Gaussian process regression for high dimensional graph inputs

Raphaël Carpintero Perez

Sébastien Da Veiga Josselin Garnier Brian Staber

12/10/2023 **Safran**

Introduction

Graph kernels

2

Sliced Wasserstein Weisfeiler Lehman (SWWL)

Conclusion and future work

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Introduction

5

Inputs and outputs

Graph inputs

- Mesh → Graph structure
- 3D coordinates for all nodes

Scalar inputs

- Pressure
- Speed of rotation

Scalar outputs

Physical quantities

Gaussian process regression

Gaussian process regression

- $X = (G_1, \dots, G_N)^T$ with $G_i \in \Gamma$ (**train input graphs**) • $Y = (y_1, \dots, y_N)^T$, $y_i \in \mathbb{R}$ (scalar outputs)
- Observations: $y_i = f(G_i) + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ $f: \Gamma \to \mathbb{R}$
- $\bar{f} = (f(G_1), \cdots, f(G_N))^T$
- **Gaussian prior** over functions: $\overline{f} | G_1, \dots, G_N \sim \mathcal{N}(0, K^{ff})$
- K^{ff} : $N \times N$ covariance matrix where $K_{ij}^{ff} = k(G_i, G_j)$
- and $k: \Gamma \times \Gamma \to \mathbb{R}$ is a **positive definite kernel**
- Question: how to choose k?

8

What is a graph?

Case 1 : Vertices + Edges

Case 2 : Vertices + Edges + Node labels Case 3 : Vertices + Edges + Node attributes

What is a graph?

11

Case 2 : Vertices + Edges + Node labels Case 3 : Vertices + Edges + Node attributes

Case 3A: Fixed structure -> signal

Case 3B: Fixed number of nodes

SAFRAN

What is a graph?

Case 1 : Vertices + Edges

12

Case 2 : Vertices + Edges + Node labels Case 3 : Vertices + Edges + Node attributes

Case 3A: Fixed structure -> signal

Case 3B: Fixed number of nodes

nodes + structure + attributes

Graph kernels

Invariants / Topological descriptors

- Map the graph to a vectorial representation
- Invariants: do not change under graph isomorphism (diameter, average clustering coefficient, ...)
- Complete invariants require exponential time

14

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Graph edit distance

- $d(G_1, G_2)$ = minimal number of operations to transfrom G_1 in G_2 (adding/removing an edge/vertex, node relabeling)
- NP-complete

15

Not suited for node-attributed graphs...

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

\mathcal{R} -convolution kernels

17

- $\mathcal{R}(g_1, \dots, g_d, G) : \mathcal{R}$ -decomposition where g_i is a 'part' of G (relationship)
- $\mathcal{R}^{-1}(G) = \{ g \coloneqq (g_1, \dots, g_d) \mid \mathcal{R}(g_1, \dots, g_d, G) \}$: pre-image of the relation

- Let k_i a base kernel based on a subset of the parts denoted G_i .
- The \mathcal{R} -convolution kernel between G and G' is defined as

$$k_{\mathcal{R}}(G,G') \coloneqq \sum_{g \in \mathcal{R}^{-1}(G)} \sum_{g' \in \mathcal{R}^{-1}(G)} \prod_{i=1}^{d} k_i(g_i,g'_i)$$

All node-pairs kernel / node histogram kernel

 $k_{N}(G,G') \coloneqq \sum_{v \in V} \sum_{v' \in V'} k_{node}(v,v')$ where k_{node} is a positive definite kernel between node attributes/labels -> feature map ϕ_{node}

- $k_N(G,G') = \langle \phi_N(G), \phi_N(G') \rangle_{\mathcal{H}}$ where $\phi_N(G) \coloneqq \sum_{v \in V} \phi_{node}(v)$
- When $\phi_{node}(v) = e_{l(v)}$ (k_{node} is a Dirac kernel on node labels), ϕ_N is an unnormalized histogram that counts occurences of node labels

norization of Safran

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

18

Graphlet kernel

- Set of k-graphlets of size N_k , $k \ge 3$
- k-spectrum of G: vector $\phi_{GL}(G)$ of the frequencies of all graphlets in G
- $k_{GL}(G,G') \coloneqq \phi_{GL}(G)\phi_{GL}(G')^T$

19

Issue: does not take into account labels or attributes

[Feragen et al., 2013]

20

 $k(G,G') \coloneqq \sum_{\pi \in \mathcal{P}, \pi' \in \mathcal{P}'} k_p(\pi, \pi') \text{ with } k_p(\pi, \pi') \coloneqq \begin{cases} \sum_{j=1}^{|\pi|} RBF(\pi_j, \pi'_j) \text{ if } |\pi| = |\pi'| \\ 0 \text{ otherwise} \end{cases}$

P: set of all shortest paths in G, |π|: discrete length of the path π = (π₁, ···, π_{|π|})
Complexity: *O*(n²(|*E*| + log n))

[Feragen et al., 2013]

21

P: set of all shortest paths in G, |π|: discrete length of the path π = (π₁, ···, π_{|π|})
Complexity: *O*(n²(|*E*| + log n))

[Feragen et al., 2013]

22

P: set of all shortest paths in G, |π|: discrete length of the path π = (π₁, ···, π_{|π|})
Complexity: *O*(n²(|*E*| + log n))

Sliced Wasserstein Weisfeiler Lehman (SWWL)

Node embeddings + Optimal transport approaches

Wasserstein Weisfeiler-Lehman Graph kernel (step 1)

[Togninalli et al., 2019]

Weisfeiler-Lehman embeddings

Figure From [Kriege et al., 2020]

26

WL relabeling (discrete case)

$$\begin{split} l^{(i+1)}(v) &= Hash\big(l^i(v), \big\{l^i(u), u \in \mathcal{N}(v)\big\}\big)\\ X^{(i)}_G &= \big[l^{(i)}(v), v \in V_G\big] \qquad X_G = Concatenate(X^{(0)}_G, \cdots, X^{(H)}_G) \end{split}$$

Continuous Weisfeiler-Lehman embeddings

[Togninalli et al., 2019]

WL relabeling (continuous case)

$$\begin{aligned} a^{(i+1)}(v) &= \frac{1}{2} (a^{(i)}(v) + \frac{1}{\deg(v)} \sum_{u \in \mathcal{N}(v)} w(v, u) \, a^{(i)}(u)) \\ X_G^{(i)} &= \begin{bmatrix} a^{(i)}(v), v \in V_G \end{bmatrix} \qquad X_G = Concatenate(X_G^{(0)}, \cdots, X_G^{(H)}) \end{aligned}$$

Wasserstein Weisfeiler-Lehman graph kernel (step 2)

Wasserstein Weisfeiler-Lehman graph kernel (step 2)

Wasserstein distance

• $\forall r \in [1, +\infty)$, $\mathcal{P}_r(\mathbb{R}^s)$: probability measures on \mathbb{R}^s with finite moments of order r.

$$\forall \mu, \nu \in \mathcal{P}_r(\mathbb{R}^s), \mathcal{W}_r^r(\mu, \nu) = \inf_{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{R}^s \times \mathbb{R}^s} ||x - y||^r d\pi(x, y)$$

where:

- ||. || denotes the Euclidean norm,
- $\Pi(\mu, \nu)$ the set of probability measures on $\mathbb{R}^s \times \mathbb{R}^s$ whose marginals w.r.t. the 1st/2nd variable are resp. μ and ν

• Discrete case:
$$\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$$
 $\nu = \frac{1}{n'} \sum_{i=1}^{n'} \delta_{y_i}$

Wasserstein distance: issues

***** Impossible to build a positive definite kernel (*in dimension ≥ 2 *) [Peyré, Cuturi, 2019]

× Computationally expensive : $O(n^3 \log(n))$

Use case: 1000 graphs with 30 000 vertices
 → 400 days to build the Gram matrix...

Sliced Wasserstein Weisfeiler Lehman graph kernel

[Us]

Idea: replace Wasserstein by **sliced Wasserstein** ! $\rightarrow \checkmark \mathbf{O}(n \log(n))$ and $\checkmark \mathbf{positive definite}$ substitution kernels

[Meunier et al., 2022]

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

32

• The **sliced Wasserstein** distance is defined as:

$$\mathcal{SW}_r^r(\mu,\nu) = \int_{\mathbb{S}^{s-1}} \mathcal{W}_r^r(\theta_{\#}^*\mu,\theta_{\nu}^*) \mathrm{d}\sigma(\theta)$$

where

33

- \mathbb{S}^d : *d*-dimensional unit sphere, σ : uniform distribution on \mathbb{S}^d
- $\theta_{\#}^*\mu$: push-forward measure of $\mu \in \mathcal{P}_r(\mathbb{R}^s)$ by $\theta^*\begin{pmatrix} \mathbb{R}^s \to \mathbb{R} \\ x \mapsto \langle \theta, x \rangle \end{pmatrix}$

$$\mathcal{W}_{r}^{r}(\mu,\nu) = \int_{0}^{1} |\mathbf{F}^{-1}(\mu) - F^{-1}(\nu)|^{r} dt$$
Quantile
function

$$\mu$$
 and ν

• The **sliced Wasserstein** distance is defined as:

$$\mathcal{SW}_r^r(\mu,\nu) = \int_{\mathbb{S}^{S^{-1}}} \mathcal{W}_r^r(\theta_{\#}^*\mu,\theta_{\nu}^*) \mathrm{d}\sigma(\theta)$$

where

- \mathbb{S}^d : *d*-dimensional unit sphere, σ : uniform distribution on \mathbb{S}^d
- $\theta_{\#}^*\mu$: push-forward measure of $\mu \in \mathcal{P}_r(\mathbb{R}^s)$ by $\theta^*\begin{pmatrix} \mathbb{R}^s \to \mathbb{R} \\ x \mapsto \langle \theta, x \rangle \end{pmatrix}$

1-d Wasserstein distances between

$$\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i} \text{ and } \nu = \frac{1}{n} \sum_{i=1}^{n} \delta_{y_i}$$

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

• The **sliced Wasserstein** distance is defined as:

$$\mathcal{SW}_r^r(\mu,\nu) = \int_{\mathbb{S}^{s-1}} \mathcal{W}_r^r(\theta_{\#}^*\mu,\theta_{\nu}^*) \mathrm{d}\sigma(\theta)$$

where

- \mathbb{S}^d : *d*-dimensional unit sphere, σ : uniform distribution on \mathbb{S}^d
- $\theta_{\#}^*\mu$: push-forward measure of $\mu \in \mathcal{P}_r(\mathbb{R}^s)$ by $\theta^*\begin{pmatrix} \mathbb{R}^s \to \mathbb{R} \\ x \mapsto \langle \theta, x \rangle \end{pmatrix}$

$$\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i} \text{ and } \nu = \frac{1}{n} \sum_{i=1}^{n} \delta_{y_i}$$

• The **sliced Wasserstein** distance is defined as:

$$\mathcal{SW}_r^r(\mu,\nu) = \int_{\mathbb{S}^{s-1}} \mathcal{W}_r^r(\theta_{\#}^*\mu,\theta_{\nu}^*) \mathrm{d}\sigma(\theta)$$

where

- \mathbb{S}^d : *d*-dimensional unit sphere, σ : uniform distribution on \mathbb{S}^d
- $\theta_{\#}^*\mu$: push-forward measure of $\mu \in \mathcal{P}_r(\mathbb{R}^s)$ by $\theta^*\begin{pmatrix} \mathbb{R}^s \to \mathbb{R} \\ x \mapsto \langle \theta, x \rangle \end{pmatrix}$

$$\widehat{\mathcal{W}}_{r}^{r}(\mu,\nu) = \frac{1}{Q} \sum_{q=1}^{Q} |x_{(q)} - y_{(q)}|^{r}$$
(Approximation with $Q \ll \max(n,n')$

$$\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i} \text{ and } \nu = \frac{1}{n'} \sum_{i=1}^{n'} \delta_{y_i}$$

• The (estimated) **sliced Wasserstein** distance is defined as: $\widehat{SW_r^r}(\mu, \nu) = \frac{1}{P} \sum_{p=1}^{P} \widehat{W_r^r}((\theta_p^*)_{\#} \mu, (\theta_p^*)_{\#} \nu)$

where

37

- \mathbb{S}^d : *d*-dimensional unit sphere, σ : uniform distribution on \mathbb{S}^d
- $\theta_{\#}^*\mu$: push-forward measure of $\mu \in \mathcal{P}_r(\mathbb{R}^s)$ by $\theta^*\begin{pmatrix} \mathbb{R}^s \to \mathbb{R} \\ x \mapsto \langle \theta, x \rangle \end{pmatrix}$

$$\widehat{\mathcal{W}_r^r}(\mu,\nu) = \frac{1}{Q} \sum_{q=1}^Q |x_{(q)} - y_{(q)}|^r$$

(Approximation with $Q \ll \max(n, n')$ quantiles)

$$\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i} \text{ and } \nu = \frac{1}{n'} \sum_{i=1}^{n'} \delta_{y_i}$$

Sliced Wasserstein Weisfeiler Lehman (SWWL)

[Us]

Sliced Wasserstein Weisfeiler Lehman (SWWL)

[Us]

39

• $\phi: G \mapsto X_G \in \mathbb{R}^{|V_G| \times d(H+1)}$: WL embeddings after H iterations

• $k_{SWWL}(G,G') = e^{-\lambda \widehat{SW}_2^2(\phi(G), \phi(G'))}$ (* considering by abuse $\phi(G), \phi(G')$ as empirical measures *) with $\widehat{SW}_2^2(\mu, \nu) = \frac{1}{PQ} \sum_{p=1}^{P} \sum_{q=1}^{Q} \left| u_q^{\theta_p} - u_q'^{\theta} \right|^2 = \left\| E_{\phi(G)} - E_{\phi(G')} \right\|_2^2$

 \rightarrow Precomputed embeddings $E_{\phi(G)}, E_{\phi(G')} \in \mathbb{R}^{PQ}$ where $u_q^{\theta_p} = \langle \theta_p, \phi(G) \rangle_{(q)}$

 $E_{\phi(G)} = [u_1^{\theta_1}, \cdots, u_Q^{\theta_1}, \cdots, u_1^{\theta_P}, \cdots, u_Q^{\theta_P}]$

Complexity for the Gram matrix (sparse graphs):

 $O(NHn) + NP n \log n + N^2 PQ)$ WL iterations Quantiles Usual RBF kernel

SWWL: experime [Us]	ents on	meshe	25 0.00 0.00 EH 0.00 0.00 0.00 0.00	40 35 30 25 20 15 0 10 Nu	20 30 mber of project	Q = 10 Q = 100 Q = 500 Q = 1000 Q = 1000 Q = 1000 Q = 1000 Q = 1000	
RMSE (5 exp)	Kernel/Dataset	Rotor37 x10 ⁻³	$\begin{array}{c} \texttt{Rotor37-CM} \\ \texttt{x}10^{\text{-}3} \end{array}$	Tensile2d x1	Tensile2d-CM	$\begin{array}{c} \texttt{AirfRANS} \\ \text{x}10^{\text{-4}} \end{array}$	AirfRANS-CM x10 ⁻⁴
	SWWL	1.44 ± 0.07	3.49 ± 0.15 3.51 ± 0.00	0.89 ± 0.01	1.51 ± 0.01 6 46 ± 0.00	7.56 ± 0.36	9.63 ± 0.54 14.4 ± 0.80
	PK	-	4.18 ± 0.39	-	6.03 ± 4.58	-	8.94 ± 2.31
Time to build the Gram matrix	Kernel/Dataset	Rotor37	Rotor37-CM	Tensile2d	Tensile2d-CM	AirfRANS	AirfRANS-CM
	SWWL	$1\min + 11$	4s + 11s	11s + 4s	2s + 4s	5min + 7s	15s + 7s
(*) in parallel, using 100 jobs	PK	-	1min ()	-	2min	-	15min

40 | This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Conclusion and future work

Conclusion

- Limits of existing graph kernels
 - Many do not handle continuous attributes
 - Many do not scale well to large graphs
 - Many do not guarantee positive definiteness
 - Many are too dependent on the graph structure
- We propose the Sliced Wasserstein Weisfeiler Lehman (SWWL) kernel
 - Positive definite
 - Tractable for large graphs
 - Competitive results for mesh-based Gaussian process regression

Extension to multiple outputs (e.g. vector fields)

Graphle

R-convolution

References

Graph kernels, Gaussian processes

- Nikolentzos, G., Siglidis, G., & Vazirgiannis, M. (2021). Graph kernels: A survey. Journal of Artificial Intelligence Research, 72, 943-1027.
- Kriege, N. M., Johansson, F. D., & Morris, C. (2020). A survey on graph kernels. Applied Network Science, 5(1), 1-42.
- Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M., & Borgwardt, K. (2013). Scalable kernels for graphs with continuous attributes. Advances in neural information processing systems, 26.
- Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2, No. 3, p. 4). Cambridge, MA: MIT press.

Optimal transport

43

- Peyré, G., & Cuturi, M. (2019). Computational optimal transport: With applications to data science. Foundations and Trends[®] in Machine Learning, 11(5-6), 355-607.
- Togninalli, M., Ghisu, E., Llinares-López, F., Rieck, B., & Borgwardt, K. (2019). Wasserstein weisfeilerlehman graph kernels. Advances in neural information processing systems, 32.
- Meunier, D., Pontil, M., & Ciliberto, C. (2022, June). Distribution Regression with Sliced Wasserstein Kernels. In International Conference on Machine Learning (pp. 15501-15523). PMLR.

 This work was supported by the French National Research Agency (ANR) through the SAMOURAI project under grant ANR20-CE46-0013.

Other approaches using Optimal Transport

Many approaches with **GCNN**s and **message passing layers** Continuous WL of torch_geometric

• Other node embedding:
$$a^{(i+1)}(v) = \sum_{u \in \mathcal{N}(v) \cup \{v\}} \frac{w(v,u)}{\sqrt{\deg(u) \deg(v)}} a^{(i)}(u)$$

- Wasserstein embeddings with Linear Optimal transport [Kolouri et al., 2020]
- Pooling by Sliced-Wasserstein (PSWE)
- Template-based GNN with OT

46

```
[Vincent-Cuaz et al., 2022]
```

[Naderializadeh., 2021]

Wasserstein embeddings

[Kolouri et al., 2020]

47

- Linear Wasserstein embedding (Linear Optimal transport LOT Framework)
- Transport displacements from a reference distribution to node embeddings

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Wasserstein embeddings

[Kolouri et al., 2020]

48

- Given a first node embedding $\phi: G \mapsto X_G \in \mathbb{R}^{|V_G| \times s}$
- $X_0 \in \mathbb{R}^{n_0 \times s}$ reference node embedding
- Linear Wasserstein embedding:
- $\psi_0(X_G) \coloneqq (u_{G,0} Id)\sqrt{n_0}$
- where $u_{G,0}$ is the Monge map that pushes X_0 to X_G

- New graph embedding: $\psi(G) \coloneqq \psi_0(\phi(G)) \in \mathbb{R}^{n_0 \times s}$ of fixed size
- Only N Monge map calculations needed
- Choice of the reference embedding? (Not clear)

Fused Gromov-Wasserstein distance

[Vayer et al., 2019]

- $G = (V_G, E_G, l_a, l_s)$ with $l_a: V_G \rightarrow \mathbb{R}^3$ the coordinate function
- $l_s: V_G \to \Omega_G$ with (Ω_G, c_G) a metric space dependent of G
- $c_G: \Omega_G \times \Omega_G \to \mathbb{R}_+$ 'similarity' of points in G (structure-dependent) e.g. : $c_G(l_s(v_1), l_s(v_2)) = d_{PCC}(v_1, v_2|G)$
- $a_i = l_a(v_i)$, $s_i = l_s(v_i)$: attributes/structure of point *i*
- $\mu_G = \sum_{i=1}^{n_G} \frac{1}{n_G} \delta_{(a_i, s_i)}$: measure of *G*
- $C_G = [c_G(s_i, s_j)]_{1 \le i, j \le n_G'}, C_{G'} = [C_{G'}(s'_i, s'_j)]_{1 \le i, j \le n_{G'}}$

50 | This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Fused Gromov-Wasserstein distance

[Vayer et al., 2019]

•
$$L_{G,G'} = |C_G[i,k] - C_{G'}[j,l]|_{i,j,k,l} \in \mathbb{R}^{n_G \times n_{G'} \times n_G \times n_{G'}}$$

•
$$M_{G,G'} = [||a_i - a'_j||_2]_{1 \le i \le n_G; \ 1 \le j \le n_{G'}} \in \mathbb{R}^{n_G \times n_{G'}}$$

•
$$FGW_{q,\alpha}(\mu_G, \mu_{G'}) = \min_{\pi \in \Pi} \left\langle \alpha M_{G,G'}^q + (1 - \alpha) L_{G,G'}^q \otimes \pi, \pi \right\rangle$$

Wasserstein Gromov-Wasserstein

• Issue:
$$k(G, G') = e^{-\gamma FGW_{q,\alpha}(\mu_G, \mu_{G'})}$$
 is not positive definite

Template based GNN with OT

[Vincent-Cuaz et al., 2022]

Graph Convolutional Gaussian Processes

[Walker et al., 2019]

- Graph Convolutional Gaussian Processes
- Local patches around vertices are defined using Spatial-domain charting
- J: number of bins

52

- Convolution operator on the graph signal $\psi: V \to \mathbb{R}^3$:
- $D_j(v) \psi = \sum_{u \in V} \psi(u) u_j(u, v) \quad \forall j \in \{1, \dots, J\}$
- u_j : geodesic polar weighting function e.g.

Future work : Anisotropic SWWL?

Future work : Anisotropic SWWL?

54

Future work : Anisotropic SWWL?

 $\mathbf{Q} x_{v} \in \mathbb{R}^{d}$

G

Anisotropic SWWL: $\phi^{(i)}: G \mapsto X_G^{(i)} \in \mathbb{R}^{|V_G| \times d}$ (*i*-th iteration of WL)

 $k_{ASWWL}(G,G') = e^{-\sum_{i=0}^{H} \lambda_i \widehat{SW}_2^2} (\phi^{(i)}(G), \phi^{(i)}(G'))$

55 | This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

POWERED BY TRUST

