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I. Introduction

Evaluate the robustness of

G (X ) = Y

w.r.t. distributions of vector X

▶ {Pθ}θ∈Θ = possible distributions for X

▶ QoI(Y θ) = quantity of interest on Y θ := G (X θ) where
X θ ∼ Pθ

Define the following function (called PLI [Lemâıtre, 2015])

Sθ =
QoI(Y θ)− QoI(Y θ0)

QoI(Y θ0)
,

where θ0 ∈ Θ is a fixed reference parameter
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I. Introduction
Consider

min
θ∈Bδ(θ0)

Sθ and max
θ∈Bδ(θ0)

Sθ (⋆),

where Bδ(θ0) ⊂ Θ is a closed ball centered at θ0 with radius δ > 0
for the Fisher-Rao distance d

Figure: Fisher ball for {N (µ, σ)}(µ,σ)∈Θ
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Fisher geodesic distance

This distance is obtained from the information geometry of the
family {Pθ}θ∈Θ i.e. from

(Iθ)ij = EX∼Pθ

[
∂i log pθ(X )∂j log pθ(X )

]
,

which is a Riemannian metric on Θ

In this setting, (⋆) is an optimization problem on a Riemannian
manifold

→ This leads us to consider Riemannian optimization algorithms
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Starting point

Our work is in the continuation of the paper “An information
geometry approach to robustness analysis for the uncertainty
quantification of computer codes” [Gauchy et al., 2022]

The Fisher distance presents good properties (invariance under
reparametrization, measures dissimilarity,...) and gives more
interpretability than previously used robustness analysis methods

Our main goals are:

▶ in depth study of the induced geometry from the Fisher
matrices,

▶ develop adapted optimization algorithms for problem (⋆)
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II. Why Riemannian optimization ?
The problem

min
x∈E

f (x)

is a Riemannian optimization problem when E is a Riemannian
manifold and f is a differentiable function on E

A manifold M is a “curved” space that locally “looks” flat

Figure: Manifold and tangent space
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II. Why Riemannian optimization ?

Some simple optimization problems are naturally manifold
optimization

1st example (N. Boumal, 2014) : Finding eigenvector v1 with
smallest eigenvalue λ1 of a symmetric matrix A

Eigenvector v1 minimizes the Rayleigh quotient

r : Rd\{0} → R : r(x) =
⟨Ax , x⟩
⟨x , x⟩

r is invariant under scaling, v1 (normalized) solves

min
x∈Sd−1

⟨Ax , x⟩
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II. Why Riemannian optimization ?

2nd example (N. Boumal 2014) : PCA for y1, ..., yn data points
in Rd

Define the Grassmann manifold Gr(k , d) as the set of
k-dimensional subspaces of Rd and consider

min
L∈Gr(k,d)

n∑
i=1

dist(L, yi )
2

Gr(k,d) can be identified to the following quotient manifold

M = {X ∈ Md ,k(R) | X ⊺X = idk}/O(k)

where O(k) = {Q ∈ Mk(R) | Q⊺Q = idk} is the orthogonal group
and L = span(X )

It can be endowed with a metric g (Frobenius inner product), PCA
is an optimization problem on a Riemannian quotient manifold
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III. Riemannian optimization algorithms

Examples of Riemannian optimization algorithms for

min
x∈E

f (x),

where E is a manifold and f is differentiable

1. Gradient descent : we choose a starting point x0 and define

xn+1 := expxn
(
− εn · ∇x f (xn)

)
,

where εn > 0 are the step sizes and ∇f is the Riemannian gradient
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III. Riemannian optimization algorithms

2. Newton’s method : if f is twice differentiable, then we can
define

xn+1 := expxn
(
− (Hessxn f )

−1 · ∇f (xn)
)
,

where Hessx : TxM → TxM is the Riemannian Hessian operator

3. Stochastic gradient descent : if f is given by

f (x) = EZ∼µ[h(x ,Z )],

we can build the following algorithm

xn+1 = expxn
(
− εn · ∇xh(xn,Zn+1)

)
,

where Zi ∈ Z are iid samples from µ
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IV. Riemannian barycenter estimation on S2

Example from [S. Bonnabel, 2013], given y1, ..., yK in S2 we will
solve

min
x∈S2

1

2N

N∑
i=1

d(x , yi )
2

to compute the Riemannian Karcher (Fréchet) mean on S2

Rewrite this problem as

min
x∈S2

EU

[
1

2
d(x , yU)

2

]
where U is uniform on {1, ...,K} and apply the stochastic gradient
descent algorithm

xn+1 = expxn

(
−εn · ∇x

1

2
d(xn, yUn+1)

2

)
,

where (Ui )i ∼ U({1, ...,K}) and εn = cst
n
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Figure: Barycenter estimation of 3 points on S2
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Figure: Barycenter estimation of 5 points on S2
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Conclusion and works in progress
Our initial optimization problem was

min
θ∈Bδ(θ0)

Sθ,

where

Sθ =
QoI(Y θ)− QoI(Y θ0)

QoI(Y θ0)

It is indeed a Riemannian manifold optimization, but Sθ is difficult
to compute and is estimated using importance sampling

1. Asymptotic/Non-asymptotic confidence intervals

We established a non-asymptotic confidence interval for qαθ : given
s > 0 and θ ∈ Θ

P
(
qαθ ∈ [q−(α), q+(α)]

)
≥ 1− 2N rεs,θ,

where q− and q+ depend on the sample X1, ...,XN ∼ Pθ0
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Conclusion and works in progress

2. Geometry of truncated distributions

Implement physical constraints on inputs on the Robustness
Analysis method

For instance, for an input Xi ∼ N (µ, σ) with constraint Xi ∈ [a, b],
we studied the family of truncated Gaussian distributions

q(µ,σ)(x) =
1

P(µ,σ)([a, b])
p(µ,σ)(x)1x∈[a,b],

namely:

▶ Fisher matrices → defines a new geometry on H,

▶ numerically compute geodesics and spheres
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Appendix

Convergence theorem for the Riemannian version of Newton’s
method

xn+1 := expxn
(
− (Hessxn f )

−1 · ∇x f (xn)
)
.

Theorem (S.T. Smith, 2014)

Assume that

▶ (E , d) is a complete metric space (geodesically complete),

▶ there exists x∞ nondegenerate critical point,

then there exists a neighborhood U of x∞ (domain of attraction)
such that if x0 ∈ U, then xn converges quadratically to x∞:

d(xn, x∞) =
n→∞

O(n−2).
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Convergence theorem for Riemannian stochastic gradient
descent algorithm i.e. when the function f is given by
f (x) = EZ∼µ[h(x ,Z )]. The iteration is given by

xn+1 = expxn
(
− εn · ∇xh(xn,Zn+1)

)
,

where (Zi )i are iid samples from µ.

Theorem (S. Bonnabel, 2013)

Assume that:

▶ the manifold E is connected with injectivity radius I > 0,

▶ the step size εn verify
∑

n εn = ∞ and
∑

n ε
2
n < ∞,

▶ we have ∇f (x) = EZ∼µ[∇xh(x ,Z )],

▶ there exists K ⊂ E compact such that xn ∈ K for all n,

▶ ∇xh is bounded on K i.e. supx∈K ,z∈Z |∇xh(x , z)| < ∞.

Therefore, we have(
f (xn)

)
n≥0

converges a.s. and ∇f (xn) →
n→∞

0 a.s..
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3rd example (S.-I. Amari 1998) : In our context, the manifold is
given by M = {Pθ}θ∈Θ endowed with the Fisher information metric

(Iθ)ij = EX∼Pθ

[
∂i log pθ(X )∂j log pθ(X )

]
To estimate a parameter θ∗, minimize the KL divergence of Pθ∗

from Pθ :

θ∗ ∈ argmin
θ∈Θ

EX∼θ∗

[
log

(
pθ∗(X )

pθ(X )

)]
this is the same problem as

θ∗ ∈ argmax
θ∈Θ

EX∼θ∗
[
log pθ(X )

]
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θ∗ ∈ argmax
θ∈Θ

EX∼θ∗
[
log pθ(X )

]
Given X1, ...,XN ∼ Pθ∗ , estimate θ∗ using gradient descent

θ̃n+1 = θ̃n +
1

n
∇θ log pθ̃n(Xn+1)

which is consistent but not Fisher efficient in general

But the following update called natural gradient descent

θ̂n+1 = θ̂n +
1

n
I−1

θ̂n
∇θ log pθ̂n(Xn+1) (⋆),

gives a Fisher efficient estimator [Amari, 1998] i.e.

lim
N→∞

N E[(θ̂N − θ∗)(θ̂N − θ∗)
⊺] = I−1

θ
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