Gaussian process regression for high dimensional graph inputs

Introduction

Graph kernels

Sliced Wasserstein Weisfeiler Lehman (SWWL)

Conclusion and future work

Introduction

Objectives

Objectives

Inputs and outputs

- Graph inputs
- Mesh \rightarrow Graph structure
- 3D coordinates for all nodes
- Scalar inputs
- Pressure
- Speed of rotation
- Scalar outputs
- Physical quantities

Gaussian process regression

Gaussian process regression

- $X=\left(G_{1}, \cdots, G_{N}\right)^{T}$ with $G_{i} \in \Gamma$ (train input graphs)
- $Y=\left(y_{1}, \cdots, y_{N}\right)^{T}, y_{i} \in \mathbb{R}$ (scalar outputs)
- Observations: $y_{i}=f\left(G_{i}\right)+\epsilon_{i}$ where $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$

$f: \Gamma \rightarrow \mathbb{R}$
- $\bar{f}=\left(f\left(G_{1}\right), \cdots, f\left(G_{N}\right)\right)^{T}$
- Gaussian prior over functions: $\bar{f} \mid G_{1}, \cdots, G_{N} \sim \mathcal{N}\left(0, K^{f f}\right)$
- $K^{f f}: N \times N$ covariance matrix where $K_{i j}^{f f}=k\left(G_{i}, G_{j}\right)$
- and $k: \Gamma \times \Gamma \rightarrow \mathbb{R}$ is a positive definite kernel

- Question: how to choose k ?

What is a graph ?

What is a graph ?

Case 1 :
Vertices + Edges

Case 2 :
Vertices + Edges

+ Node labels

Case 3 :
Vertices + Edges + Node attributes

What is a graph ?

Case 1 :
Vertices + Edges

Case 2 :
Vertices + Edges

+ Node labels

Case 3 :
Vertices + Edges

+ Node attributes

Case 3A: Fixed structure -> signal

Case 3B: Fixed number of nodes

Case 3C: Varying number of nodes + structure + attributes

What is a graph ?

Case 1 :
Vertices + Edges

Case 2 :
Vertices + Edges + Node labels

Case 3 : Vertices + Edges + Node attributes

Case 3A: Fixed structure -> signal

Case 3B: Fixed number of nodes

Case 3C: Varying number of nodes + structure + attributes

Graph kernels

Invariants / Topological descriptors

- Map the graph to a vectorial representation
- Invariants: do not change under graph isomorphism (diameter, average clustering coefficient, ...)
- Complete invariants require exponential time

Graph edit distance

- $d\left(G_{1}, G_{2}\right)=$ minimal number of operations to transfrom G_{1} in G_{2} (adding/removing an edge/vertex, node relabeling)
- NP-complete
- Not suited for node-attributed graphs...

Taxonomy of graph kernels

\mathcal{R}-convolution kernels

- $\mathcal{R}\left(g_{1}, \cdots, g_{d}, G\right): \mathcal{R}$-decomposition where g_{i} is a 'part' of G (relationship)
- $\mathcal{R}^{-1}(G)=\left\{g:=\left(g_{1}, \cdots, g_{d}\right) \mid \mathcal{R}\left(g_{1}, \cdots, g_{d}, G\right)\right\}$: pre-image of the relation
- Let k_{i} a base kernel based on a subset of the parts denoted G_{i}.
- The \mathcal{R}-convolution kernel between G and G^{\prime} is defined as

$$
k_{\mathcal{R}}\left(G, G^{\prime}\right):=\sum_{g \in \mathcal{R}^{-1}(G)} \sum_{g^{\prime} \in \mathcal{R}^{-1}(G)} \prod_{i=1}^{d} k_{i}\left(g_{i}, g_{i}^{\prime}\right)
$$

All node-pairs kernel / node histogram kernel

$k_{\mathrm{N}}\left(G, G^{\prime}\right):=\sum_{\mathrm{v} \in V_{\mathrm{v}^{\prime} \in V^{\prime}}} \sum_{\text {node }}\left(\mathrm{v}, \mathrm{v}^{\prime}\right) \begin{aligned} & \begin{array}{l}\text { where } k_{\text {node }} \text { is a positive definite kernel between } \\ \text { node attributes/labels -> feature map } \phi_{\text {node }}\end{array}\end{aligned}$

- $k_{N}\left(G, G^{\prime}\right)=\left\langle\phi_{N}(G), \phi_{N}\left(G^{\prime}\right)\right\rangle_{\mathcal{H}}$ where $\phi_{N}(G):=\sum_{v \in V} \phi_{\text {node }}(v)$
- When $\phi_{\text {node }}(v)=e_{l(v)}$ ($k_{\text {node }}$ is a Dirac kernel on node labels), ϕ_{N} is an unnormalized histogram that counts occurences of node labels

Graphlet kernel

- Set of k-graphlets of size $N_{k}, k \geq 3$
- k-spectrum of G : vector $\phi_{G L}(G)$ of the frequencies of all graphlets in G
- $k_{G L}\left(G, G^{\prime}\right):=\phi_{G L}(G) \phi_{G L}\left(G^{\prime}\right)^{T}$
- Issue: does not take into account labels or attributes

Graph Hopper

[Feragen et al., 2013]

$k\left(G, G^{\prime}\right):=\sum_{\pi \in \mathcal{P}, \pi^{\prime} \in \mathcal{P}^{\prime}} k_{p}\left(\pi, \pi^{\prime}\right)$ with $k_{p}\left(\pi, \pi^{\prime}\right):= \begin{cases}|\pi| \\ \sum_{j=1}^{|\pi|} R B F\left(\pi_{j}, \pi_{j}^{\prime}\right) & \text { if }|\pi|=\left|\pi^{\prime}\right| \\ 0 & \text { otherwise }\end{cases}$

- \mathcal{P} : set of all shortest paths in $G, \quad|\pi|$: discrete length of the path $\pi=\left(\pi_{1}, \cdots, \pi_{|\pi|}\right)$
- Complexity: $O\left(n^{2}(|E|+\log n)\right)$

Graph Hopper

[Feragen et al., 2013]

$k\left(G, G^{\prime}\right):=\sum_{\pi \in \mathcal{P}, \pi^{\prime} \in \mathcal{P}^{\prime}} k_{p}\left(\pi, \pi^{\prime}\right)$ with $k_{p}\left(\pi, \pi^{\prime}\right):= \begin{cases}\left\lvert\, \frac{|\pi|}{\sum_{j=1}} R B F\left(\pi_{j}, \pi_{j}^{\prime}\right)\right. & \text { if }|\pi|=\left|\pi^{\prime}\right| \\ 0 & \text { otherwise }\end{cases}$

- \mathcal{P} : set of all shortest paths in $G, \quad|\pi|$: discrete length of the path $\pi=\left(\pi_{1}, \cdots, \pi_{|\pi|}\right)$
- Complexity: $O\left(n^{2}(|E|+\log n)\right)$

Graph Hopper

[Feragen et al., 2013]

$k\left(G, G^{\prime}\right):=\sum_{\pi \in \mathcal{P}, \pi^{\prime} \in \mathcal{P}^{\prime}} k_{p}\left(\pi, \pi^{\prime}\right)$ with $k_{p}\left(\pi, \pi^{\prime}\right):= \begin{cases}|\pi| \\ \sum_{j=1}^{|\pi|} R B F\left(\pi_{j}, \pi_{j}^{\prime}\right) & \text { if }|\pi|=\left|\pi^{\prime}\right| \\ 0 & \text { otherwise }\end{cases}$

- \mathcal{P} : set of all shortest paths in $G, \quad|\pi|$: discrete length of the path $\pi=\left(\pi_{1}, \cdots, \pi_{|\pi|}\right)$
- Complexity: $O\left(n^{2}(|E|+\log n)\right)$

Sliced Wasserstein Weisfeiler Lehman (SWWL)

Node embeddings + Optimal transport approaches

Wasserstein Weisfeiler-Lehman Graph kernel (step 1)

[Togninalli et al., 2019]
1

Weisfeiler-Lehman embeddings

Figure From [Kriege et al., 2020]

- WL relabeling (discrete case)

Continuous Weisfeiler-Lehman embeddings

[Togninalli et al., 2019]

- WL relabeling (continuous case)

$$
i=0
$$

$$
i=2
$$

$$
.15,\{.1, .27\} .27,\{.15, .25, .35\}
$$

$$
\begin{gathered}
a^{(i+1)}(v)=\frac{1}{2}\left(a^{(i)}(v)+\frac{1}{\operatorname{deg}(v)} \sum_{u \in \mathcal{N}(v)} w(v, u) a^{(i)}(u)\right) \\
X_{G}^{(i)}=\left[a^{(i)}(v), v \in V_{G}\right] \quad X_{G}=\text { Concatenate }\left(X_{G}^{(0)}, \cdots, X_{G}^{(H)}\right)
\end{gathered}
$$

Wasserstein Weisfeiler-Lehman graph kernel (step 2)

Wasserstein Weisfeiler-Lehman graph kernel (step 2)

Wasserstein distance

- $\forall r \in[1,+\infty), \mathcal{P}_{r}\left(\mathbb{R}^{S}\right)$: probability measures on \mathbb{R}^{s} with finite moments of order r.

$$
\forall \mu, v \in \mathcal{P}_{r}\left(\mathbb{R}^{s}\right), \mathcal{W}_{r}^{r}(\mu, v)=\inf _{\pi \in \Pi(\mu, v)} \int_{\mathbb{R}^{s} \times \mathbb{R}^{s}}\|x-y\|^{r} d \pi(x, y)
$$

where:

- ||. || denotes the Euclidean norm,
- $\Pi(\mu, v)$ the set of probability measures on $\mathbb{R}^{s} \times \mathbb{R}^{s}$ whose marginals w.r.t.
the 1 st $/ 2^{\text {nd }}$ variable are resp. μ and v
- Discrete case: $\quad \mu=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}} \quad v=\frac{1}{n^{\prime}} \sum_{i=1}^{n^{\prime}} \delta_{y_{i}}$

Wasserstein distance: issues

x Impossible to build a positive definite kernel (*in dimension ≥ 2 *) [Peyré, Cuturi, 2019]
× Computationally expensive : $\mathrm{O}\left(n^{3} \log (n)\right)$

- Use case: 1000 graphs with 30000 vertices
$\rightarrow \mathbf{4 0 0}$ days to build the Gram matrix...

Sliced Wasserstein Weisfeiler Lehman graph kernel

[Us]

Idea: replace Wasserstein by sliced Wasserstein !
$\rightarrow \checkmark \mathbf{O}(\boldsymbol{n} \log (n))$ and \checkmark positive definite substitution kernels

Sliced Wasserstein distance

- The sliced Wasserstein distance is defined as:

$$
\mathcal{S} \mathcal{W}_{r}^{r}(\mu, \nu)=\int_{\mathbb{S}^{s}-1} \mathcal{W}_{r}^{r}\left(\theta_{\#}^{*} \mu, \theta_{v}^{*}\right) \mathrm{d} \sigma(\theta)
$$

where

- $\mathbb{S}^{d}: d$-dimensional unit sphere, σ : uniform distribution on \mathbb{S}^{d}
- $\theta_{\#}^{*} \mu$: push-forward measure of $\mu \in \mathcal{P}_{r}\left(\mathbb{R}^{s}\right)$ by $\theta^{*}\binom{\mathbb{R}^{S} \rightarrow \mathbb{R}}{x \mapsto\langle\theta, x\rangle}$

$$
\begin{array}{cc}
\mathcal{W}_{r}^{r}(\mu, v)=\int_{0}^{1}\left|\mathrm{~F}^{-1}(\mu)-F^{-1}(v)\right|^{\mathrm{r}} \mathrm{~d} t & \text { 1-d Wasserstein distances between } \\
\text { Quantile }
\end{array}
$$

Sliced Wasserstein distance

- The sliced Wasserstein distance is defined as:

$$
\mathcal{S} \mathcal{W}_{r}^{r}(\mu, v)=\int_{\mathbb{S}^{s}-1} \mathcal{W}_{r}^{r}\left(\theta_{\#}^{*} \mu, \theta_{\nu}^{*}\right) \mathrm{d} \sigma(\theta)
$$

where

- $\mathbb{S}^{d}: d$-dimensional unit sphere, σ : uniform distribution on \mathbb{S}^{d}
- $\theta_{\#}^{*} \mu$: push-forward measure of $\mu \in \mathcal{P}_{r}\left(\mathbb{R}^{s}\right)$ by $\theta^{*}\binom{\mathbb{R}^{S} \rightarrow \mathbb{R}}{x \mapsto\langle\theta, x\rangle}$

$$
\mathcal{W}_{r}^{r}(\mu, v)=\frac{1}{n} \sum_{i=1}^{n}\left|x_{(i)}-y_{(i)}\right|^{r}
$$

1-d Wasserstein distances between

$$
\mu=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}} \text { and } v=\frac{1}{n} \sum_{i=1}^{n} \delta_{y_{i}}
$$

Sliced Wasserstein distance

- The sliced Wasserstein distance is defined as:

$$
\mathcal{S} \mathcal{W}_{r}^{r}(\mu, v)=\int_{\mathbb{S}^{s}-1} \mathcal{W}_{r}^{r}\left(\theta_{\#}^{*} \mu, \theta_{\nu}^{*}\right) \mathrm{d} \sigma(\theta)
$$

where

- $\mathbb{S}^{d}: d$-dimensional unit sphere, σ : uniform distribution on \mathbb{S}^{d}
- $\theta_{\#}^{*} \mu$: push-forward measure of $\mu \in \mathcal{P}_{r}\left(\mathbb{R}^{s}\right)$ by $\theta^{*}\binom{\mathbb{R}^{S} \rightarrow \mathbb{R}}{x \mapsto\langle\theta, x\rangle}$

$$
\mathcal{W}_{r}^{r}(\mu, v)=\frac{1}{n} \sum_{i=1}^{n}\left|x_{(i)}-y_{(i)}\right|^{r}
$$

1-d Wasserstein distances between

$$
\mu=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}} \text { and } v=\frac{1}{n} \sum_{i=1}^{n} \delta_{y_{i}}
$$

Sliced Wasserstein distance

- The sliced Wasserstein distance is defined as:

$$
\mathcal{S} \mathcal{W}_{r}^{r}(\mu, v)=\int_{\mathbb{S}^{s}-1} \mathcal{W}_{r}^{r}\left(\theta_{\#}^{*} \mu, \theta_{\nu}^{*}\right) \mathrm{d} \sigma(\theta)
$$

where

- $\mathbb{S}^{d}: d$-dimensional unit sphere, σ : uniform distribution on \mathbb{S}^{d}
- $\theta_{\#}^{*} \mu$: push-forward measure of $\mu \in \mathcal{P}_{r}\left(\mathbb{R}^{s}\right)$ by $\theta^{*}\binom{\mathbb{R}^{S} \rightarrow \mathbb{R}}{x \mapsto\langle\theta, x\rangle}$

$$
\widehat{\mathcal{W}_{r}^{r}}(\mu, v)=\frac{1}{Q} \sum_{q=1}^{Q}\left|x_{(q)}-y_{(q)}\right|^{r}
$$

(Approximation with $Q \ll \max \left(n, n^{\prime}\right)$ quantiles)

1-d Wasserstein distances between

$$
\mu=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}} \text { and } v=\frac{1}{n^{\prime}} \sum_{i=1}^{n^{\prime}} \delta_{y_{i}}
$$

Sliced Wasserstein distance

- The (estimated) sliced Wasserstein distance is defined as:

$$
\widehat{\delta W_{r}^{r}}(\mu, v)=\frac{1}{P} \sum_{p=1} \widehat{W_{r}^{r}}\left(\left(\theta_{p}^{*}\right)_{\#} \mu\left(\theta_{p}^{*}\right)_{\#} v\right)
$$

where

- $\mathbb{S}^{d}: d$-dimensional unit sphere, σ : uniform distribution on \mathbb{S}^{d}
- $\theta_{\#}^{*} \mu$: push-forward measure of $\mu \in \mathcal{P}_{r}\left(\mathbb{R}^{s}\right)$ by $\theta^{*}\binom{\mathbb{R}^{s} \rightarrow \mathbb{R}}{x \mapsto\langle\theta, x\rangle}$

$$
\widehat{\mathcal{W}_{r}^{r}}(\mu, v)=\frac{1}{Q} \sum_{q=1}^{Q}\left|x_{(q)}-y_{(q)}\right|^{r}
$$

(Approximation with $Q \ll \max \left(n, n^{\prime}\right)$

1-d Wasserstein distances between

$$
\mu=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}} \text { and } v=\frac{1}{n^{\prime}} \sum_{i=1}^{n^{\prime}} \delta_{y_{i}}
$$

Sliced Wasserstein Weisfeiler Lehman (SWWL)

[Us]

Sliced Wasserstein Weisfeiler Lehman (SWWL)

[Us]

- $\phi: G \mapsto X_{G} \in \mathbb{R}^{\left|V_{G}\right| \times d(H+1)}:$ WL embeddings after H iterations
- $k_{S W W L}\left(G, G^{\prime}\right)=e^{-\lambda \widehat{\delta W_{2}^{2}}\left(\phi(G), \phi\left(G^{\prime}\right)\right) \quad \text { (* considering by abuse } \phi(G), \phi\left(G^{\prime}\right) \text { as empirical measures *) }}$
with

$$
\widehat{\mathcal{S W \mathcal { W } _ { 2 } ^ { 2 }}(\mu, v)=\frac{1}{\mathrm{PQ}} \sum_{\mathrm{p}=1}^{\mathrm{P}} \sum_{q=1}^{Q}\left|u_{q}^{\theta_{p}}-u_{q}^{\prime \theta}\right|^{2}=\left\|E_{\phi(G)}-E_{\phi\left(G^{\prime}\right)}\right\|_{2}^{2}, ~}
$$

\rightarrow Precomputed embeddings $E_{\phi(G)}, E_{\phi\left(G^{\prime}\right)} \in \mathbb{R}^{P Q}$ where $u_{q}^{\theta_{p}}=\left\langle\theta_{p}, \phi(G)\right\rangle_{(q)}$

$$
E_{\phi(G)}=\left[u_{1}^{\theta_{1}}, \cdots, u_{Q}^{\theta_{1}}, \cdots, u_{1}^{\theta_{P}}, \cdots, u_{Q}^{\theta_{P}}\right]
$$

- Complexity for the Gram matrix (sparse graphs):

SWWL: experiments on meshes

Kernel/Dataset	Rotor37 x10	Rotor37-CM x10-3	Tensile2d x1	Tensile2d-CM x1	AirfRANS x10	AirfRANS-CM x10-4
SWWL	1.44 ± 0.07	$\mathbf{3 . 4 9} \pm \mathbf{0 . 1 5}$	$\mathbf{0 . 8 9} \pm \mathbf{0 . 0 1}$	$\mathbf{1 . 5 1} \pm \mathbf{0 . 0 1}$	7.56 ± 0.36	9.63 ± 0.54
WWL	-	$\mathbf{3 . 5 1} \pm \mathbf{0 . 0 0}$	-	6.46 ± 0.00	-	14.4 ± 0.80
PK	-	4.18 ± 0.39	-	6.03 ± 4.58	-	8.94 ± 2.31

Time to build the Gram matrix

Kernel/Dataset	Rotor37	Rotor37-CM	Tensile2d	Tensile2d-CM	AirfRANS	AirfRANS-CM
SWWL	$1 \mathrm{~min}+11 \mathrm{~s}$	$4 \mathrm{~s}+11 \mathrm{~s}$	$\mathbf{1 1 s}+4 \mathrm{~s}$	$\mathbf{2 s}+4 \mathrm{~s}$	$5 \mathrm{~min}+7 \mathrm{~s}$	$15 \mathrm{~s}+7 \mathrm{~s}$
WWL	-	$13 \min \left(^{*}\right)$	-	$6 \min \left({ }^{*}\right)$	-	$8 \mathrm{~h}\left(^{*}\right)$
PK	-	1 min	-	$2 \min$	-	15 min

(*) in parallel, using 100 jobs 40
This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Conclusion and future work

Conclusion

- Limits of existing graph kernels
- Many do not handle continuous attributes
- Many do not scale well to large graphs
- Many do not guarantee positive definiteness
- Many are too dependent on the graph structure

- We propose the Sliced Wasserstein Weisfeiler Lehman (SWWL) kernel
- Positive definite
- Tractable for large graphs
- Competitive results for mesh-based Gaussian process regression

- Future work
- Extension to multiple outputs (e.g. vector fields)

References

- Graph kernels, Gaussian processes

- Nikolentzos, G., Siglidis, G., \& Vazirgiannis, M. (2021). Graph kernels: A survey. Journal of Artificial Intelligence Research, 72, 943-1027.
- Kriege, N. M., Johansson, F. D., \& Morris, C. (2020). A survey on graph kernels. Applied Network Science, 5(1), 1-42.
- Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M., \& Borgwardt, K. (2013). Scalable kernels for graphs with continuous attributes. Advances in neural information processing systems, 26.
- Williams, C. K., \& Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2, No. 3, p. 4). Cambridge, MA: MIT press.
- Optimal transport
- Peyré, G., \& Cuturi, M. (2019). Computational optimal transport: With applications to data science. Foundations and Trends ${ }^{\circledR}$ in Machine Learning, 11(5-6), 355-607.
- Togninalli, M., Ghisu, E., Llinares-López, F., Rieck, B., \& Borgwardt, K. (2019). Wasserstein weisfeilerlehman graph kernels. Advances in neural information processing systems, 32.
- Meunier, D., Pontil, M., \& Ciliberto, C. (2022, June). Distribution Regression with Sliced Wasserstein Kernels. In International Conference on Machine Learning (pp. 15501-15523). PMLR.

Acknowledgments

- This work was supported by the French National Research Agency (ANR) through the SAMOURAI project under grant ANR20-CE46-0013.

Other approaches using Optimal Transport

Other approaches

- Many approaches with GCNNs and message passing layers
\rightarrow Continuous WL of torch_geometric
- Other node embedding: $a^{(i+1)}(v)=\sum_{u \in \mathcal{N}(v) \cup\{v\}} \frac{w(v, u)}{\sqrt{\operatorname{deg}(u) \operatorname{deg}(v)}} a^{(i)}(u)$
- Wasserstein embeddings with Linear Optimal transport [Kolouri et al., 2020]
- Pooling by Sliced-Wasserstein (PSWE)
[Naderializadeh., 2021]
- Template-based GNN with OT
[Vincent-Cuaz et al., 2022]

Wasserstein embeddings

[Kolouri et al., 2020]

- Linear Wasserstein embedding (Linear Optimal transport LOT Framework)
- Transport displacements from a reference distribution to node embeddings

Wasserstein embeddings

[Kolouri et al., 2020]

- Given a first node embedding $\phi: G \mapsto X_{G} \in \mathbb{R}^{\left|V_{G}\right| \times s}$
- $X_{0} \in \mathbb{R}^{n_{0} \times s}$ reference node embedding
- Linear Wasserstein embedding:
- $\psi_{0}\left(X_{G}\right):=\left(u_{G, 0}-I d\right) \sqrt{n_{0}}$
- where $u_{G, 0}$ is the Monge map that pushes X_{0} to X_{G}

$$
\begin{aligned}
& \left\|\phi\left(\mu_{i}\right)-\phi\left(\mu_{0}\right)\right\|_{2}=\left\|\phi\left(\mu_{i}\right)\right\|_{2}=\mathcal{W}_{2}\left(\mu_{i}, \mu_{0}\right) \\
& \left\|\phi\left(\mu_{i}\right)-\phi\left(\mu_{j}\right)\right\|_{2} \approx \mathcal{W}_{2}\left(\mu_{i}, \mu_{j}\right)
\end{aligned}
$$

- New graph embedding: $\psi(G):=\psi_{0}(\phi(G)) \in \mathbb{R}^{n_{0} \times s}$ of fixed size
- Only N Monge map calculations needed
- Choice of the reference embedding? (Not clear)

Fused Gromov-Wasserstein distance

[Vayer et al., 2019]

- $G=\left(V_{G}, E_{G}, l_{a}, l_{s}\right)$ with $\mathrm{l}_{\mathrm{a}}: V_{G} \rightarrow \mathbb{R}^{3}$ the coordinate function
- $l_{s}: V_{G} \rightarrow \Omega_{G}$ with $\left(\Omega_{G}, c_{G}\right)$ a metric space dependant of G

- $c_{G}: \Omega_{G} \times \Omega_{G} \rightarrow \mathbb{R}_{+}$'similarity' of points in G (structure-dependent)

$$
\text { e.g. : } c_{G}\left(l_{s}\left(v_{1}\right), l_{s}\left(v_{2}\right)\right)=d_{P C C}\left(v_{1}, v_{2} \mid G\right)
$$

- $a_{i}=l_{a}\left(v_{i}\right), s_{i}=l_{s}\left(v_{i}\right)$: attributes/structure of point i
- $\mu_{G}=\sum_{i=1}^{n_{G}} \frac{1}{n_{G}} \delta_{\left(a_{i}, s_{i}\right)}$: measure of G
- $C_{G}=\left[c_{G}\left(s_{i}, s_{j}\right)\right]_{1 \leq i, j \leq n_{G}} C_{G^{\prime}}=\left[C_{G^{\prime}}\left(s^{\prime}{ }_{i}, s_{j}^{\prime}\right)\right]_{1 \leq i, j \leq n_{G^{\prime}}}$

Fused Gromov-Wasserstein distance

[Vayer et al., 2019]

- $L_{G, G^{\prime}}=\left|C_{G}[i, k]-C_{G^{\prime}}[j, l]\right|_{i, j, k, l} \in \mathbb{R}^{n_{G} \times n_{G^{\prime}} \times n_{G} \times n_{G^{\prime}}}$
- $M_{G, G^{\prime}}=\left[\left\|a_{i}-a_{j}^{\prime}\right\|_{2}\right]_{1 \leq i \leq n_{G} ; 1 \leq j \leq n_{G^{\prime}}} \in \mathbb{R}^{n_{G} \times n_{G^{\prime}}}$
- $F G W_{q, \alpha}\left(\mu_{G}, \mu_{G^{\prime}}\right)=\min _{\pi \in \Pi}\left\langle\alpha \widehat{M_{G, G^{\prime}}^{q}}+(1-\alpha) L_{G, G^{\prime}}^{q} \otimes \pi, \quad \pi\right\rangle$

Wasserstein Gromov-Wasserstein

- Issue: $\mathrm{k}\left(\mathrm{G}, \mathrm{G}^{\prime}\right)=e^{-\gamma F G W_{q, \alpha}\left(\mu_{G}, \mu_{G^{\prime}}\right)}$ is not positive definite

Template based GNN with OT

[Vincent-Cuaz et al., 2022]

Graph Convolutional Gaussian Processes

[Walker et al., 2019]

- Graph Convolutional Gaussian Processes
- Local patches around vertices are defined using Spatial-domain charting
- J: number of bins
- Convolution operator on the graph signal $\psi: V \rightarrow \mathbb{R}^{3}$:
- $D_{j}(v) \psi=\sum_{u \in V} \psi(u) u_{j}(u, v) \quad \forall j \in\{1, \cdots, J\}$
- u_{j} : geodesic polar weighting function e.g.

Future work : Anisotropic SWWL?

Future work : Anisotropic SWWL?

Future work : Anisotropic SWWL?

Anisotropic SWWL:

$$
\phi^{(i)}: G \mapsto \mathrm{X}_{G}^{(i)} \in \mathbb{R}^{\left|V_{G}\right| \times \mathrm{d}}(i \text {-th iteration of WL) }
$$

$$
k_{A S W W L}\left(G, G^{\prime}\right)=e^{-\sum_{i=0}^{H} \lambda_{i}{\widehat{S W_{2}^{2}}}_{2}^{2}\left(\phi^{(i)}(G), \phi^{(i)}\left(G^{\prime}\right)\right)}
$$

POWERED BY TRUST

