Bayesian contributions to radiation dose estimation in biological retrospective dosimetry.

Sophie Ancelet¹, Gaëtan Gruel², Eric Grégoire², Aurélie Vaurijoux², Laurence Roy ³, Joan Francesco Barquinero Estruch ⁴

¹IRSN, PSE-SANTE/SESANE/LEPID, France (sophie.ancelet@irsn.fr)
²IRSN, PSE-SANTE/SERAMED/LRAcc, France
³IRSN, PSE-SANTE/SESANE, France
⁴Universitat Autònoma de Barcelona, Facultat de Biociències, Spain

Journée "Big Ideas for Small Data", 13th May 2019

Bayesian contributions

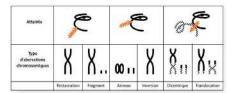
- Introduction

Context

Introduction

- Accidents leading to unplanned exposure of humans to ionizing radiation (IR) have occurred many times
 - overexposure in radiotherapy services or occupational settings
 - large-scale nuclear accidents
- Unclear radiation exposure scenarios and/or inconsistent findings
 - workers at risk of exposure may not wear their obligatory personal dosimeter
 - workers at risk of exposure may not store it correctly after use.
- Estimation of the absorbed radiation dose received by an exposed or suspected exposed individual may be crucial to:
 - Optimize patient-centered care
 - Predict the derived health consequences for both early and late effects
 - Perform rapid triage of exposed versus non-exposed persons
 - Clarify unclear radiation exposure scenarios
 - Appease the "worried well" persons

Dose assessment \Rightarrow Proof of exposure by court and professional associations


Biological retrospective dosimetry

- It offers the only possibility to estimate the individual absorbed dose
 - even weeks or months after a potential exposure (Kulka et al. (2018)).
 - when a direct measurement of IR exposure is not or no longer possible

Main goal

Estimation of the individual absorbed radiation dose from microscope counting of radiation-related **chromosomal anomalies**

- Radiation exposure causes chromosomal DeoxyriboNucleic Acid (DNA) lesions like double-stand breaks
- The broken fragments may repair incorrectly ⇒ Chromosome aberrations

The dicentric chromosome assay (DCA)

- Dicentrics have a low naturally occurring background frequency
- Frequencies of dicentrics increase with the absorbed dose
 Well-established and highly specific biological marker of radiation exposure
- Scoring dicentrics in peripheral human blood lymphocytes: "gold standard" biological method for retrospective dose estimation (IAEAb (2011)).

Photo: Olivier Seignette/Mikael Lafontan/Mediathèque IRSN

Main questions

Data

Introduction

Given the number of dicentrics per cell observed in blood lymphocytes:

Question Q1

Can it be stated that a strictly positive radiation dose has been received by :

- all of the analyzed cells (whole-body irradiation)?
- only a fraction of the analyzed cells (partial irradiation)?
- one of the analyzed cells ? (Relevant for unclear exposure scenarios)

Main questions

Given the number of dicentrics per cell observed in blood lymphocytes:

Question Q1

Can it be stated that a strictly positive radiation dose has been received by :

- all of the analyzed cells (whole-body irradiation)?
- only a fraction of the analyzed cells (partial irradiation)?
- one of the analyzed cells ? (Relevant for unclear exposure scenarios)

Question Q2

What is the estimated absorbed dose and the uncertainty associated to this estimation?

- Introduction
- 2 Data

- Standard approaches
- Bayesian contributions
- 5 Conclusion & Perspectives

4 real radiation accident victims (2006-2013) In-vivo data provided by IRSN/LRAcc

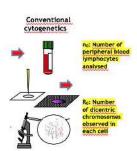
Kenter of America

Introduction

ld	Circumstances of accident		Clinical signs	Physical dosimetry	Conventional cytogenetics		
06-11	Exposure to y-rays		Vomiting (4h30), nausea, e to γ-rays hair loss, N Lymphocytes: 0.8 × 10 ⁻³		→ 📅	n ₀ : Number of peripheral blo lymphocytes	
11-08			Hematopoetic syndrom 7 days after exposure	No	I U	analysed	
08-03	Put the γ-source (lr) in his hand then in his pocket (10 minutes to 1 hour) -> Hand burn		lymphocytes: 1.05×10-3	0.25 Sv		R ₀ : Number of dicentric	
05-03			Erythema (collarbone) Lymphocytes: 2.39×10 ⁻³	0.045 Sv	· 1 ()	chromosomes observed in each cell	
	96-17	11.00	**-00		21 (1)		
2		F. /	2-1	1 *			
2-		1	5 -	2 -			
2.		The state of the s	Pasition	1			

Kenter of Company

Named Column

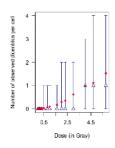


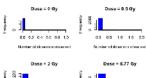
8 suspected exposed individuals (2006-2013) In-vivo data provided by IRSN/LRAcc

4 real suspected individuals (2006-2013) From IRSN/LRAcc

ld	Circumstances of accident	Clinical signs	Physical dosimetry
06-63	Exposure to γ-rays (10-15 minutes)	No	No
06-70	Spent the night 25 centimeters away from a γ-source	No	No
06-13	Colleague of 06-11	No	No
06-15	Colleague of 06-11	No	No

For some of them, no dicentric was observed...





Calibration data (Cobalt 60) - In-vitro data provided by IRSN/LRAcc

In-vitro irradiation of blood samples - various healthy donors - different doses

Number of analyzed cells	Dose (Gray)	Number of dicentrics
19194	0	21
1676	0.05	3
1552	0.10	6
481	0.15	3
1057	0.24	11
1768	0.30	38
1187	0.33	18
2919	0.50	83
1538	0.80	100
869	1	90
1525	1.6	269
1844	2	545
352	2.31	122
784	3	482
534	4	521
341	4.70	381
94	5.77	143

Bayesian contributions

- Standard approaches

Let's consider a given individual with n_0 analyzed cells:

- D_0 : **Unknown** absorbed dose (in Gray) received by each cell
- R_k : Number of dicentrics observed in each cell k $(k = 1, ..., n_0)$

In case of LOW-LET radiation and homogeneous irradiation

$$(\mathcal{M}_A)$$
 $R_k \sim^{i.i.d} Poisson(\lambda_0)$ $\lambda_0 = A + \alpha D_0 + \beta D_0^2$

- $\theta = (A, \alpha, \beta)$: unknown parameters with A > 0, $\beta > 0$, $\alpha > -2\sqrt{A\beta}$
- A: background expected number of dicentrics per cell at dose $D_0 = 0$
- $Y_0 = \sum_{k=1}^{n_0} R_k \sim Poisson(n_0 \lambda_0)$

Non-identifiable model \Rightarrow External data required to estimate $\theta = (A, \alpha, \beta)$

Dose-response model $\mathcal{M}_{\mathcal{C}}$ for calibration data

Let's consider a given experimental (in-vitro) irradiation $i \in \{1, ..., I\}$

- D_i: Fixed absorbed dose (in Gray) received by each cell
- $Z_{i,l}$: Number of dicentrics observed in each cell $l \in \{1, ..., n_i\}$ at dose D_i

In case of LOW-LET radiation and homogeneous irradiation

At a given dose D_i :

$$(\mathcal{M}_C)$$
 $Z_{i,l} \sim^{i.i.d} Poisson(\lambda_i)$ $\lambda_i = A + \alpha D_i + \beta D_i^2$

$$\Rightarrow Y_i = \sum_{l=1}^{n_i} Z_{i,l} \sim Poisson(n_i \lambda_i)$$

where Y_i is the total number of dicentrics observed at dose D_i and n_i the total number of analyzed cells

Answering Q_2 - Estimation of the dose

- Fit $\mathcal{M}_{\mathcal{C}}$ to calibration data using maximum likelihood estimation
- Plug $\hat{\theta} = (\hat{A}, \hat{\alpha}, \hat{\beta})$ into $\mathcal{M}_{\mathcal{A}}$
- Derive point estimate $\hat{D_0}$ of the absorbed dose D_0 (inverse regression)

$$\hat{D_0} = g(\hat{A}, \hat{\alpha}, \hat{\beta}) = \frac{-\hat{\alpha} + \sqrt{\hat{\alpha}^2 + 4\hat{\beta}(\hat{\lambda_0} - \hat{A})}}{2\hat{\beta}}$$

where
$$\hat{\lambda_0} = rac{Y_0}{n_0}$$

ld	Circumstances of accident	MLE for the dose D ₀	Id	Circumstances of accident	MLE for the dose D ₀
06-11	Exposure to γ-rays	4.40	06-13	Colleague of 06-11	0.02
11-08	Medical context; 10 minutes located next to a γ-source (Co 60)	1.88	06-14	Colleague of 06-11	0.02
08-03	Put the γ-source (Ir) in his hand then in his pocket (10 minutes to 1 hour) -> Hand burn	0.23	06-15	Colleague of 06-11	-0.03
05-03	Exposure head and chest: 15-30 seconds Shoulders 5cms away from the X source. Neck 20cms away from the X source.	0.11	06-16	Colleague of 06-11	0.02
06-63	Exposure to γ-rays (10-15 minutes)	0.15	04-14	Positive dosimeter	-0,03
06-70	Spent the night 25 centimeters away from a v-source	0,25	13-09	Positive dosimeter	-0.03

Potential drawbacks:

- If $\hat{\lambda_0} = \frac{Y_0}{p_0} = 0$ then $\hat{D}_0 < 0$ (Context: Small signal in the data)
- Prior information on the dose not accounted for
- Modular approach : Disjoint estimation of θ and D₀

Answering Q_2 - Derive a 95% confidence interval on \hat{D}_0

Approach 1: Multivariate delta-method

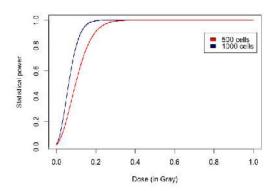
$$\begin{split} \sigma_{\hat{D_0}}^2 &= \sigma_{\hat{A}}^2 \left(\frac{\partial \mathbf{g}}{\partial \mathbf{A}} \right)_{A=\hat{A}}^2 + \sigma_{\hat{\alpha}}^2 \left(\frac{\partial \mathbf{g}}{\partial \alpha} \right)_{\alpha=\hat{\alpha}}^2 + \sigma_{\hat{\beta}}^2 \left(\frac{\partial \mathbf{g}}{\partial \beta} \right)_{\beta=\hat{\beta}}^2 + \sigma_{\hat{\lambda_0}}^2 \left(\frac{\partial \mathbf{g}}{\partial \lambda_0} \right)_{\lambda_0 = \frac{Y_0}{n_0}}^2 \\ &+ 2 \left(\frac{\partial \mathbf{g}}{\partial \mathbf{A}} \right)_{A=\hat{A}} \left(\frac{\partial \mathbf{g}}{\partial \alpha} \right)_{\alpha=\hat{\alpha}} \operatorname{cov}(\hat{A}, \hat{\alpha}) + 2 \left(\frac{\partial \mathbf{g}}{\partial \alpha} \right)_{\alpha=\hat{\alpha}} \left(\frac{\partial \mathbf{g}}{\partial \beta} \right)_{\beta=\hat{\beta}} \operatorname{cov}(\hat{\alpha}, \hat{\beta}) \\ &+ 2 \left(\frac{\partial \mathbf{g}}{\partial A} \right)_{A=\hat{A}} \left(\frac{\partial \mathbf{g}}{\partial \beta} \right)_{\beta=\hat{\beta}} \operatorname{cov}(\hat{A}, \hat{\beta}) \end{split}$$

- \Rightarrow Asymptotical 95% confidence interval on dose estimate: $\hat{D}_0 \pm 1.96\hat{\sigma}_{D_0}$
 - Approach 2: Bootstrap

Potential drawbacks:

- Is the asymptotic assumption correct?
- Bootstrap ⇒ Strong data redundancy if small signal in data
- Uncertainty on the dose estimation may depend on the statistical method used to compute the confidence interval 4 D F A A F F A F F

Answering Q1 - Strictly positive absorbed dose received?


Hypothesis testing: $H_0: D_0 = 0$ vs $H_1: D_0 = d_1$ (with $d_1 > 0$)

- Test statistic: $Y_0 = \sum_{k=1}^{n_0} R_k$
- Under H_0 , $Y_0 \sim Poisson(n_0A)$
- Critical region: $[y_0^*, +\infty]$ with $y_0^* = 0.95$ quantile of $Poisson(n_0\hat{A})$
 - y_0^* is called "Decision threshold"
- If $y_0^{obs} > y_0^*$, H_0 is rejected with error (of the first kind) = 0.05
- Statistical power: $1 Frd_{H_1}(y_0^*)$ where Frd_{H_1} cumulative distribution function of a Poisson distribution with intensity $= n_0(\hat{A} + \hat{\alpha}d_1 + \hat{\beta}d_1^2)$
 - Detection Limit: The smallest value of dose d₁ from which the statistical power of the test is greater or equal to 0.95

Answering Q1 - Strictly positive absorbed dose received?

Answering Q1 - Strictly positive absorbed dose received?

ld	n _a	y _i	Ye	DL
06-11	139	155	10	0.51
11 08	451	112	2	0.25
08-03	1024	13	3,	0.14
05-03	500	3	2	0.23
06-63	500	4	2	0.23
6-70	356	5	2	0.30

DL = Detection Limit

Data

Potential drawbacks:

- Binary answer to Q₁: Rejection of H₀ or not
- D₀ is unknown! : Statistical power?
- The statistical power may be very small for small doses D₀...
- Uncertainty on the estimation of the background expected number of dicentrics per cell A not accounted for
- Does not allow to test if only a fraction of the analyzed cells have received a strictly positive radiation dose 4 円下 4 冊下 4 差下 4 差下

Aim of the work

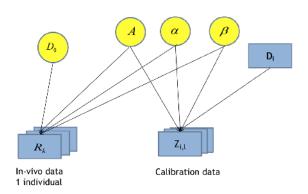
Introduction

ullet Can Bayesian statistical methods offer relevant alternative answers to questions Q_1 and Q_2 in biological retrospective dosimetry ?

- ullet To account for **expert knowledge** when assigning a prior distribution on the unknown absorbed dose D_0
- To propose a unique, flexible and coherent framework allowing to simultaneously answer to questions Q_1 and Q_2

Bayesian contributions

Introduction


- Bayesian contributions

Which model?

Approach 1: the one previously described.... Directed Acyclic Graph of the full model $(\mathcal{M}_A + \mathcal{M}_C)$

- $\theta = (A, \alpha, \beta)$: shared parameters
- Possibility for the in-vivo data to be accounted for when fitting A, α , β
- The Bayesian framework allows fitting this model in one step.

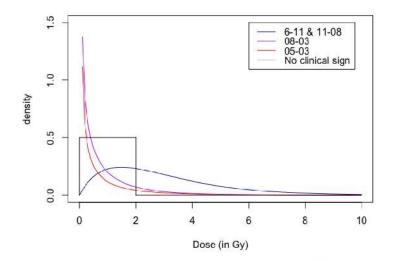
Bayesian contributions

- $A \sim Unif[0, +\infty[$
- $\alpha \sim Unif[-2\sqrt{A\beta}, +\infty[$
- $\beta \sim Unif[0, +\infty[$
- Prior probability distribution on D₀
 - $D_0 \sim Unif(0,10) \Rightarrow Vague prior$
 - $D_0 \sim Gamma(a, b) \Rightarrow Informative prior$

Using expert knowledge to define an informative Gamma prior D_0

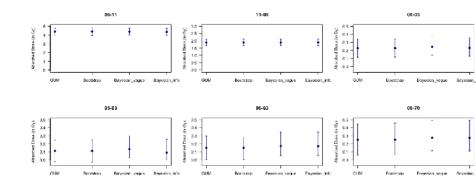
 Hyperparameters a and b of the Gamma prior may be fixed by expert knowledge given the accident scenario

ld	Circumstances of accident	Clinical signs	Physical dosimetry	Prior distribution on D_α
06-11	Exposure to γ-rays	Vomiting (4h30), nausea, hair loss, Lymphocytes: 0.8×10 ⁻¹	No	D ₀ .median=2.5 D ₀ max = 10 (q99-10) D ₀ -Gamma(a=1.98 , b=0.66)
11-08	Medical context; 10 minutes located next to a y- source (Co 60)	Hematopoetic syndrom 7 days after exposure	No	D ₀ .median=2.5 D ₀ max = 10 (q99-10) D ₀ -Gamma(a=1.98 , b=0.66)
08-03	Put the y-source (ir) in his hand then in his pocket (10 minutes to 1 hour) -> Hand burn	lymphocytes: 1.05×10 ⁻³	0.25 Sv	D ₀ .median=0.25 D ₀ max = 5 (q99-5) D ₀ =Gamma(a=0.4, b=0.6)
05-03	Exposure head and chest: 15- 30 seconds Shoulders 5cms away from the X source Neck 20cms away from the X source	Erythema (collarbone) Lymphocytes: 2.39 × 10 ⁻¹	0.045 Sv	D ₀ .median=0.045 D ₀ max = 5 (q99-5) D ₀ -Gamma(a=0.2, b=0.44)


For individuals for which no clinical sign was observed: $D_0 \sim \textit{Unif}(0,2)$

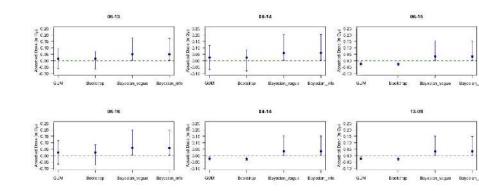
⇒ Not enough informative! To improve!

Using expert knowledge to define an informative Gamma prior on D_0



Answering Q_2 - Bayesian estimation of the dose

MCMC algorithm - Package R "rjags"



GUM= Multivariate Delta-Method

Answering Q_2 - Bayesian estimation of the dose

BUT...

Given the prior distribution assigned to D_0 , we are assuming that $D_0 > 0$

Bayesian contributions

⇒ Is this assumption relevant for all the considered individuals?

Answering Q_1 and Q_2 under the Bayesian framework

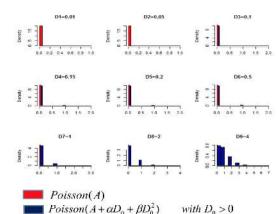
Question Q_1

Can it be stated that a **strictly positive radiation dose** has been received by :

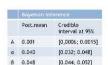
- **1 all of the** analyzed cells (whole-body irradiation)?
- only a fraction of the analyzed cells (partial irradiation)?
- one of the analyzed cells ? (Relevant for unclear exposure scenarios)

The above sub-questions 1 and 3 can be formalized as :

A Bayesian model selection problem


 $\mathcal{M}_0: \textit{R}_k \sim^{\textit{i.i.d}} \textit{Poisson}(\textit{A}) \qquad \mathrm{vs} \qquad \mathcal{M}_{\textit{A}}: \textit{R}_k \sim^{\textit{i.i.d}} \textit{Poisson}(\textit{A} + \alpha \textit{D}_0 + \beta \textit{D}_0^2)$

given in-vivo data and calibration data following model $\mathcal{M}_{\mathcal{C}}$ $(D_0 > 0)$



Answering Q_1 and Q_2 under the Bayesian framework

Answering Q_1 and Q_2 under the Bayesian framework

Introduction

 \Rightarrow A Bayes factor (Jeffreys, 1939) can be efficiently approximated (e.g., Monte-Carlo estimate)

But what about sub-question 2 about partial irradiation?

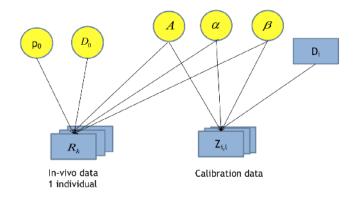
Idea: using a mixture model (Kamary et al. (2014) - arXiv)

Let's consider a given individual - potentially exposed - with n_0 analyzed cells:

- p_0 : unknown probability for each cell to have received a dose > 0
- D_0 : unknown absorbed dose (in Gray) received by each irradiated cell

A mixture model for in-vivo data (LOW LET + homogeneous irradiation)

$$\mathcal{M}_{mix}$$
: $R_k \sim^{i.i.d} (1 - p_0) Poisson(A) + p_0 Poisson(A + \alpha D_0 + \beta D_0^2)$


• $D_0 > 0$ and $p_0 \in [0, 1]$

Introduction

- $\theta = (A, \alpha, \beta)$: unknown parameters with A > 0, $\beta > 0$, $\alpha > -2\sqrt{A\beta}$
- A: common parameter shared by both mixture components
- p_0 can also be interpreted as the proportion of irradiated cells
- D_0 and p_0 assumed to be identical for each irradiated cell
- \mathcal{M}_0 and \mathcal{M}_A are very special cases of the mixture model

Directed Acyclic Graph of the full model $(\mathcal{M}_{mix} + \mathcal{M}_{C})$

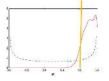
Bayesian contributions

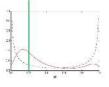
- $\theta = (A, \alpha, \beta)$: shared parameters
- The Bayesian framework allows fitting this model in one step.

Data

- If $p_0 = 0$, model \mathcal{M}_0 is selected given the available count data
 - ullet Response to Q_1 is NO= "There is no evidence that a strictly positive radiation dose has been received".
- If $p_0 = 1$, model \mathcal{M}_A is selected given the available count data
 - ⇒ Response to Q₁ is YES= "A strictly positive radiation dose has been received by all the analyzed cells".
- If $p_0 \in]0,1[$, neither model \mathcal{M}_0 nor model \mathcal{M}_A is selected given the available count data
 - Response to Q₁ is YES= "A strictly positive radiation dose has been received BUT only by a fraction of the analyzed cells" (partial body exposure).
 - The fraction of the body irradiated is defined as (IAEA report 2001):

$$F_0 = \frac{p_0 \times \exp(D_0/\tilde{D})}{(1 - p_0) + p_0 \times \exp(D_0/\tilde{D})} \qquad \tilde{D} \sim \textit{Unif}(2.7, 3.5)$$





Answering to Q_1 and Q_2 with \mathcal{M}_{mix} (2/2)

Introduction

- ullet Posterior distribution on $p_0 \Rightarrow$ Probabilistic answer to Q_1
- ⇒ Decision criterion to define the range of acceptance, rejection and indecision conclusions

- Let's c_1 , c_2 , U be fixed decision thresholds (to calibrate by simulation)
- Compute $\pi_1 = P(p_0 > c_1 | Y_i, R_k)$ and $\pi_2 = P(p_0 < c_2 | Y_i, R_k)$
 - If π₁ > U ⇒ YES= "There is strong evidence that a strictly positive radiation dose has been received by all of the analyzed cells".
 - If $\pi_2 > U \Rightarrow$ NO= "There is no evidence that a strictly positive radiation dose has been received".
 - Else YES= "A strictly positive radiation dose has been received BUT only by a fraction of the analyzed cells" (partial body exposure).

- $A \sim Unif[0, +\infty[$
- $\alpha \sim Unif[-2\sqrt{A\beta}, +\infty[$
- $\beta \sim Unif[0, +\infty[$
- $D_0 \sim Gamma(a, b)$ or $D_0 \sim Unif(0, 10)$
- $p_0 \sim Beta(c,d)$
- Hyperparameters a,b,c,d may be fixed by expert knowledge given the accident scenario

Bayesian contributions

• Default choice (Rousseau and Mengersen (2011)): c=0.5,d=0.5

Bayesian inference

Introduction

Adaptive Metropolis-Hastings algorithm

- Block updating for (A, α, β) using a Gaussian random walk (20% acceptation rate)
- Gaussian random walk for D_0 (40% acceptation rate)
- For the mixture weight p_0 :
 - Iteration t: Independent proposal $\Rightarrow p_0^{cand} \sim Beta(0.5, 0.5)$
 - Iteration t+1: Random walk $\Rightarrow p_0^{cand} \sim \textit{Beta}(1+p_0^t,2-p_0^t)$
 - 40% acceptation rate
- Implemented in Python (2.7.10) (100000 iterations = 30 seconds)

Asymptotic consistency of the proposed mixture testing procedure

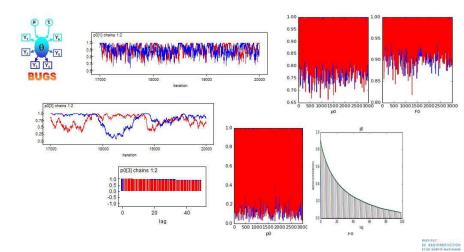
- Proved by Kamary et al. (2014) in the specific case of embedded mixture components
 - "If one model is indeed correct, the posterior medians of the corresponding weight in the mixture settles very quickly near the boundary values of 1 as the sample size increases"

Introduction

Data

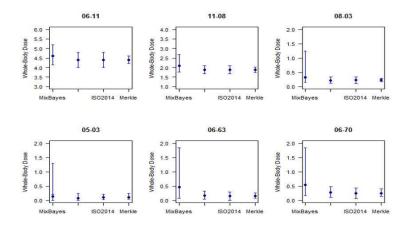
• Equivalent formulation of \mathcal{M}_{mix} pointing out the latent allocation variables

$$\mathcal{M}_{mix}$$
: $R_k \sim^i Poisson(\lambda_k)$ with $\lambda_k = A + \alpha D_{0k} + \beta D_{0k}^2$
 $D_{0k} = \gamma_k \times D_0$ with $\gamma_k \sim Bern(p_0)$


Easy implementation in WinBUGS or JAGS but inefficient Gibbs sampler!!!

Convergence diagnostics on the weight p_0

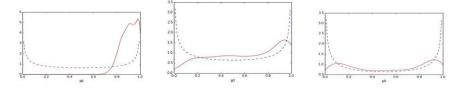
Gibbs sampler (Left) vs Adaptive Metropolis-Hastings (Right)


Introduction

Posterior statistics, Bayes factor and posterior probability of \mathcal{M}_1

	Bayesian Mixture approach <u>Informative prior</u> on D ₀ <u>Non-informative prior</u> on p ₀					Bayes Factor M ₁ vs M ₀ (Kass & Raftery (1995)	P(M ₁ y)
	D₀ posterior median 95%CI	p₀ posterior median 95%CI	F₀ posterior median 95%Cl	P(p ₀ >0.8)	P(p ₀ <0.2)		
06-11	4.61 [4.14; 5.19]	0.91 [0.76,1.00]	0.97 [0.90; 1.00]	0.93	0.0	+∞ (very strong)	1 [1.0; 1.0]
11-08	2.09 [1.76; 2.69]	0.84 [0.56; 1.00]	0.90 [0.69; 1.00]	0.60	0.0	1.75°+185 (very strong)	1 [1.0; 1.0]
08-03	0.32 [0.15; 1.25]	0.67 [0.10; 1.00]	0.69 [0.11; 1.00]	0.39	0.11	>10^7 (very strong)	1 [1.0; 1.0]
05-03	0.13 [0.0002; 1.29]	0.54 [0.011; 1.0]	0;55 [0.01; 1.0]	0.31	0.25	4 (Positive)	0.67 [0.63; 0.70]
06-63	0.47 [0.08; 1.84]	0.23 [0.02; 0.99]	0.26 [0.02; 0.99]	0.16	0.46	8.3 (Positive)	0.86 [0.83; 0.88]
06-70	0.55 [0.16; 1.84]	0.36 [0.04; 1.00]	0.40 [0.06; 1.00]	0.21	0.33	303.03 (Very Strong)	1.00 [1.0; 1.0]

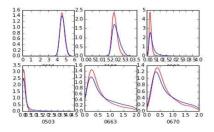
Comparison of dose estimations

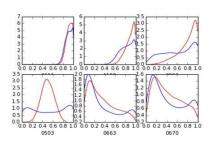

Posterior medians + 95% credible intervals ISO2014 = Multivariate Delta Method

Comparing prior and posterior probability distributions on p_0

Prior probability distribution on p_0 : Beta(0.5,0.5)

From left to right: Victims 06-11 (Estimated dose: 4.61 Gy), 08-03 (Estimated dose: 0.32Gy), 05-03 (Estimated dose: 0.13Gy)


- Weak influence of the prior choice on D_0 (results not shown)
- ullet Lack of information in the data to infer p_0 especially when dose is small
 - \Rightarrow More data needed to infer p_0 (and then answer Q_1)?



Sensitivity to the prior choice on p_0

- Informative Beta priors defined from expert knowledge
- Jeffrey's prior Beta(0.5,0.5)

Posterior distribution on the dose D_0

Posterior distribution on the weight p_0

⇒ Sensitivity is clearly present but should naturally vanish as the number RSN of analyzed blood lymphocytes increases

- **5** Conclusion & Perspectives

Conclusions

Data

Introduction

- First fully Bayesian approach proposed to simultaneously answer to two main questions of interest in biological retrospective dosimetry
 - New insights to the European Radiation Dosimetry (EURADOS)
 Working Group 10, task 10.6
- Using the proposed mixture model \mathcal{M}_{mix} allows to get rich probabilistic answers to questions Q_1 and Q_2
 - Relevant input data for decision-making in the contexts of clinical management of patients, rapid triage after large-scale radiation incident, reassuring the 'worried-well'...
- ullet In case of low suspected dose, the number of analyzed blood lymphocytes should be higher to obtain more precise answers to question Q_1

Introduction

- Simulation studies to validate the whole methodology and calibrate the decision thresholds (c_1, c_2, U)
- Validate the whole methodology from new experimental data for which D_0 and p_0 are known
- Bayesian optimal design to define the number of analyzed cells n₀ required to optimally answer to question Q_1 and Q_2 under budget constraint
- Extend the proposed approach to other chromosome aberrations
- Provide operational tools to dosimetrists

Bibliography

- [1] IAEA 2011 report (2011) Cytogenetic dosimetry: applications in preparedness anfor and response to radiation emergencies. International Atomic Energy Agency: Vienna.
- [2] Merkle W. (1983) Statistical Methods in Regression and Calibration Analysis of Chromosome Aberration Data. Radiat Environ Biophys. 1:217-233
- [3] Ainsbury et al. (2014) Review of Bayesian statistical analysis methods for cytogenetic radiation biodosimetry with a practical example. Radiation Protection Dosimetry. 162(3):185-96
- [4] Higueras et al. (2016) A new Bayesian model applied to cytogenetic partial body irradiation estimation. Radiation Protection Dosimetry. 168(3):330-6
- [5] Kamary K., Mengersen K., Robert CP., Rousseau J. (2014) Testing hypotheses via a mixture estimation model. ArXiv:1412.2044v2

