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Industrial motivation

Estimation of the probability of failure of industrial systems involved in the
operation of nuclear power plants and dams.

A computer code simulates the operation of
the system.
−→ Piecewise Deterministic
Markov Processes.

Typical probabilities of failure are very small
(about 10−5).

Each simulation is numerically expensive.

↪→ Crude Monte-Carlo methods are not feasible.
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Definition of a PDMP

Piecewise Deterministic
Markov Process
(M.H.A Davis 1984)

Hybrid process: Zt = (Xt ,Mt) ∈ E

position Xt ∈ X is continuous
mode Mt ∈ M is discrete

1 Flow Φ → deterministic dynamics
between two jumps

2 Jump intensity λ → law of the time of
the random jumps

3 Jump kernel K → law of the state of
the process after a jump
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Likelihood of a PDMP trajectory

Let Z := (Zt)t∈[0,tmax]
be a PDMP trajectory of duration tmax on E.

Density function of a PDMP trajectory (Thomas Galtier 2019)

There is a dominant measure ζ for which a PDMP trajectory Z with nZ jumps,
inter-jump times (tk)k and arrival states (zk)k admits a probability density
function f .

f (Z) =
nZ∏
k=0

[λ (Φzk (tk))]
1
tk<τ∂

zk exp

[
−
∫ tk

0
λ (Φzk (u)) du

]
K (Φzk (tk), zk+1)

1k<nZ .

(1)

Take home message:

explicit computation of the pdf of a PDMP trajectory,
no need to recalculate the flow.
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Main problem

Objective: estimate

PF = Pf0 (Z ∈ TF) = Pf0 (∃t ∈ [0, tmax] : Zt ∈ F)

Z = (Zt)t∈[0,tmax]
is a PDMP trajectory of fixed duration tmax,

Z ∼ f0 the reference distribution of the PDMP trajectory,

TF is the set of feasible PDMP trajectories that reach a critical region F of
the state space before time tmax.

Crude Monte-Carlo : P̂CMC
F =

1
N

N∑
k=1

1Zk∈TF with Z1, . . . ,ZN
i.i.d.∼ f0

↪→ Requires on average 1/PF simulations to obtain one realization of the event.

↪→ High relative variance of P̂CMC
F when PF is small.
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Importance sampling (IS)

Idea: simulate trajectory Z according to an alternative distribution g which gives
more weight on TF than f0, then fix the bias with the likelihood ratio w = f0/g .

Importance sampling trick with alternative distribution g :

PF = Pf0 (Z ∈ TF ) = Ef0 [1Z∈TF ] =

∫
1z∈TF f0(z)dζ(z) (2)

=

∫
1z∈TF

f0(z)
g(z)

g(z)dζ(z) = Eg

[
1Z∈D

f0(Z)
g(Z)

]
(3)

IS estimator : P̂IS
F =

1
N

N∑
k=1

1Zk∈TF

f0(Zk)

g(Zk)
with Z1, . . . ,ZN

i.i.d.∼ g (4)

↪→ Variance of P̂IS
F relies on the choice of g
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Optimal importance sampling

Optimal IS distribution: gopt : z 7→ 1
PF

1z∈TF f0(z) produces a
zero-variance IS estimator.

PDMP case: the optimal IS distribution gopt is fully determined by the
so-called committor function Uopt of the process. Knowing Uopt is
sufficient to generate PDMP trajectories under gopt.

Committor function: probability of realizing the rare event {Z ∈ TF}
knowing the state of the process at any given time s ∈ [0, tmax].

Uopt (Zs) = Pf0 (Z ∈ TF |Zs)
1Zs /∈TF with Zs = (Zt)t∈[0,s]. (5)

General committor function: when estimating Ef0 [φ(Z)] we have

Uopt (Zs) = Ef0 [φ(Z) | Zs ] with Zs = (Zt)t∈[0,s].
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Optimal biasing with committor and edge committor function

Edge committor function U−
opt : mean value of the committor function knowing

the process is about to jump with reference jump kernel K0.

"U−
opt(Z

−
s ) = EK0(Z

−
s ,·) [Uopt (Zs)] ". (6)

Optimal jump intensity and jump kernel: (Thomas Galtier 2019)

"λopt = λ0 ×
U−

opt

Uopt
" and "Kopt = K0 ×

Uopt

U−
opt

" . (7)

If the process is c times more likely to realize the event:

1 by jumping now from state z , then λopt(z) should be c times λ0(z),
2 by jumping to state z from state z− rather than jumping randomly from z−,

then Kopt(z
−, z) should be c times K0(z

−, z).
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Our method in a nutshell

Chennetier, Chraibi, Dutfoy, Garnier (2022), Adaptive importance sampling
based on fault tree analysis for piecewise deterministic Markov process.
arXiv preprint arXiv:2210.16185 .

1 Building a family of approximations of the committor function Uopt.
First contribution: Fault tree analysis (minimal path sets and cut sets),
Current work: Mean hitting times of a random walk on a graph.

2 The best representative of this family is sequentially determined using a
cross-entropy procedure coupled with a recycling scheme for past samples.

3 A consistent and asymptotically normal post-processing estimator of the final
probability PF is returned.
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graph-based mean hitting times



PDMP Rare event simulation Mean hitting times AIS—CE Numerical results

PDMP approximated by a random walk on a graph

Figure 1: PDMP with 64 modes, MF in dark blue.

Z ∈ TF only if the trajectory stays long enough in a mode of MF . 9/19
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Mean hitting times for a Markovian homogeneous random walk

Let (Yt)t be a time-continuous random walk on the mode set M with an
infinitesimal generator matrix Q.

We note hm = E [τm (MF )] with τm (MF ) = inft≥0 {Yt ∈ MF | Y0 = m}.

If the random walk is time-homogeneous then (hm)m∈M the vector of mean
hitting times of MF is explicit and solution of the linear system:

hm1 = 0 ∀m1 ∈ MF and
∑

m2 /∈MF

Q[m1,m2] hm2 = −1 ∀m1 /∈ MF . (8)

Idea: compute (hm)m∈M for a matrix Q chosen such that (Yt)t "behaves like"
(Mt)t the mode part of the PDMP trajectory (Zt)t .

↪→ In practice even using the simple random walk gives good results.

Minimal support condition: for any m1,m2 ∈ M, Q[m1,m2] > 0 only if there
are x1, x2 ∈ X such that K ((x1,m1), (x2,m2)) > 0.
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Proximity score and approximation of Uopt

1 For each mode m ∈ M, we set ρm the proximity score to the set MF :

ρm = 1 − hm
max
m′∈M

{hm′}
∈ [0, 1].

2 We define a family (Uθ)θ∈Θ of approximations of Uopt parameterized by a
vector θ ∈ Θ ⊂ RdΘ of arbitrary size dΘ.

Uθ ((x ,m)) = exp

(
dΘ∑
k=1

θk × ψk,dΘ (ρm)

)
(9)

The sequence (ψk,∞)k∈N∗ is typically a basis of L2([0, 1]). For example:

Polynomial: ψk,dΘ(ρ) = ρk .
Piecewise linear: ψk,dΘ(ρ) = ρ1ρ> k−1

dΘ

.

11/19



PDMP Rare event simulation Mean hitting times AIS—CE Numerical results

Example with a simple random walk

Figure 2: Scores on a graph with 64 vertices. MF is given by the vertices with score 1.
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The cross entropy procedure

How to find the best candidate within the family (Uθ)θ∈Θ?

To each candidate Uθ ∈ (Uθ)θ∈Θ corresponds an importance distribution
gθ ∈ (gθ)θ∈Θ. We look for the closest distribution gθ to gopt in the sense of the
Kullback-Leibler divergence.

argmin
θ∈Θ

DKL (gopt∥gθ) = argmin
θ∈Θ

Egopt

[
log

(
gopt(Z)
gθ(Z)

)]
= argmin

θ∈Θ

∫
− log (gθ(Z))

1Z∈TF f0(Z)
PF

dζ (Z)

= argmax
θ∈Θ

Ef0 [1Z∈TF log (gθ (Z))] .

This last quantity can be minimized iteratively by successive Monte-Carlo
approximations with importance sampling.
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Adaptive algorithm with recycling of past samples

Start with an initial parameter θ(1). At iteration j = 1, . . . , J :

1 Simulation step: generate a new sample of nj trajectories

Zj,1, . . . ,Zj,nj
i.i.d.∼ gθ(j)

2 Optimization step: compute the next iterate θ(j+1) by solving:

θ(j+1) ∈ argmax
θ∈Θ

j∑
i=1

nj∑
k=1

1Zi,k∈TF

f0
(
Zi,k

)
gθ(i)

(
Zi,k

) log [gθ(Zi,k

)]
(10)

Estimation step: at iteration J, the final estimator of the probability PF is:

P̂F =
1∑J

j=1 nj

J∑
j=1

nj∑
k=1

1Zj,k∈TF

f0
(
Zj,k

)
gθ(j)

(
Zj,k

) (11)

Recycling scheme: past samples are reused during optimization and estimation.

We proved consistency and asymptotic normality of P̂F for the PDMP case.
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Performances on the spent fuel pool

Test case: Spent fuel pool from nuclear industry. The corresponding graph has
32, 768 vertices.

Method N P̂F σ̂/P̂F 95% confidence interval

105 2 × 10−5 223.60
[
0 ; 4.77 × 10−5]

CMC 106 1.3 × 10−5 277.35
[
5.93 × 10−6 ; 2.01 × 10−5]

107 1.77 × 10−5 237.68
[
1.51 × 10−5 ; 2.03 × 10−5]

AIS–MHT 103 1.86 × 10−5 1.62
[
1.67 × 10−5 ; 2.04 × 10−5]

104 2.01 × 10−5 0.86
[
1.98 × 10−5 ; 2.05 × 10−5]

Table 1: Comparison between crude Monte-Carlo (CMC) and our adaptive importance
sampling method with mean hitting times (AIS-MHT).

↪→ Variance reduction by a factor of 10,000.
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Robustness in practice

Figure 3: 15 confidence intervals with AIS–MHT method and sample size of 1000 vs 1
confidence interval with CMC method and sample size of 107.
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The end

Thank you for your attention.
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Example: the spent fuel pool

If the system does not cool the pool, the nuclear fuel evaporates the water then
damages the structure and contaminates the outside.

Aim: estimating the probability of the water level falling below a set threshold.
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Mathematical details

Flow Φ : solution of differential equations. Can be costly to solve. When no
jump between time s and s + t :

Zs+t = ΦZs (t).

Deterministic jumps : when the position reaches ∂E the boundaries of E .

τ∂z = inf{t > 0 : Φz(t) ∈ ∂E}.

Jump intensity λ : parameter of the distribution of the time Tz of the next
random jump knowing current state z .

P(τz > t | Zs = z) = 1t<t∂z
exp

(
−
∫ t

0
λ (Φz(u)) du

)
. (12)

Jump kernel K : for any departure state z−, density z 7→ K (z−, z) of a
Markovian kernel Kz− with respect to some measure νz− on E .
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Likelihood of a PDMP trajectory

Let Z := (Zt)t∈[0,tmax]
be a PDMP trajectory of duration tmax on E.

Density function of a PDMP trajectory (Thomas Galtier 2019)

There is a dominant measure ζ for which a PDMP trajectory Z with nZ jumps,
inter-jump times t1, . . . , tnZ and arrival states z1, . . . , znZ admits a probability
density function f .

f (Z) =
nZ∏
k=0

[λ (Φzk (tk))]
1
tk<τ∂

zk exp

[
−
∫ tk

0
λ (Φzk (u)) du

]
K (Φzk (tk), zk+1)

1k<nZ .

(13)

Take home message:

explicit computation of the pdf of a PDMP trajectory,
no need to recalculate the flow.
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Committor function

Committor function: probability of realizing the rare event {Z ∈ TF} knowing
that at a fixed time s > 0 the process is in a given state z .

Uopt(z , s) = Pf0 (Z ∈ TF |Zs = z) . (14)

(in general Uopt (Z) = Ef0 [φ(Z) | Zs ] with Zs = (Zt)t∈[0,s] when estimating
Eπ0 [φ(Z)])

Knowing Uopt is sufficient to build the optimal IS estimator.

To lighten the future equations we also note the variant committor function U−
opt :

U−
opt(z

−, s) =

∫
z∈E

Uopt(z , s)K
(
z−, z

)
dνz− . (15)

U−
opt is the probability of realizing the rare event {Z ∈ TF} knowing that at a

fixed time s > 0 the process jumps from a given state z−.
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Optimal IS for PDMP

Optimal jump intensity and jump kernel: (Thomas Galtier 2019)

λopt(Φz(t) ; s) = λ0(Φz(t))×
U−

opt(Φz(t), s + t)

Uopt(Φz(t), s + t)
, (16)

Kopt
(
z−, z ; s

)
= K0

(
z−, z

)
× Uopt(z , s)

U−
opt(z−, s)

. (17)

If the process is k times more likely to realize the event:

1 by jumping now from state z , then λopt(z) should be k times λ0,
2 by going to state z after a jump from state z−, then Kopt(z

−, z) should be k
times K0(z

−, z).
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Approximation of the committor function with minimal path sets

The path sets of a system are the sets of components such that:

1 keeping all components of any path set intact prevents system failure.

2 keeping one component broken in each path set ensures system failure.

A Minimal Path Set is a path set that does not contain any other path set.

We note:

dMPS the number of MPS (they are unique if the system is coherent),

β(MPS)(z) the number of MPS with at least one broken component.

A good Uθ should therefore be increasing in β(MPS)(z).
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Minimal path sets: the spent fuel pool case

Figure 4: Physical representation of the SFP

=⇒

Figure 5: Functionnal diagram of the SFP

8 MPS in the spent fuel pool system: (with Lj =
(
Li,j

)3
i=1 for j = 1, 2, 3)

(G0,S1,L1), (G1, S1,L1), (G0, S1,L2), (G2, S1,L2),

(G0,S1,L3), (G3, S1,L3), (G0, S2,L3), (G3, S2,L3).
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Our MPS-based proposition

For θ ∈ RdMPS
+ we propose:

U
(MPS)
θ (z) = exp


β(MPS)(z)∑

i=1

θi

2
 . (18)

Flexible dimension of θ: imposing equality on some coordinates of θ reduce its
effective dimension and simplify the search for a good θ when dMPS is large.

→ Example for dimension 1 with θ1 = · · · = θdMPS :

U
(MPS)
θ (z) = exp

[(
θ1 β

(MPS)(z)
)2
]
. (19)

The form x 7→ exp(x2) garantees that the ratios U−
θ /Uθ are strictly increasing in

β(MPS). Without this condition, it is increasingly difficult to break new
components and they are repaired faster and faster as they are lost.



Supplementary material Committor function FTA—MPS Adaptive algorithm

Minimal cut sets

Minimal cut sets: smallest sets
of components that if left
broken ensure system failure.
(permanent repair of one
component in each group
prevents the failure)

In this system: there is 69
minimal cut sets for 15
components.

Figure 6: Functionnal diagram of the SFP

Examples: (G0,G1,G2,G3), (S1,S2), (C1L1,C3L2,C1L3), (G0,G3,S1), . . .
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Asymptotic confidence interval

Assumptions

1 The functions λ, K , and (Uθ)θ∈Θ are bounded on their support below and
above by strictly positive constants,

2 θopt ∈ Θ is the unique maximizer of θ 7→ Ef0 [1Z∈TF log gθ (Z)],
3 there is tε > 0 such that t∂z ≥ tε for any z− ∈ ∂E and any

z ∈ supp K (z−, ·).

Under these assumptions, with σ̂2 = 1∑J
j=1 nj

∑J
j=1
∑nj

k=1 1Zj,k∈TF

f0

(
Zj,k

)2
g
θ(j)

(
Zj,k

)2 − P̂2
F

the estimator of the asymptotic variance Ef0

[
1Z∈TF

f0(Z)
gθopt

(Z)
]
− P2

F ,

and with v1−α/2 the (1 − α/2)-quantile of the N (0, 1) distribution, we have :

P
(
PF ∈

[
P̂F − v1−α/2

√
σ̂2/NJ ; P̂F + v1−α/2

√
σ̂2/NJ

])
−−−−→
NJ→∞

1 − α.
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Bandit problem

Off-policy best arm identification in multi-armed bandit

Several nominal distributions π1, . . . , πd ,
µi := Eπi [φ(Z)] for i = 1, . . . , d and a function φ (example: φ = 1D).

Objective: find the best distribution argmin
i∈{1,...,d}

Eπi [φ(Z)]

Reverse importance sampling: if we draw (Z1, . . . ,ZN) ∼
(
⊗N

k=1qk
)

then:

µ̂i =
1
N

N∑
k=1

φ(Zk)
πi (Zk)

qk(Zk)
for any i = 1, . . . , d

Best sequential sampling policy?
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Stability of the method

Figure 7: 50 confidence intervals with AIS–MPS method and sample size of 1000 vs 1
confidence interval with CMC method and sample size of 107.


