Importance sampling of Piecewise Deterministic Markov Processes for rare event simulation

Guillaume Chennetier ${ }^{1,2}$ • Hassane Chraibi ${ }^{1}$ • Anne Dutfoy ${ }^{1}$ • Josselin Garnier 2

Estimation of the probability of failure of industrial systems involved in the operation of nuclear power plants and dams.

- A computer code simulates the operation of the system.
\longrightarrow Piecewise Deterministic Markov Processes.
- Typical probabilities of failure are very small (about 10^{-5}).
- Each simulation is numerically expensive.
\hookrightarrow Crude Monte-Carlo methods are not feasible.

Piecewise Deterministic Markov Processes

Definition of a PDMP

Piecewise Deterministic Markov Process
(M.H.A Davis 1984)

Hybrid process: $Z_{t}=\left(X_{t}, M_{t}\right) \in E$

- position $X_{t} \in \mathcal{X}$ is continuous
- mode $M_{t} \in \mathcal{M}$ is discrete

1 Flow $\Phi \rightarrow$ deterministic dynamics between two jumps

2 Jump intensity $\lambda \rightarrow$ law of the time of the random jumps

3 Jump kernel $K \rightarrow$ law of the state of the process after a jump

Likelihood of a PDMP trajectory

Let $\mathbf{Z}:=\left(Z_{t}\right)_{t \in\left[0, t_{\max }\right]}$ be a PDMP trajectory of duration $t_{\max }$ on E .

Density function of a PDMP trajectory (Thomas Galtier 2019)

There is a dominant measure ζ for which a PDMP trajectory \mathbf{Z} with n_{Z} jumps, inter-jump times $\left(t_{k}\right)_{k}$ and arrival states $\left(z_{k}\right)_{k}$ admits a probability density function f.

$$
\begin{equation*}
f(\mathbf{Z})=\prod_{k=0}^{n_{\mathbf{Z}}}\left[\lambda\left(\Phi_{z_{k}}\left(t_{k}\right)\right)\right]^{\mathbb{1}_{t_{k}<\tau_{z_{k}}}^{\partial}} \exp \left[-\int_{0}^{t_{k}} \lambda\left(\Phi_{z_{k}}(u)\right) \mathrm{d} u\right] K\left(\Phi_{z_{k}}\left(t_{k}\right), z_{k+1}\right)^{\mathbb{1}_{k<n_{\mathbf{Z}}}} \tag{1}
\end{equation*}
$$

Take home message:
■ explicit computation of the pdf of a PDMP trajectory,
■ no need to recalculate the flow.

Rare event simulation

Main problem

Objective: estimate

$$
\mathrm{P}_{\mathcal{F}}=\mathbb{P}_{f_{0}}\left(\mathbf{Z} \in \mathcal{T}_{\mathcal{F}}\right)=\mathbb{P}_{f_{0}}\left(\exists t \in\left[0, t_{\max }\right]: Z_{t} \in \mathcal{F}\right)
$$

- $\mathrm{Z}=\left(Z_{t}\right)_{t \in\left[0, t_{\text {max }}\right]}$ is a PDMP trajectory of fixed duration $t_{\text {max }}$,
- $\mathrm{Z} \sim f_{0}$ the reference distribution of the PDMP trajectory,
- $\mathcal{T}_{\mathcal{F}}$ is the set of feasible PDMP trajectories that reach a critical region \mathcal{F} of the state space before time $t_{\text {max }}$.

Crude Monte-Carlo : $\widehat{\mathrm{P}}_{\mathcal{F}}^{\mathrm{CMC}}=\frac{1}{N} \sum_{k=1}^{N} \mathbb{1}_{\mathbf{Z}_{k} \in \mathcal{T}_{\mathcal{F}}} \quad$ with $\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{N} \stackrel{\text { i.i.d. }}{\sim} f_{0}$
\hookrightarrow Requires on average $1 / \mathrm{P}_{\mathcal{F}}$ simulations to obtain one realization of the event.
\hookrightarrow High relative variance of $\widehat{\mathrm{P}}_{\mathcal{F}}^{\mathrm{CMC}}$ when $\mathrm{P}_{\mathcal{F}}$ is small.

Importance sampling (IS)

Idea: simulate trajectory \mathbf{Z} according to an alternative distribution g which gives more weight on $\mathcal{T}_{\mathcal{F}}$ than f_{0}, then fix the bias with the likelihood ratio $w=f_{0} / g$.

Importance sampling trick with alternative distribution g :

$$
\begin{align*}
\mathbf{P}_{\mathcal{F}} & =\mathbb{P}_{f_{0}}\left(\mathbf{Z} \in \mathcal{T}_{\mathcal{F}}\right)=\mathbb{E}_{f_{0}}\left[\mathbb{1}_{\mathbf{Z} \in \mathcal{T}_{\mathcal{F}}}\right]=\int \mathbb{1}_{\mathbf{z} \in \mathcal{T}_{\mathcal{F}}} f_{0}(\mathbf{z}) d \zeta(\mathbf{z}) \tag{2}\\
& =\int \mathbb{1}_{\mathbf{z} \in \mathcal{T}_{\mathcal{F}}} \frac{f_{0}(\mathbf{z})}{g(\mathbf{z})} g(\mathbf{z}) d \zeta(\mathbf{z})=\mathbb{E}_{g}\left[\mathbb{1}_{\mathbf{Z} \in \mathcal{D}} \frac{f_{0}(\mathbf{Z})}{g(\mathbf{Z})}\right] \tag{3}
\end{align*}
$$

IS estimator: $\quad \widehat{\mathrm{P}} \left\lvert\, \mathcal{F}=\frac{1}{N} \sum_{k=1}^{N} \mathbb{1}_{\mathbf{Z}_{k} \in \mathcal{T}_{\mathcal{F}}} \frac{f_{0}\left(\mathbf{Z}_{k}\right)}{g\left(\mathbf{Z}_{k}\right)} \quad\right.$ with $\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{N} \stackrel{\text { i.i.d. }}{\sim} g$
\hookrightarrow Variance of $\widehat{\mathrm{P}}$ IS relies on the choice of g

Optimal importance sampling

■ Optimal IS distribution: $g_{\text {opt }}: \mathbf{z} \mapsto \frac{1}{\mathrm{P}_{\mathcal{F}}} \mathbb{1}_{\mathbf{z} \in \mathcal{T}_{\mathcal{F}}} f_{0}(\mathbf{z})$ produces a zero-variance IS estimator.

- PDMP case: the optimal IS distribution $g_{\text {opt }}$ is fully determined by the so-called committor function $U_{\text {opt }}$ of the process. Knowing $U_{o p t}$ is sufficient to generate PDMP trajectories under $g_{\text {opt }}$.

■ Committor function: probability of realizing the rare event $\left\{\mathbf{Z} \in \mathcal{T}_{\mathcal{F}}\right\}$ knowing the state of the process at any given time $s \in\left[0, t_{\text {max }}\right]$.

$$
\begin{equation*}
\mathrm{U}_{\mathrm{opt}}\left(Z_{s}\right)=\mathbb{P}_{f_{0}}\left(\mathbf{Z} \in \mathcal{T}_{\mathcal{F}} \mid Z_{s}\right)^{\mathbb{Z}_{s} \notin \mathcal{T}_{\mathcal{F}}} \quad \text { with } \quad \mathbf{Z}_{s}=\left(Z_{t}\right)_{t \in[0, s]} \tag{5}
\end{equation*}
$$

■ General committor function: when estimating $\mathbb{E}_{f_{0}}[\varphi(\mathbb{Z})]$ we have

$$
\mathbf{U}_{\text {opt }}\left(\mathbf{Z}_{s}\right)=\mathbb{E}_{f_{0}}\left[\varphi(\mathbf{Z}) \mid \mathbf{Z}_{s}\right] \quad \text { with } \quad \mathbf{Z}_{s}=\left(Z_{t}\right)_{t \in[0, s]}
$$

Optimal biasing with committor and edge committor function
Edge committor function $U_{\text {opt }}^{-}$: mean value of the committor function knowing the process is about to jump with reference jump kernel K_{0}.

$$
\begin{equation*}
\text { " } U_{\mathrm{opt}}^{-}\left(Z_{s}^{-}\right)=\mathbb{E}_{K_{0}\left(Z_{s}^{-}, \cdot\right)}\left[U_{\mathrm{opt}}\left(Z_{s}\right)\right] \text { ". } \tag{6}
\end{equation*}
$$

Optimal jump intensity and jump kernel: (Thomas Galtier 2019)

$$
\begin{equation*}
" \lambda_{\mathrm{opt}}=\lambda_{0} \times \frac{U_{\mathrm{opt}}^{-}}{U_{\mathrm{opt}}} " \quad \text { and } \quad " K_{\mathrm{opt}}=K_{0} \times \frac{U_{\mathrm{opt}}}{U_{\mathrm{opt}}^{-}} \tag{7}
\end{equation*}
$$

If the process is c times more likely to realize the event:
1 by jumping now from state z, then $\lambda_{\text {opt }}(z)$ should be c times $\lambda_{0}(z)$,
2 by jumping to state z from state z^{-}rather than jumping randomly from z^{-}, then $K_{\text {opt }}\left(z^{-}, z\right)$ should be c times $K_{0}\left(z^{-}, z\right)$.

Our method in a nutshell

圊
Chennetier, Chraibi, Dutfoy, Garnier (2022), Adaptive importance sampling based on fault tree analysis for piecewise deterministic Markov process. arXiv preprint arXiv:2210.16185.

1 Building a family of approximations of the committor function $U_{\text {opt }}$.

- First contribution: Fault tree analysis (minimal path sets and cut sets),
- Current work: Mean hitting times of a random walk on a graph.

2 The best representative of this family is sequentially determined using a cross-entropy procedure coupled with a recycling scheme for past samples.

3 A consistent and asymptotically normal post-processing estimator of the final probability $\mathrm{P}_{\mathcal{F}}$ is returned.

Approximating $U_{\text {opt }}$ with

 graph-based mean hitting times
PDMP approximated by a random walk on a graph

Figure 1: PDMP with 64 modes, $\mathcal{M}_{\mathcal{F}}$ in dark blue.
$\mathbf{Z} \in \mathcal{T}_{\mathcal{F}}$ only if the trajectory stays long enough in a mode of $\mathcal{M}_{\mathcal{F}}$.

Mean hitting times for a Markovian homogeneous random walk

■ Let $\left(Y_{t}\right)_{t}$ be a time-continuous random walk on the mode set \mathcal{M} with an infinitesimal generator matrix Q.

■ We note $h_{m}=\mathbb{E}\left[\tau_{m}\left(\mathcal{M}_{\mathcal{F}}\right)\right]$ with $\tau_{m}\left(\mathcal{M}_{\mathcal{F}}\right)=\inf _{t \geq 0}\left\{Y_{t} \in \mathcal{M}_{\mathcal{F}} \mid Y_{0}=m\right\}$.

■ If the random walk is time-homogeneous then $\left(h_{m}\right)_{m \in \mathcal{M}}$ the vector of mean hitting times of $\mathcal{M}_{\mathcal{F}}$ is explicit and solution of the linear system:

$$
\begin{equation*}
h_{m_{1}}=0 \forall m_{1} \in \mathcal{M}_{\mathcal{F}} \text { and } \sum_{m_{2} \notin \mathcal{M}_{\mathcal{F}}} Q\left[m_{1}, m_{2}\right] h_{m_{2}}=-1 \forall m_{1} \notin \mathcal{M}_{\mathcal{F}} \tag{8}
\end{equation*}
$$

Idea: compute $\left(h_{m}\right)_{m \in \mathcal{M}}$ for a matrix Q chosen such that $\left(Y_{t}\right)_{t}$ "behaves like" $\left(M_{t}\right)_{t}$ the mode part of the PDMP trajectory $\left(Z_{t}\right)_{t}$.
\hookrightarrow In practice even using the simple random walk gives good results.
Minimal support condition: for any $m_{1}, m_{2} \in \mathcal{M}, Q\left[m_{1}, m_{2}\right]>0$ only if there are $x_{1}, x_{2} \in \mathcal{X}$ such that $K\left(\left(x_{1}, m_{1}\right),\left(x_{2}, m_{2}\right)\right)>0$.

Proximity score and approximation of $U_{\text {opt }}$

1 For each mode $m \in \mathcal{M}$, we set ρ_{m} the proximity score to the set $\mathcal{M}_{\mathcal{F}}$:

$$
\rho_{m}=1-\frac{h_{m}}{\max _{m^{\prime} \in \mathbb{M}}\left\{h_{m^{\prime}}\right\}} \in[0,1] .
$$

■ We define a family $\left(U_{\theta}\right)_{\theta \in \Theta}$ of approximations of $U_{\text {opt }}$ parameterized by a vector $\boldsymbol{\theta} \in \Theta \subset \mathbb{R}^{d_{\theta}}$ of arbitrary size d_{θ}.

$$
\begin{equation*}
U_{\theta}((x, m))=\exp \left(\sum_{k=1}^{d_{\theta}} \theta_{k} \times \psi_{k, d_{\theta}}\left(\rho_{m}\right)\right) \tag{9}
\end{equation*}
$$

The sequence $\left(\psi_{k, \infty}\right)_{k \in \mathbb{N}^{*}}$ is typically a basis of $L^{2}([0,1])$. For example:

- Polynomial: $\psi_{k, d_{\Theta}}(\rho)=\rho^{k}$.
- Piecewise linear: $\psi_{k, d_{\theta}}(\rho)=\rho \mathbb{1}_{\rho>\frac{k-1}{d_{\theta}}}$.

Example with a simple random walk

Figure 2: Scores on a graph with 64 vertices. $\mathcal{M}_{\mathcal{F}}$ is given by the vertices with score 1.

Recycling adaptive IS

How to find the best candidate within the family $\left(U_{\theta}\right)_{\theta \in \Theta}$?
To each candidate $U_{\theta} \in\left(U_{\theta}\right)_{\theta \in \Theta}$ corresponds an importance distribution $g_{\theta} \in\left(g_{\theta}\right)_{\theta \in \Theta}$. We look for the closest distribution g_{θ} to $g_{\text {opt }}$ in the sense of the Kullback-Leibler divergence.

$$
\begin{aligned}
\underset{\theta \in \Theta}{\arg \min } \mathcal{D}_{\mathrm{KL}}\left(g_{\text {opt }} \| g_{\theta}\right) & =\underset{\boldsymbol{\theta} \in \Theta}{\arg \min } \mathbb{E}_{g_{\text {opt }}}\left[\log \left(\frac{g_{\text {opt }}(\mathbf{Z})}{g_{\theta}(\mathbf{Z})}\right)\right] \\
& =\underset{\boldsymbol{\theta} \in \Theta}{\arg \min } \int-\log \left(g_{\theta}(\mathbf{Z})\right) \frac{\mathbb{1}_{\mathbf{Z} \in \mathcal{T}_{\mathcal{F}}} f_{0}(\mathbf{Z})}{\mathrm{P}_{\mathcal{F}}} d \zeta(\mathbf{Z}) \\
& =\underset{\boldsymbol{\theta} \in \Theta}{\arg \max } \mathbb{E}_{f_{0}}\left[\mathbb{1}_{\mathbf{Z} \in \mathcal{T}_{\mathcal{F}}} \log \left(g_{\boldsymbol{\theta}}(\mathbf{Z})\right)\right] .
\end{aligned}
$$

This last quantity can be minimized iteratively by successive Monte-Carlo approximations with importance sampling.

Adaptive algorithm with recycling of past samples

Start with an initial parameter $\boldsymbol{\theta}^{(1)}$. At iteration $j=1, \ldots, J$:
1 Simulation step: generate a new sample of n_{j} trajectories

$$
\mathbf{Z}_{j, 1}, \ldots, \mathbf{Z}_{j, n_{j}} \stackrel{\text { i.i.d. }}{\sim} g_{\boldsymbol{\theta}^{(j)}}
$$

2 Optimization step: compute the next iterate $\boldsymbol{\theta}^{(j+1)}$ by solving:

$$
\begin{equation*}
\boldsymbol{\theta}^{(j+1)} \in \underset{\boldsymbol{\theta} \in \Theta}{\arg \max } \sum_{i=1}^{j} \sum_{k=1}^{n_{j}} \mathbb{1}_{\mathbf{Z}_{i, k} \in \mathcal{T}_{\mathcal{F}}} \frac{f_{0}\left(\mathbf{Z}_{i, k}\right)}{g_{\boldsymbol{\theta}^{(i)}}\left(\mathbf{Z}_{i, k}\right)} \log \left[g_{\boldsymbol{\theta}}\left(\mathbf{Z}_{i, k}\right)\right] \tag{10}
\end{equation*}
$$

Estimation step: at iteration J, the final estimator of the probability $\mathrm{P}_{\mathcal{F}}$ is:

$$
\begin{equation*}
\widehat{\mathrm{P}}_{\mathcal{F}}=\frac{1}{\sum_{j=1}^{J} n_{j}} \sum_{j=1}^{J} \sum_{k=1}^{n_{j}} \mathbb{1}_{\mathbf{Z}_{j, k} \in \mathcal{T}_{\mathcal{F}}} \frac{f_{0}\left(\mathbf{Z}_{j, k}\right)}{g_{\boldsymbol{\theta}^{(j)}}\left(\mathbf{Z}_{j, k}\right)} \tag{11}
\end{equation*}
$$

Recycling scheme: past samples are reused during optimization and estimation.
We proved consistency and asymptotic normality of $\widehat{\mathrm{P}}_{\mathcal{F}}$ for the PDMP case.

Numerical results

Performances on the spent fuel pool
Test case: Spent fuel pool from nuclear industry. The corresponding graph has 32, 768 vertices.

Method	N	$\widehat{\mathrm{P}}_{\mathcal{F}}$	$\widehat{\sigma} / \widehat{\mathrm{P}}_{\mathcal{F}}$	95% confidence interval
	10^{5}	2×10^{-5}	223.60	$\left[0 ; 4.77 \times 10^{-5}\right]$
CMC	10^{6}	1.3×10^{-5}	277.35	$\left[5.93 \times 10^{-6} ; 2.01 \times 10^{-5}\right]$
	10^{7}	1.77×10^{-5}	237.68	$\left[1.51 \times 10^{-5} ; 2.03 \times 10^{-5}\right]$
AIS-MHT	10^{3}	1.86×10^{-5}	1.62	$\left[1.67 \times 10^{-5} ; 2.04 \times 10^{-5}\right]$
	10^{4}	2.01×10^{-5}	0.86	$\left[1.98 \times 10^{-5} ; 2.05 \times 10^{-5}\right]$

Table 1: Comparison between crude Monte-Carlo (CMC) and our adaptive importance sampling method with mean hitting times (AIS-MHT).
\hookrightarrow Variance reduction by a factor of 10,000 .

Robustness in practice

Figure 3: $\mathbf{1 5}$ confidence intervals with AIS-MHT method and sample size of 1000 vs 1 confidence interval with CMC method and sample size of 10^{7}.

References

M. H. A. Davis (1984), Piecewise-Deterministic Markov Processes: A general class of non-diffusion stochastic models. J. R. Stat. Soc. B 46:353-388.
B. de Saporta, F. Dufour and H. Zhang (2015), Numerical methods for simulation and optimization of piecewise deterministic Markov processes : application to reliability. Mathematics and statistics series Wiley-ISTE.

R R. Rubinstein (1999), The Cross-Entropy method for combinatorial and continuous optimization. Methodology and Computing in Applied Probability 1:127-190.

B. Delyon and F. Portier (2018), Asymptotic optimality of adaptive importance sampling. NIPS 2018.

H. Chraibi, A. Dutfoy, T. Galtier et J. Garnier (2019), On the optimal importance process for piecewise deterministic Markov process. ESAIM: PS. 23:893-921.

䍰 G. Chennetier, H. Chraibi, A. Dutfoy, J. Garnier (2022), Adaptive importance sampling based on fault tree analysis for piecewise deterministic Markov process. arXiv preprint arXiv:2210.16185.

The end

DILBERT

Thank you for your attention.

Supplementary material

Example: the spent fuel pool

If the system does not cool the pool, the nuclear fuel evaporates the water then damages the structure and contaminates the outside.

Aim: estimating the probability of the water level falling below a set threshold.

Mathematical details

- Flow Φ : solution of differential equations. Can be costly to solve. When no jump between time s and $s+t$:

$$
Z_{s+t}=\Phi_{Z_{s}}(t)
$$

■ Deterministic jumps : when the position reaches ∂E the boundaries of E.

$$
\tau_{z}^{\partial}=\inf \left\{t>0: \Phi_{z}(t) \in \partial E\right\}
$$

■ Jump intensity λ : parameter of the distribution of the time T_{z} of the next random jump knowing current state z.

$$
\begin{equation*}
\mathbb{P}\left(\tau_{z}>t \mid Z_{s}=z\right)=\mathbb{1}_{t<t_{z}^{\partial}} \exp \left(-\int_{0}^{t} \lambda\left(\Phi_{z}(u)\right) d u\right) \tag{12}
\end{equation*}
$$

■ Jump kernel K : for any departure state z^{-}, density $z \mapsto K\left(z^{-}, z\right)$ of a Markovian kernel $\mathcal{K}_{z^{-}}$with respect to some measure $\nu_{z^{-}}$on E.

Likelihood of a PDMP trajectory

Let $\mathbf{Z}:=\left(Z_{t}\right)_{t \in\left[0, t_{\max }\right]}$ be a PDMP trajectory of duration $t_{\max }$ on E .

Density function of a PDMP trajectory (Thomas Galtier 2019)

There is a dominant measure ζ for which a PDMP trajectory \mathbf{Z} with $n_{\mathbf{Z}}$ jumps, inter-jump times $t_{1}, \ldots, t_{n_{\mathrm{z}}}$ and arrival states $z_{1}, \ldots, z_{n_{\mathrm{Z}}}$ admits a probability density function f.

$$
\begin{equation*}
f(\mathbf{Z})=\prod_{k=0}^{n_{\mathbf{Z}}}\left[\lambda\left(\Phi_{z_{k}}\left(t_{k}\right)\right)\right]^{\mathbb{1}_{t_{k}<\tau_{z_{k}}}^{\partial}} \exp \left[-\int_{0}^{t_{k}} \lambda\left(\Phi_{z_{k}}(u)\right) \mathrm{d} u\right] K\left(\Phi_{z_{k}}\left(t_{k}\right), z_{k+1}\right)^{\mathbb{1}_{k<n_{\mathbf{Z}}}} \tag{13}
\end{equation*}
$$

Take home message:
■ explicit computation of the pdf of a PDMP trajectory,

- no need to recalculate the flow.

Committor function for importance sampling

Committor function

Committor function: probability of realizing the rare event $\left\{\mathbf{Z} \in \mathcal{T}_{\mathcal{F}}\right\}$ knowing that at a fixed time $s>0$ the process is in a given state z.

$$
\begin{equation*}
U_{\text {opt }}(z, s)=\mathbb{P}_{f_{0}}\left(\mathbf{Z} \in \mathcal{T}_{\mathcal{F}} \mid Z_{s}=z\right) . \tag{14}
\end{equation*}
$$

(in general $U_{\text {opt }}(\mathbf{Z})=\mathbb{E}_{f_{0}}\left[\varphi(\mathbf{Z}) \mid \mathbf{Z}_{s}\right]$ with $\mathbf{Z}_{s}=\left(Z_{t}\right)_{t \in[0, s]}$ when estimating $\left.\mathbb{E}_{\pi_{0}}[\varphi(\mathbf{Z})]\right)$

Knowing $U_{\text {opt }}$ is sufficient to build the optimal IS estimator.

To lighten the future equations we also note the variant committor function $U_{\text {opt }}^{-}$:

$$
\begin{equation*}
U_{\mathrm{opt}}^{-}\left(z^{-}, s\right)=\int_{z \in E} U_{\mathrm{opt}}(z, s) K\left(z^{-}, z\right) d \nu_{z^{-}} \tag{15}
\end{equation*}
$$

$U_{\text {opt }}^{-}$is the probability of realizing the rare event $\left\{\mathbf{Z} \in \mathcal{T}_{\mathcal{F}}\right\}$ knowing that at a fixed time $s>0$ the process jumps from a given state z^{-}.

Optimal IS for PDMP

Optimal jump intensity and jump kernel: (Thomas Galtier 2019)

$$
\begin{align*}
& \lambda_{\mathrm{opt}}\left(\Phi_{z}(t) ; s\right)=\lambda_{0}\left(\Phi_{z}(t)\right) \times \frac{U_{\mathrm{opt}}^{-}\left(\Phi_{z}(t), s+t\right)}{U_{\mathrm{opt}}\left(\Phi_{z}(t), s+t\right)} \tag{16}\\
& K_{\mathrm{opt}}\left(z^{-}, z ; s\right)=K_{0}\left(z^{-}, z\right) \times \frac{U_{\mathrm{opt}}(z, s)}{U_{\mathrm{opt}}^{-}\left(z^{-}, s\right)} \tag{17}
\end{align*}
$$

If the process is k times more likely to realize the event:
1 by jumping now from state z, then $\lambda_{\text {opt }}(z)$ should be k times λ_{0},
2 by going to state z after a jump from state z^{-}, then $K_{\text {opt }}\left(z^{-}, z\right)$ should be k times $K_{0}\left(z^{-}, z\right)$.

Approximation with MPS

Approximation of the committor function with minimal path sets

The path sets of a system are the sets of components such that:
1 keeping all components of any path set intact prevents system failure.
$\sqrt{2}$ keeping one component broken in each path set ensures system failure.

A Minimal Path Set is a path set that does not contain any other path set.
We note:

- $d_{\text {MPS }}$ the number of MPS (they are unique if the system is coherent),
- $\beta^{(\mathrm{MPS})}(z)$ the number of MPS with at least one broken component.

A good U_{θ} should therefore be increasing in $\beta^{(\mathrm{MPS})}(z)$.

Minimal path sets: the spent fuel pool case

Figure 4: Physical representation of the SFP

Figure 5: Functionnal diagram of the SFP

8 MPS in the spent fuel pool system: (with $\boldsymbol{L}_{\boldsymbol{j}}=\left(L_{i, j}\right)_{i=1}^{3}$ for $j=1,2,3$)

$$
\begin{aligned}
& \left(G_{0}, S_{1}, L_{1}\right),\left(G_{1}, S_{1}, L_{1}\right),\left(G_{0}, S_{1}, \boldsymbol{L}_{2}\right),\left(G_{2}, S_{1}, \boldsymbol{L}_{2}\right), \\
& \left(G_{0}, S_{1}, L_{3}\right),\left(G_{3}, S_{1}, L_{3}\right),\left(G_{0}, S_{2}, L_{3}\right),\left(G_{3}, S_{2}, L_{3}\right) .
\end{aligned}
$$

Our MPS-based proposition

For $\boldsymbol{\theta} \in \mathbb{R}_{+}^{d_{\text {MPs }}}$ we propose:

$$
\begin{equation*}
U_{\theta}^{(\mathrm{MPS})}(z)=\exp \left[\left(\sum_{i=1}^{\beta^{(\mathrm{MPS})}(z)} \theta_{i}\right)^{2}\right] \tag{18}
\end{equation*}
$$

Flexible dimension of $\boldsymbol{\theta}$: imposing equality on some coordinates of $\boldsymbol{\theta}$ reduce its effective dimension and simplify the search for a good $\boldsymbol{\theta}$ when $d_{\text {MPS }}$ is large.
\rightarrow Example for dimension 1 with $\theta_{1}=\cdots=\theta_{d_{\text {MPS }}}$:

$$
\begin{equation*}
U_{\theta}^{(\mathrm{MPS})}(z)=\exp \left[\left(\theta_{1} \beta^{(\mathrm{MPS})}(z)\right)^{2}\right] \tag{19}
\end{equation*}
$$

The form $x \mapsto \exp \left(x^{2}\right)$ garantees that the ratios $U_{\theta}^{-} / U_{\theta}$ are strictly increasing in $\beta^{(\mathrm{MPS})}$. Without this condition, it is increasingly difficult to break new components and they are repaired faster and faster as they are lost.

Minimal cut sets

Minimal cut sets: smallest sets of components that if left broken ensure system failure. (permanent repair of one component in each group prevents the failure)

In this system: there is 69 minimal cut sets for 15 components.

Figure 6: Functionnal diagram of the SFP

Adaptive algorithm

Asymptotic confidence interval

Assumptions

1 The functions λ, K, and $\left(U_{\theta}\right)_{\theta \in \Theta}$ are bounded on their support below and above by strictly positive constants,
[2 $\theta_{\text {opt }} \in \Theta$ is the unique maximizer of $\boldsymbol{\theta} \mapsto \mathbb{E}_{f_{0}}\left[\mathbb{1}_{\mathbf{Z} \in \mathcal{T}_{\mathcal{F}}} \log g_{\boldsymbol{\theta}}(\mathbf{Z})\right]$,
3 there is $t_{\varepsilon}>0$ such that $t_{z}^{\partial} \geq t_{\varepsilon}$ for any $z^{-} \in \partial E$ and any $z \in \operatorname{supp} K\left(z^{-}, \cdot\right)$.

Under these assumptions, with $\widehat{\sigma}^{2}=\frac{1}{\sum_{j=1}^{j n_{j}}} \sum_{j=1}^{J} \sum_{k=1}^{n_{j}} \mathbb{1}_{\mathbf{z}_{j, k} \in \mathcal{T}_{\mathcal{F}}} \frac{f_{0}\left(\mathbf{z}_{j, k}\right)^{2}}{g_{\theta(\mathcal{U})}\left(\mathbf{z}_{j, k}\right)^{2}}-\widehat{\mathrm{P}}_{\mathcal{F}}^{2}$ the estimator of the asymptotic variance $\mathbb{E}_{f_{0}}\left[\mathbb{1}_{\mathbf{Z} \in \mathcal{T}_{\mathcal{F}}} \frac{f_{\mathcal{F}}(\mathbf{Z})}{g_{\theta_{\text {opt }}}}(\mathbf{Z})\right]-\mathrm{P}_{\mathcal{F}}^{2}$, and with $v_{1-\alpha / 2}$ the $(1-\alpha / 2)$-quantile of the $\mathcal{N}(0,1)$ distribution, we have :

$$
\mathbb{P}\left(\mathrm{P}_{\mathcal{F}} \in\left[\widehat{\mathrm{P}}_{\mathcal{F}}-v_{1-\alpha / 2} \sqrt{\hat{\sigma}^{2} / N_{J}} ; \widehat{\mathrm{P}}_{\mathcal{F}}+v_{1-\alpha / 2} \sqrt{\hat{\sigma}^{2} / N_{J}}\right]\right) \underset{N_{J} \rightarrow \infty}{\longrightarrow} 1-\alpha .
$$

Off-policy best arm identification in multi-armed bandit

- Several nominal distributions π_{1}, \ldots, π_{d},
- $\mu_{i}:=\mathbb{E}_{\pi_{i}}[\varphi(\mathbf{Z})]$ for $i=1, \ldots, d$ and a function φ (example: $\varphi=\mathbb{1}_{\mathcal{D}}$).

Objective: find the best distribution $\arg \min \mathbb{E}_{\pi_{i}}[\varphi(\mathrm{Z})]$

$$
i \in\{1, \ldots, d\}
$$

Reverse importance sampling: if we draw $\left(\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{N}\right) \sim\left(\otimes_{k=1}^{N} q_{k}\right)$ then:

$$
\widehat{\mu}_{i}=\frac{1}{N} \sum_{k=1}^{N} \varphi\left(\mathbf{Z}_{k}\right) \frac{\pi_{i}\left(\mathbf{Z}_{k}\right)}{q_{k}\left(\mathbf{Z}_{k}\right)} \quad \text { for any } i=1, \ldots, d
$$

Best sequential sampling policy?

Stability of the method

Figure 7: $\mathbf{5 0}$ confidence intervals with AIS-MPS method and sample size of 1000 vs 1 confidence interval with CMC method and sample size of 10^{7}.

