(X)=\sum_{A \in \mathcal{P}_{D}} G_{A}\left(X_{A}\right)
$$

Yes (Chastaing, Gamboa, and Prieur 2012; Hooker 2007; Kuo et al. 2009; Hart and Gremaud 2018). But either under heavy assumptions on the distribution of the inputs or through "arbitrary" methods.
\Longrightarrow No definitive answer to the problem.

Context

Does Hoeffding's functional decomposition hold when the inputs are not mutually independent?

Hoeffding's decomposition:

$$
G(X)=\sum_{A \in \mathcal{P}_{D}} G_{A}\left(X_{A}\right)
$$

Yes (Chastaing, Gamboa, and Prieur 2012; Hooker 2007; Kuo et al. 2009; Hart and Gremaud 2018). But either under heavy assumptions on the distribution of the inputs or through "arbitrary" methods.
\Longrightarrow No definitive answer to the problem.

However, a generalization holds under two reasonable assumptions, which leads to intuitive importance measures.

Framework and notations

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $X=\left(X_{1}, \ldots, X_{d}\right)$ be random inputs, i.e.,

$$
X: \Omega \rightarrow E
$$

where $E=X_{i=1}^{d} E_{i}$ is a cartesian product of d Polish spaces.

Framework and notations

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $X=\left(X_{1}, \ldots, X_{d}\right)$ be random inputs, i.e.,

$$
X: \Omega \rightarrow E
$$

where $E=X_{i=1}^{d} E_{i}$ is a cartesian product of d Polish spaces.
Remark. This is just a fancy way to say that the inputs are not necessarily real-valued.

Framework and notations

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $X=\left(X_{1}, \ldots, X_{d}\right)$ be random inputs, i.e.,

$$
X: \Omega \rightarrow E
$$

where $E=X_{i=1}^{d} E_{i}$ is a cartesian product of d Polish spaces.
Remark. This is just a fancy way to say that the inputs are not necessarily real-valued.

Let $D=\{1, \ldots, d\}$, and denote \mathcal{P}_{D} the power-set of D.
For every $A \subset D$, denote $X_{A}=\left(X_{i}\right)_{i \in A}$ a the subset of inputs in A.

Framework and notations

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $X=\left(X_{1}, \ldots, X_{d}\right)$ be random inputs, i.e.,

$$
X: \Omega \rightarrow E,
$$

where $E=X_{i=1}^{d} E_{i}$ is a cartesian product of d Polish spaces.
Remark. This is just a fancy way to say that the inputs are not necessarily real-valued.
Let $D=\{1, \ldots, d\}$, and denote \mathcal{P}_{D} the power-set of D.
For every $A \subset D$, denote $X_{A}=\left(X_{i}\right)_{i \in A}$ a the subset of inputs in A.
Denote by $\sigma_{\emptyset} \subset \mathcal{F}$ the \mathbb{P}-trivial σ-algebra (smallest σ-algebra containing the elements of Ω of probability 0).

Proposition (Resnick 2014). If an \mathbb{R}-valued random variable is σ_{\emptyset}-measurable, it is constant a.e.

Framework and notations

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $X=\left(X_{1}, \ldots, X_{d}\right)$ be random inputs, i.e.,

$$
X: \Omega \rightarrow E,
$$

where $E=X_{i=1}^{d} E_{i}$ is a cartesian product of d Polish spaces.
Remark. This is just a fancy way to say that the inputs are not necessarily real-valued.
Let $D=\{1, \ldots, d\}$, and denote \mathcal{P}_{D} the power-set of D.
For every $A \subset D$, denote $X_{A}=\left(X_{i}\right)_{i \in A}$ a the subset of inputs in A.
Denote by $\sigma_{\emptyset} \subset \mathcal{F}$ the \mathbb{P}-trivial σ-algebra (smallest σ-algebra containing the elements of Ω of probability 0).

Proposition (Resnick 2014). If an \mathbb{R}-valued random variable is σ_{\emptyset}-measurable, it is constant a.e.
$\forall A \subset D$, denote by $\sigma_{A} \subset \mathcal{F}$ the σ-algebra generated by X_{A}, and σ_{X} the one generated by X.

Some probability theory

Lemma (Doob-Dynkin Lemma). If an \mathbb{R}-valued random variable Y is σ_{x}-measurable, then there exists some function $f: E \rightarrow \mathbb{R}$ such that $Y=G(X)$ a.s.

Some probability theory

Lemma (Doob-Dynkin Lemma). If an \mathbb{R}-valued random variable Y is σ_{X}-measurable, then there exists some function $f: E \rightarrow \mathbb{R}$ such that $Y=G(X)$ a.s.

Definition (Lebesgue space). Let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ-algebra. Denote by $\mathbb{L}^{2}(\mathcal{G})$ the Lebesgue space containing every real-valued random variables, which are \mathcal{G}-measurable, and, if $Y \in$ $\mathbb{L}^{2}\left(\sigma_{\mathcal{G}}\right)$

$$
\mathbb{E}\left[Y^{2}\right]=\int_{\Omega} Y(\omega)^{2} d \mathbb{P}(\omega)<\infty .
$$

Remark. $\mathbb{L}^{2}\left(\sigma_{X}\right)$ is the space of random outputs of the form $G(X)$.

Some probability theory

Lemma (Doob-Dynkin Lemma). If an \mathbb{R}-valued random variable Y is σ_{X}-measurable, then there exists some function $f: E \rightarrow \mathbb{R}$ such that $Y=G(X)$ a.s.

Definition (Lebesgue space). Let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ-algebra. Denote by $\mathbb{L}^{2}(\mathcal{G})$ the Lebesgue space containing every real-valued random variables, which are \mathcal{G}-measurable, and, if $Y \in$ $\mathbb{L}^{2}\left(\sigma_{\mathcal{G}}\right)$

$$
\mathbb{E}\left[Y^{2}\right]=\int_{\Omega} Y(\omega)^{2} d \mathbb{P}(\omega)<\infty .
$$

Remark. $\mathbb{L}^{2}\left(\sigma_{X}\right)$ is the space of random outputs of the form $G(X)$.

Proposition. $\mathbb{L}^{2}\left(\sigma_{x}\right)$ is an (infinite-dimensional) Hilbert space, with inner product

$$
\langle f(X), g(X)\rangle=\mathbb{E}[f(X) g(X)]=\int_{E} f(x) g(x) d P_{X}(x)=\int_{\Omega} f(X(\omega)) g(X(\omega)) d \mathbb{P}(\omega)
$$

Angles between subspaces of Hilbert spaces

Definition (Dixmier's angle (Dixmier 1949)). Let M, N be closed subspaces of a Hilbert space H. The cosine of Dixmier's angle between M and N is defined as

$$
c_{0}(M, N):=\sup \{|\langle x, y\rangle|: x \in M,\|x\| \leq 1, \quad y \in N,\|y\| \leq 1\}
$$

Dixmier's angle is closely related to the notion of maximal correlation in probability theory (Gebelein 1941; Koyak 1987), as a dependence measure between random vectors.

Angles between subspaces of Hilbert spaces

Definition (Dixmier's angle (Dixmier 1949)). Let M, N be closed subspaces of a Hilbert space H. The cosine of Dixmier's angle between M and N is defined as

$$
c_{0}(M, N):=\sup \{|\langle x, y\rangle|: x \in M,\|x\| \leq 1, \quad y \in N,\|y\| \leq 1\}
$$

Dixmier's angle is closely related to the notion of maximal correlation in probability theory (Gebelein 1941; Koyak 1987), as a dependence measure between random vectors.

Definition (Friedrich's angle (Friedrichs 1937)). The cosine of Friedrichs' angle is defined as

$$
c(M, N):=\sup \left\{|\langle x, y\rangle|:\left\{\begin{array}{l}
x \in M \cap(M \cap N)^{\perp},\|x\| \leq 1 \\
y \in N \cap(M \cap N)^{\perp},\|y\| \leq 1
\end{array}\right\}\right.
$$

where the orthogonal complement is taken w.r.t. to \mathcal{H}.
Friedrich's angle is used in probability theory as a measure of partial dependence (Bryc 1984, 1996).

Direct-sum decompositions

Definition (Direct-sum decomposition). Let W_{1}, \ldots, W_{d} be vector subspaces of a vector space W. W is said to admit a direct-sum decomposition, denoted:

$$
W=\bigoplus_{i=1}^{d} W_{i}
$$

if any element $w \in W$ can be written uniquely as a sum of elements of the W_{i}.

Remark. Hilbert spaces are vector spaces.

Direct-sum decompositions

Definition (Direct-sum decomposition). Let W_{1}, \ldots, W_{d} be vector subspaces of a vector space W. W is said to admit a direct-sum decomposition, denoted:

$$
W=\bigoplus_{i=1}^{d} W_{i}
$$

if any element $w \in W$ can be written uniquely as a sum of elements of the W_{i}.

Remark. Hilbert spaces are vector spaces.

Hence, a Hoeffding-like (coalitional) decomposition of a black-box model entails finding a direct-sum decomposition for $\mathbb{L}^{2}\left(\sigma_{X}\right)$, i.e., writting

$$
\mathbb{L}^{2}\left(\sigma_{X}\right)=\bigoplus_{A \in \mathcal{P}_{D}} V_{A}
$$

where the V_{A} needs to be defined.

Assumptions

Assumption 1 (Non-perfect functional dependence). Suppose that:

- $\sigma_{\emptyset} \subset \sigma_{i}, i=1, \ldots, d$ (inputs are not constant).
- For $B \subset A, \sigma_{B} \subset \sigma_{A}$ (inputs add information).
- For every $A, B \in \mathcal{P}_{D}, A \neq B$,

$$
\sigma_{A} \cap \sigma_{B}=\sigma_{A \cap B}
$$

Remark. This assumption has nothing to do with the law of X. It is purely functional.

Lemma. Suppose that Assumption 1 hold.
Then, for any $A, B \in \mathcal{P}_{D}$ such that $A \cap B \notin\{A, B\}$ (i.e., the sets cannot be subsets of each other), there is no mapping T such that $X_{B}=T\left(X_{A}\right)$ a.e.

Remark. In other words, under Assumption 1, the inputs cannot be functions of each other.

Assumptions

Definition (Maximal coalitional precision matrix). Let Δ be the $\left(2^{d} \times 2^{d}\right)$, symmetric set-indexed matrix, defined element-wise, $\forall A, B \in \mathcal{P}_{D}$ as

$$
\Delta_{A B}= \begin{cases}1 & \text { if } A=B ; \\ -c\left(\mathbb{L}^{2}\left(\sigma_{A}\right), \mathbb{L}^{2}\left(\sigma_{B}\right)\right) & \text { otherwise } .\end{cases}
$$

Δ can be seen as a generalization of precision matrices.
Why is this matrix interesting ?

Assumptions

Definition (Maximal coalitional precision matrix). Let Δ be the $\left(2^{d} \times 2^{d}\right)$, symmetric set-indexed matrix, defined element-wise, $\forall A, B \in \mathcal{P}_{D}$ as

$$
\Delta_{A B}= \begin{cases}1 & \text { if } A=B ; \\ -c\left(\mathbb{L}^{2}\left(\sigma_{A}\right), \mathbb{L}^{2}\left(\sigma_{B}\right)\right) & \text { otherwise } .\end{cases}
$$

Δ can be seen as a generalization of precision matrices.
Why is this matrix interesting?

Proposition

$$
\Delta=I_{2^{d}} \quad \Longleftrightarrow X \text { is mutually independent. }
$$

We are now ready to state the second assumption.

Assumptions

Definition (Maximal coalitional precision matrix). Let Δ be the $\left(2^{d} \times 2^{d}\right)$, symmetric set-indexed matrix, defined element-wise, $\forall A, B \in \mathcal{P}_{D}$ as

$$
\Delta_{A B}= \begin{cases}1 & \text { if } A=B \\ -c\left(\mathbb{L}^{2}\left(\sigma_{A}\right), \mathbb{L}^{2}\left(\sigma_{B}\right)\right) & \text { otherwise }\end{cases}
$$

Δ can be seen as a generalization of precision matrices.
Why is this matrix interesting ?

Proposition.

$$
\Delta=I_{2^{d}} \quad \Longleftrightarrow X \text { is mutually independent. }
$$

We are now ready to state the second assumption.

Assumption 2 (Non-degenerate stochastic dependence). Δ is definite-positive.

Main result

Theorem. Under Assumptions 1 and 2, for every $A \in \mathcal{P}_{D}$, one has that

$$
\mathbb{L}^{2}\left(\sigma_{A}\right)=\bigoplus_{B \in \mathcal{P}_{A}} V_{B}
$$

where $V_{\emptyset}=\mathbb{L}^{2}\left(\sigma_{\emptyset}\right)$, and

$$
V_{B}=\left[{\underset{C \in \mathcal{P}_{B}, C \neq B}{ }} V_{C}\right]^{\perp_{B}}
$$

where \perp_{B} denotes the orthogonal complement in $\mathbb{L}^{2}\left(\sigma_{B}\right)$.

Corollary (Canonical decomposition). Under Assumptions 1 and 2, any $G(X) \in \mathbb{L}^{2}\left(\sigma_{X}\right)$ can be uniquely decomposed as

$$
G(X)=\sum_{A \in \mathcal{P}_{D}} G_{A}\left(X_{A}\right)
$$

where each $G_{A}\left(X_{A}\right) \in V_{A}$.

Intuition behind the result

One input:

Let $i \in D$. Then, any $f\left(X_{i}\right) \in \mathbb{L}^{2}\left(\sigma_{i}\right)$ can be written as

$$
f\left(X_{i}\right)=\underbrace{\mathbb{E}\left[f\left(X_{i}\right)\right]}_{\in V_{0}}+\underbrace{\mathbb{E}\left[f\left(X_{i}\right)-\mathbb{E}\left[f\left(X_{i}\right)\right]\right]}_{\in \mathbb{L}_{0}^{2}\left(\sigma_{i}\right)},
$$

but $\mathbb{L}_{0}^{2}\left(\sigma_{i}\right)=\left[V_{\emptyset}\right]^{\perp_{i}}=: V_{1}$, and thus $\mathbb{L}^{2}\left(\sigma_{i}\right)=V_{\emptyset} \oplus V_{i}$

Intuition behind the result

One input:

Let $i \in D$. Then, any $f\left(X_{i}\right) \in \mathbb{L}^{2}\left(\sigma_{i}\right)$ can be written as

$$
f\left(X_{i}\right)=\underbrace{\mathbb{E}\left[f\left(X_{i}\right)\right]}_{\in V_{\emptyset}}+\underbrace{\mathbb{E}\left[f\left(X_{i}\right)-\mathbb{E}\left[f\left(X_{i}\right)\right]\right]}_{\in \mathbb{L}_{0}^{2}\left(\sigma_{i}\right)},
$$

but $\mathbb{L}_{0}^{2}\left(\sigma_{i}\right)=\left[V_{\emptyset}\right]^{\perp_{i}}=: V_{1}$, and thus $\mathbb{L}^{2}\left(\sigma_{i}\right)=V_{\emptyset} \oplus V_{i}$

Two inputs:

Let $i, j \in D$. We have that $\mathbb{L}^{2}\left(\sigma_{i}\right)$ and $\mathbb{L}^{2}\left(\sigma_{j}\right)$ are closed subspaces of $\mathbb{L}^{2}\left(\sigma_{i j}\right)$.
Assumptions $\mathbf{1}$ and $\mathbf{2}$ implies that $\mathbb{L}^{2}\left(\sigma_{i}\right)+\mathbb{L}^{2}\left(\sigma_{j}\right)$ is closed, and thus is complemented in $\mathbb{L}^{2}\left(\sigma_{i j}\right)$ by

$$
V_{i j}:=\left[\mathbb{L}^{2}\left(\sigma_{i}\right)+\mathbb{L}^{2}\left(\sigma_{j}\right)\right]^{\perp_{i j}}=\left[V_{\emptyset}+V_{i}+V_{j}\right]^{\perp_{i j}}
$$

And then,

$$
\mathbb{L}^{2}\left(\sigma_{i j}\right)=\left[V_{\emptyset}+V_{i}+V_{j}\right] \oplus V_{i j}
$$

Intuition behind the result

One input:

Let $i \in D$. Then, any $f\left(X_{i}\right) \in \mathbb{L}^{2}\left(\sigma_{i}\right)$ can be written as

$$
f\left(X_{i}\right)=\underbrace{\mathbb{E}\left[f\left(X_{i}\right)\right]}_{\in V_{\emptyset}}+\underbrace{\mathbb{E}\left[f\left(X_{i}\right)-\mathbb{E}\left[f\left(X_{i}\right)\right]\right]}_{\in \mathbb{L}_{0}^{2}\left(\sigma_{i}\right)},
$$

but $\mathbb{L}_{0}^{2}\left(\sigma_{i}\right)=\left[V_{\emptyset}\right]^{\perp_{i}}=: V_{1}$, and thus $\mathbb{L}^{2}\left(\sigma_{i}\right)=V_{\emptyset} \oplus V_{i}$

Two inputs:

Let $i, j \in D$. We have that $\mathbb{L}^{2}\left(\sigma_{i}\right)$ and $\mathbb{L}^{2}\left(\sigma_{j}\right)$ are closed subspaces of $\mathbb{L}^{2}\left(\sigma_{i j}\right)$.
Assumptions $\mathbf{1}$ and $\mathbf{2}$ implies that $\mathbb{L}^{2}\left(\sigma_{i}\right)+\mathbb{L}^{2}\left(\sigma_{j}\right)$ is closed, and thus is complemented in $\mathbb{L}^{2}\left(\sigma_{i j}\right)$ by

$$
V_{i j}:=\left[\mathbb{L}^{2}\left(\sigma_{i}\right)+\mathbb{L}^{2}\left(\sigma_{j}\right)\right]^{\perp_{i j}}=\left[V_{\emptyset}+V_{i}+V_{j}\right]^{\perp_{i j}}
$$

And then,

$$
\mathbb{L}^{2}\left(\sigma_{i j}\right)=\left[V_{\emptyset}+V_{i}+V_{j}\right] \oplus V_{i j}
$$

And we can continue up to d inputs by induction.

Projectors

Oblique projections

Denote the operator

$$
Q_{A}: \mathbb{L}^{2}\left(\sigma_{X}\right) \rightarrow \mathbb{L}^{2}\left(\sigma_{X}\right), \text { such that } \quad Q_{A}(G(X))=G_{A}\left(X_{A}\right) .
$$

Q_{A} is the oblique projection onto V_{A}, parallel to $\bigoplus_{B \in \mathcal{P}_{D}: B \neq A} V_{A}$.

Projectors

Oblique projections

Denote the operator

$$
Q_{A}: \mathbb{L}^{2}\left(\sigma_{X}\right) \rightarrow \mathbb{L}^{2}\left(\sigma_{X}\right), \text { such that } \quad Q_{A}(G(X))=G_{A}\left(X_{A}\right) .
$$

Q_{A} is the oblique projection onto V_{A}, parallel to $\bigoplus_{B \in \mathcal{P}_{D}: B \neq A} V_{A}$.

Orthogonal projections
Denote the projector

$$
P_{A}: \mathbb{L}^{2}\left(\sigma_{X}\right) \rightarrow \mathbb{L}^{2}\left(\sigma_{X}\right) \text {, such that } \quad \operatorname{Ran}\left(P_{A}\right)=V_{A}, \operatorname{Ker}\left(P_{A}\right)=\left[V_{A}\right]^{\perp} .
$$

the orthogonal projection onto V_{A}.

Illustration : $\mathbb{L}_{0}^{2}\left(\sigma_{12}\right)$

Hence, for any $G(X) \in \mathbb{L}^{2}\left(\sigma_{X}\right)$, one has that, $\forall A \in \mathcal{P}_{D}$

$$
G_{A}\left(X_{A}\right)=Q_{A}(G(X))
$$

which usually differ from the orthogonal projection $P_{A}(G(X))$.

Illustration : $\mathbb{L}_{0}^{2}\left(\sigma_{12}\right)$

Hence, for any $G(X) \in \mathbb{L}^{2}\left(\sigma_{X}\right)$, one has that, $\forall A \in \mathcal{P}_{D}$

$$
G_{A}\left(X_{A}\right)=Q_{A}(G(X))
$$

which usually differ from the orthogonal projection $P_{A}(G(X))$.

Assumptions $\mathbf{1}+\mathbf{2} \Longrightarrow V_{1}$ and V_{2} are distinct.

Variance decomposition

We propose two complementary approaches for decomposing $\mathbb{V}(G(X))$.

Variance decomposition

We propose two complementary approaches for decomposing $\mathbb{V}(G(X))$.

Organic variance decomposition: separate pure interaction effects to dependence effects. The dependence structure of X is unwanted, and one wishes to study its effects.

Variance decomposition

We propose two complementary approaches for decomposing $\mathbb{V}(G(X))$.

Organic variance decomposition: separate pure interaction effects to dependence effects. The dependence structure of X is unwanted, and one wishes to study its effects.

Canonical variance decomposition: the dependence structure of X is inherent in the uncertainty modeling of the studied phenomenon. It amounts to quantify structural and correlative effects.

Organic variance decomposition: pure interaction

The notion of pure interaction is intrinsically linked with the notion of mutual independence. Let $\tilde{x}=\left(\widetilde{X}_{1}, \ldots, \widetilde{X}_{d}\right)^{\top}$ be the random vector such that

$$
\widetilde{X}_{i}=x_{i} \text { a.s., } \quad \text { and } \widetilde{X} \text { is mutually independent. }
$$

Organic variance decomposition: pure interaction

The notion of pure interaction is intrinsically linked with the notion of mutual independence.
Let $\widetilde{x}=\left(\widetilde{X}_{1}, \ldots, \widetilde{X}_{d}\right)^{\top}$ be the random vector such that

$$
\tilde{X}_{i}=X_{i} \text { a.s., } \quad \text { and } \widetilde{X} \text { is mutually independent. }
$$

Definition (Pure interaction). For every $A \in \mathcal{P}_{D}$, define the pure interaction of X_{A} on $G(X)$ as

$$
S_{A}=\frac{\mathbb{V}\left(P_{A}(G(\widetilde{X}))\right)}{\mathbb{V}(G(\widetilde{X}))} \times \mathbb{V}(G(X)) .
$$

These indices are the Sobol' indices computed on the mutually independent version of X.

Organic variance decomposition: Dependence effects

Recall that usually, $P_{A}(G(X))$ and $Q_{A}(G(X))$ differ. In fact,
Proposition. Under Assumptions 1 and 2,

$$
P_{A}(G(X))=Q_{A}(G(X)) \text { a.s. }, \forall A \in \mathcal{P}_{D} \quad \Longleftrightarrow \quad X \text { is mutually independent. }
$$

Which motivates the definition of dependence effects.

Organic variance decomposition: Dependence effects

Recall that usually, $P_{A}(G(X))$ and $Q_{A}(G(X))$ differ. In fact,
Proposition. Under Assumptions 1 and 2,

$$
P_{A}(G(X))=Q_{A}(G(X)) \text { a.s. }, \forall A \in \mathcal{P}_{D} \quad \Longleftrightarrow \quad X \text { is mutually independent. }
$$

Which motivates the definition of dependence effects.
Definition (Dependence effects). For every $A \in \mathcal{P}_{D}$, define the dependence effects of X_{A} on $G(X)$ as

$$
S_{A}^{D}=\mathbb{E}\left[\left(Q_{A}(G(X))-P_{A}(G(X))\right)^{2}\right] .
$$

Proposition. Under Assumptions 1 and 2,

$$
S_{A}^{D}=0, \forall A \in \mathcal{P}_{D}, \quad \Longleftrightarrow \quad X \text { is mutually independent. }
$$

Organic variance decomposition: Dependence effects

Recall that usually, $P_{A}(G(X))$ and $Q_{A}(G(X))$ differ. In fact,
Proposition. Under Assumptions 1 and 2,

$$
P_{A}(G(X))=Q_{A}(G(X)) \text { a.s. }, \forall A \in \mathcal{P}_{D} \quad \Longleftrightarrow \quad X \text { is mutually independent. }
$$

Which motivates the definition of dependence effects.
Definition (Dependence effects). For every $A \in \mathcal{P}_{D}$, define the dependence effects of X_{A} on $G(X)$ as

$$
S_{A}^{D}=\mathbb{E}\left[\left(Q_{A}(G(X))-P_{A}(G(X))\right)^{2}\right] .
$$

Proposition. Under Assumptions 1 and 2,

$$
S_{A}^{D}=0, \forall A \in \mathcal{P}_{D}, \quad \Longleftrightarrow \quad X \text { is mutually independent. }
$$

Organic variance decomposition: Dependence effects

Recall that usually, $P_{A}(G(X))$ and $Q_{A}(G(X))$ differ. In fact,
Proposition. Under Assumptions 1 and 2,

$$
P_{A}(G(X))=Q_{A}(G(X)) \text { a.s. }, \forall A \in \mathcal{P}_{D} \quad \Longleftrightarrow \quad X \text { is mutually independent. }
$$

Which motivates the definition of dependence effects.
Definition (Dependence effects). For every $A \in \mathcal{P}_{D}$, define the dependence effects of X_{A} on $G(X)$ as

$$
S_{A}^{D}=\mathbb{E}\left[\left(Q_{A}(G(X))-P_{A}(G(X))\right)^{2}\right] .
$$

Proposition. Under Assumptions 1 and 2,

$$
S_{A}^{D}=0, \forall A \in \mathcal{P}_{D}, \quad \Longleftrightarrow \quad X \text { is mutually independent. }
$$

Canonical variance decomposition

The structural effects represent the variance of each of the $G_{A}\left(X_{A}\right)$. It amounts to perform a covariance decomposition (Hart and Gremaud 2018; Da Veiga et al. 2021).

Definition (Structural effects). For every $A \in \mathcal{P}_{D}$, define the structural effects of X_{A} on $G(X)$ as

$$
S_{A}^{U}=\mathbb{V}\left(G_{A}\left(X_{A}\right)\right)
$$

The correlative effects represent the part of variance that is due to the correlation between the $G_{A}\left(X_{A}\right)$.

Definition (Correlative effects). For every $A \in \mathcal{P}_{D}$, define the correlative effects of X_{A} on $G(X)$ as

$$
S_{A}^{C}=\operatorname{Cov}\left(G_{A}\left(X_{A}\right), \sum_{B \in \mathcal{P}_{D}: B \neq A} G_{B}\left(X_{B}\right)\right) .
$$

Variance decomposition: Intuition

Conclusion

Main take-aways:

- Hoeffding-like decomposition of function with dependent inputs is achievable under reasonable assumptions.
- Mixing probability, functional analysis (and combinatorics) lead to an interesting framework for studying multivariate stochastic problems.
- We can define meaningful (i.e., intuitive) decompositions of quantities of interest, which intrinsically encompasses the dependence between the inputs.
- We proposed candidates to separate and quantify pure interaction from dependence effects.

Perspective

Main challenge: Estimation.

- We haven' \dagger found an off-the-shelf method to estimate the oblique projections...

Perspective

Main challenge: Estimation.

- We haven't found an off-the-shelf method to estimate the oblique projections...
- But we have a lot of ideas on how to start :)

Perspective

Main challenge: Estimation.

- We haven't found an off-the-shelf method to estimate the oblique projections...
- But we have a lot of ideas on how to start :)

A few perspectives:

- Links with already-established results (e.g., on copulas).
- Non \mathbb{R}-valued output.
- Many methodological questions that seemed unreachable so far, but appear approachable using this framework.

Checkout our pre-print!

To go further + illustrations (HAL/ResearchGate)

Understanding black-box models with dependent inputs through a generalization of Hoeffding's decomposition

Marouane Il Idrissi ${ }^{\text {a,b,c,e }}$, Nicolas Bousquet ${ }^{\text {a,b,d }}$, Fabrice Gamboa ${ }^{\text {c }}$, Bertrand Iooss $^{\text {a,b,c }}$, Jean-Michel Loubes ${ }^{\text {c }}$

References i

Bryc, W. 1984. "Conditional expectation with respect to dependent sigma-fields." In Proceedings of VII conference on Probability Theory, 409-411. https://homepages.uc.edu/~brycwz/preprint/Brasov-1982.pdf.
___ 1996. "Conditional Moment Representations for Dependent Random Variables." Publisher: Institute of Mathematical Statistics and Bernoulli Society, Electronic Journal of Probability 1 (none): 1-14. IssN: 1083-6489, 1083-6489. https://doi.org/10.1214/EJP.v1-7. https://projecteuclid.org/journals/electronic-journal-of-probability/volume-1/issue-none/Conditional-Moment-Representations-for-Dependent-Random-Variables/10.1214/EJP.v1-7.full.

Chastaing, G., F. Gamboa, and C. Prieur. 2012. "Generalized Hoeffding-Sobol decomposition for dependent variables - application to sensitivity analysis." Publisher: Institute of Mathematical Statistics and Bernoulli Society, Electronic Journal of Statistics 6, no. none (January): 2420-2448. ISSN: 1935-7524, 1935-7524. https://doi.org/10.1214/12-EJS749.
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-6/issue-none/Generalized-Hoeffding-Sobol-decomposition-for-dependent-variables---application/10.1214/12-EJS749.full.

Da Veiga, S., F. Gamboa, B. looss, and C. Prieur. 2021. Basics and Trends in Sensitivity Analysis: Theory and Practice in R [in en]. Philadelphia, PA: Society for Industrial / Applied Mathematics, January. ISBN: 978-1-61197-668-7 978-1-61197-669-4, accessed November 22, 2022. https://doi.org/10.1137/1.9781611976694. https://epubs.siam.org/doi/book/10.1137/1.9781611976694.

Dixmier, J. 1949. "Étude sur les variétés et les opérateurs de Julia, avec quelques applications" [in fre]. Bulletin de la Société Mathématique de France 77:11-101. http://eudml.org/doc/86830.

References if

Friedrichs, K. 1937. "On Certain Inequalities and Characteristic Value Problems for Analytic Functions and For Functions of Two Variables." Publisher: American Mathematical Society, Transactions of the American Mathematical Society 41 (3): 321-364. ISSN: 0002-9947. https://doi.org/10.2307/1989786. https://www.jstor.org/stable/1989786.

Gebelein, H. 1941. "Das statistische Problem der Korrelation als Variations- und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung" [in de]. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik 21 (6): 364-379. ISSN: 00442267, 15214001. https://doi.org/10.1002/zamm. 19410210604.
https://onlinelibrary.wiley.com/doi/10.1002/zamm. 19410210604.
Hart, J., and P. A. Gremaud. 2018. "An approximation theoretic perspective of Sobol' indices with dependent variables" [in English]. Publisher: Begel House Inc. International Journal for Uncertainty Quantification 8 (6). ISSN: 2152-5080, 2152-5099. https://doi.org/10.1615/Int.J.UncertaintyQuantification. 2018026498. https://www.dl.begellhouse.com/journals/52034eb04b657aea, 23dc16a4645b89c9,61d464a51b6bf191.html.

Hooker, G. 2007. "Generalized Functional ANOVA Diagnostics for High-Dimensional Functions of Dependent Variables" [in en]. Journal of Computational and Graphical Statistics 16 (3): 709-732. http://www.jstor.org/stable/27594267.

Koyak, R. A. 1987. "On Measuring Internal Dependence in a Set of Random Variables." Publisher: Institute of Mathematical Statistics, The Annals of Statistics 15 (3): 1215-1228. IssN: 0090-5364, 2168-8966. https://doi.org/10.1214/aos/1176350501.
https://projecteuclid.org/journals/annals-of-statistics/volume-15/issue-3/On- Measuring-Internal-Dependence-in-a-Set-of-Random-Variables/10.1214/aos/1176350501.full.

References ifi

Kuo, F. Y., I. H. Sloan, G. W. Wasilkowski, and H. Woźniakowski. 2009. "On decompositions of multivariate functions" [in en]. Mathematics of Computation 79, no. 270 (November): 953-966. ISSN: 0025-5718. https://doi.org/10.1090/S0025-5718-09-02319-9. http://www.ams.org/journal-getitem?pii=S0025-5718-09-02319-9.

Resnick, S. I. 2014. A Probability Path [in en]. Boston, MA: Birkhäuser Boston. Isbs: 978-0-8176-8408-2 978-0-8176-8409-9. https://doi.org/10.1007/978-0-8176-8409-9. http://link.springer.com/10.1007/978-0-8176-8409-9.

THANK YOU FOR YOUR ATTENTION!

Any Questions?

MAROUANEILIDRISSI.COM

