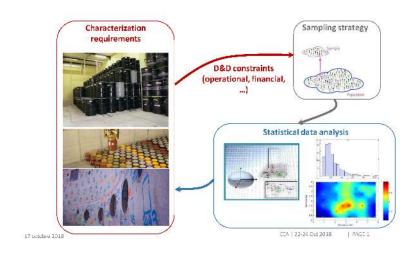
Statistical characterization for nuclear dismantling applications with small data sets

G. Blatman¹, T. Delage¹, B. looss¹, N. Pérot²

¹ EDF R&D, France; ² CEA/DEN, France

SFdS/MASCOT-NUM meeting - Big ideas for small data

Context



2/17

Problem statement

Context: Radiological characterization of contaminated elements from nuclear facilities

Problem: Small number of available data

→ Inappropriate statistical tools (e.g. Gaussian approximation) to determinate risk confidence bounds

Ex : The 2σ rule (95% of values inside $\pm 2\sigma)$ works in the Gaussian case

Risks of a wrong estimation of the contamination : Under-estimation (impact on safety) or over-estimation (impact on economic cost)

Strategy: Resort to robust inequalities which only depend on weak assumptions about the statistical distribution of the measured quantity

Outline

- Prediction, tolerance and confidence intervals
- 2 Application to real measurements

Outline

- Prediction, tolerance and confidence intervals
- 2 Application to real measurements

Probabilistic framework

- ullet Consider a set of measures $\mathcal{X} = \{X_1, \dots, X_n\}$ of a given quantity
- ullet They are assumed to be independent copies of a continuous random variable X with unknown distribution (but finite mean and variance)
- In the context of risk analysis, it is relevant to estimate from the data the three following kinds of probabilistic intervals:

Unilateral prediction interval

 $\mathbb{P}\left[X\leqslant s\right]\geqslant\gamma$

Unilateral tolerance interval

$$\mathbb{P}\left[\mathbb{P}\left[X\leqslant s\right]\geqslant\gamma\right]\geqslant\beta$$

Bilateral confidence interval $on \ u = \mathbb{E}\left[X
ight]$

$$[s_1 \leqslant \mu \leqslant s_2] \geqslant \gamma$$

 s, s_1, s_2 : threshold values γ, β : prescribed probabilities (e.g. 95%) $\alpha = 1 - \gamma$: probabilistic risk bound; then $\mathbb{P}[X \geqslant s] \leqslant \alpha$

Probabilistic framework

- ullet Consider a set of measures $\mathcal{X} = \{X_1, \dots, X_n\}$ of a given quantity
- ullet They are assumed to be independent copies of a continuous random variable X with unknown distribution (but finite mean and variance)
- In the context of risk analysis, it is relevant to estimate from the data the three following kinds of probabilistic intervals:

Unilateral prediction interval

 $\mathbb{P}\left[X\leqslant s\right]\geqslant\gamma$

Unilateral tolerance interval

$$\mathbb{P}\left[\mathbb{P}\left[X\leqslant s\right]\geqslant\gamma\right]\geqslant\beta$$

Bilateral confidence interval on $\mu = \mathbb{E}\left[X\right]$

$$\mathbb{P}\left[s_1 \leqslant \mu \leqslant s_2\right] \geqslant \gamma$$

 s,s_1,s_2 : threshold values γ,β : prescribed probabilities (e.g. 95%) $\alpha=1-\gamma$: probabilistic risk bound; then $\mathbb{P}\left[X\geqslant s\right]\leqslant \alpha$

Notation :
$$X \sim \mathsf{N}(\mu, \sigma)$$
 , $\mu = \mathbb{E}\left[X\right]$, $\sigma^2 = \mathbb{V}\mathrm{ar}\left[X\right]$

$$\bar{X}_n=\frac{1}{n}\sum_{i=1}^n~X_i$$
 , $S_n^2=\frac{1}{n-1}\sum_{i=1}^n\left(X_i-\bar{X}_n\right)^2$, $z_u=u\text{-}\mathcal{N}(0,1)\text{-quantile}$

Gaussian case with known (μ, σ) : The exact α -prediction interval is

$$s = \mu + \sigma z_{1-\alpha}$$

Gaussian case with unknown (μ,σ) : The exact lpha/eta-tolerance interval is

$$s = \bar{X}_n + t_{n-1,\beta,\sqrt{n}z_{1-\alpha}} \frac{S_n}{\sqrt{n}}$$

Notation :
$$X \sim \mathsf{N}(\mu, \sigma)$$
 , $\mu = \mathbb{E}\left[X\right]$, $\sigma^2 = \mathbb{V}\mathrm{ar}\left[X\right]$

$$ar{X}_n=rac{1}{n}\sum_{i=1}^n~X_i$$
 , $S_n^2=rac{1}{n-1}\sum_{i=1}^n\left(X_i-ar{X}_n
ight)^2$, $z_u=u$ - $\mathcal{N}(0,1)$ -quantile

Gaussian case with known (μ, σ) : The exact α -prediction interval is

$$s = \mu + \sigma z_{1-\alpha}$$

Gaussian case with unknown (μ,σ) : The exact lpha/eta-tolerance interval is

$$s = \bar{X}_n + t_{n-1,\beta,\sqrt{n}z_{1-\alpha}} \frac{S_n}{\sqrt{n}}$$

Notation :
$$X \sim \mathsf{N}(\mu, \sigma)$$
 , $\mu = \mathbb{E}\left[X\right]$, $\sigma^2 = \mathbb{V}\mathrm{ar}\left[X\right]$

$$ar{X}_n=rac{1}{n}\sum_{i=1}^n~X_i$$
 , $S_n^2=rac{1}{n-1}\sum_{i=1}^n\left(X_i-ar{X}_n
ight)^2$, $z_u=u$ - $\mathcal{N}(0,1)$ -quantile

Gaussian case with known (μ, σ) : The exact lpha-prediction interval is

$$s = \mu + \sigma z_{1-\alpha}$$

Gaussian case with unknown (μ, σ) : The exact α/β -tolerance interval is

$$s = \bar{X}_n + t_{n-1,\beta,\sqrt{n}z_{1-\alpha}} \frac{S_n}{\sqrt{n}}$$

Notation :
$$X \sim \mathsf{N}(\mu, \sigma)$$
 , $\mu = \mathbb{E}\left[X\right]$, $\sigma^2 = \mathbb{V}\mathrm{ar}\left[X\right]$

$$ar{X}_n=rac{1}{n}\sum_{i=1}^n\,X_i$$
 , $S_n^2=rac{1}{n-1}\sum_{i=1}^n\left(X_i-ar{X}_n
ight)^2$, $z_u=u$ - $\mathcal{N}(0,1)$ -quantile

Gaussian case with known (μ, σ) : The exact α -prediction interval is

$$s = \mu + \sigma z_{1-\alpha}$$

Gaussian case with unknown (μ, σ) : The exact α/β -tolerance interval is

$$s = \bar{X}_n + t_{n-1,\beta,\sqrt{n}z_{1-\alpha}} \frac{S_n}{\sqrt{n}}$$

We recall that we look for $\mathbb{P}\left[X\geqslant s\right]\leqslant\alpha$

Concentration inequalities give

$$s = \bar{X}_n + t \quad \text{ and } \quad \alpha = \left(1 + \frac{t^2}{kS_n^2}\right)^{-1}$$

with $t \geq 0$ and k a positive constant

In practice, either s is fixed, either α is fixed (then t is directly recovered)

Bienaymé-Chebyshev (BC)	1	None
Camp-Meidell (CM)	4/9	Unimodal pdf
Van Dantzig (VD)	3/8	Convex pdf tails

Note: Camp-Meidell inequality gives the so-called " 3σ rule"

We recall that we look for $\mathbb{P}\left[X\geqslant s\right]\leqslant\alpha$ Concentration inequalities give

$$s = \bar{X}_n + t \quad \text{ and } \quad \alpha = \left(1 + \frac{t^2}{kS_n^2}\right)^{-1}$$

with $t \ge 0$ and k a positive constant

In practice, either s is fixed, either α is fixed (then t is directly recovered)

Bienaymé-Chebyshev (BC)	1	None
Camp-Meidell (CM)	4/9	Unimodal pdf
Van Dantzig (VD)	3/8	Convex pdf tails

Note: Camp-Meidell inequality gives the so-called " 3σ rule"

We recall that we look for $\mathbb{P}\left[X\geqslant s\right]\leqslant\alpha$ Concentration inequalities give

$$s = \bar{X}_n + t \quad \text{ and } \quad \alpha = \left(1 + \frac{t^2}{kS_n^2}\right)^{-1}$$

with $t \ge 0$ and k a positive constant

In practice, either s is fixed, either α is fixed (then t is directly recovered)

Bienaymé-Chebyshev (BC)	1	None
Camp-Meidell (CM)	4/9	Unimodal pdf
Van Dantzig (VD)	3/8	Convex pdf tails

Note: Camp-Meidell inequality gives the so-called " 3σ rule"

We recall that we look for $\mathbb{P}\left[X\geqslant s\right]\leqslant\alpha$ Concentration inequalities give

$$s = \bar{X}_n + t \quad \text{ and } \quad \alpha = \left(1 + \frac{t^2}{kS_-^2}\right)^{-1}$$

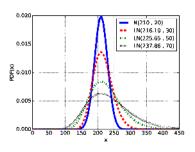
with $t \ge 0$ and k a positive constant

In practice, either s is fixed, either α is fixed (then t is directly recovered)

Inequality name	Value of k	Assumptions
Bienaymé-Chebyshev (BC)	1	None
Camp-Meidell (CM)	4/9	Unimodal pdf
Van Dantzig (VD)	3/8	Convex pdf tails

Note : Camp-Meidell inequality gives the so-called " 3σ rule"

Examples of risk estimates with known distributions of X



$\alpha = 0.05$	$\mathcal{N}(210,20)$	$\mathcal{LN}(216,30)$	$\mathcal{LN}(226, 50)$	$\mathcal{LN}(238,70)$
Gauss	0.05	0.04	0.04	0.03
ВС	0.27	0.25	0.23	0.23
CM	0.14	0.13	0.12	0.12
VD	0.12	0.11	0.10	0.10

Extension to tolerance intervals by bootstrapping

A β -confidence level is required due to the empirical estimation of the mean and standard deviation

$$\mathbb{P}\left[\mathbb{P}\left[X\geqslant s\right]\leqslant\alpha\right]\geqslant\beta$$

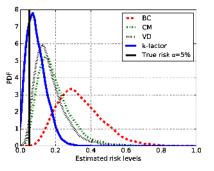
From sample $\mathcal{X} = \{X_1, \dots, X_n\}$, we repeat B times (e.g. B = 500):

- Create a new n-size sample \mathcal{X}' by sampling with replacement in \mathcal{X} ,
- Compute \bar{X}_n and S_n ,
- If s (resp. α) is fixed, compute t and α (resp. s)

From the B-size sample of α values (resp. s values), take the β -quantile of α (resp. s)

Numerical experiments : $X \sim \mathcal{LN}(238,70)$ and n=30

Keep $\beta=95\%$ -quantile of bootstrap sample (B=500) of α estimates



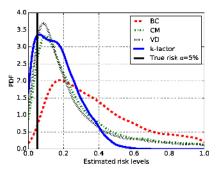
Statistical distributions of the quantiles (N = 5000 repetitions)

Proportion of non-conservative estimates of the exact lpha=5% :

k-factor	ВС	СМ	VD
0.25	0.00	0.00	0.01

Numerical experiments : $X \sim \mathcal{LN}(238,70)$ and n=10

Keep $\beta=95\%$ -quantile of bootstrap sample (B=500) of α estimates



Statistical distributions of the quantiles (N = 5000 repetitions)

Proportion of non-conservative estimates of the exact $\alpha=5\%$:

k-factor	ВС	СМ	VD
0.17	0.01	0.07	0.10

Outline

- Prediction, tolerance and confidence intervals
- 2 Application to real measurements

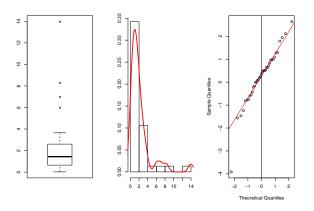
Data : H₂ flow rates of radioactive waste drums

Evaluation of H_2 flow rates (in I / drum / year) required for disposal in final waste repositories

Population of several thousands drums

Data : H₂ flow rates of radioactive waste drums

Measures on a random sample of size n=38, $(\bar{X}_n,S_n)=(2.18,2.67)$



Adequacy to a parametric distribution (as the log-normal one) is rejected by statistical tests

Some results obtained with the Camp-Meidell inequality

Estimation of the risk α of threshold exceedance ($\beta = 0.95$) :

$$s=5$$
 gives $\alpha=58\%$

$$s=10$$
 gives $\alpha=11\%$

$$s=15$$
 gives $\alpha=4\%$

Estimation of the relative error on the mean flow rate (the empirical mean is equal to 2.18 I/drum/year):

- 31% = relative error on the estimation of the mean H₂ flow rate with $(\alpha, \beta) = (0.75, 0.95)$
- 93 = sample size required to reach a 20%-relative error on the estimation of the mean with $(\alpha, \beta) = (0.75, 0.95)$

Some results obtained with the Camp-Meidell inequality

Estimation of the risk α of threshold exceedance ($\beta = 0.95$) :

$$s=5 \text{ gives } \alpha=58\%$$

$$s=10 \text{ gives } \alpha=11\%$$

$$s=15 \text{ gives } \alpha=4\%$$

Estimation of the relative error on the mean flow rate (the empirical mean is equal to 2.18 I/drum/year):

- 31% = relative error on the estimation of the mean H $_2$ flow rate with $(\alpha,\beta)=(0.75,0.95)$
- 93 = sample size required to reach a 20%-relative error on the estimation of the mean with $(\alpha, \beta) = (0.75, 0.95)$

Conclusions and prospects

- Be careful with the Gaussian approximation especially for small data samples
- Concentration inequalities provide robust risk bound and confidence interval for the mean
- Their degrees of conservatism are linked to explicit assumptions on the distribution of the studied variable

 Apply more sophisticated concentration inequalities in order to give tighter bounds

Bibliography

- G. Blatman, T. Delage, B. looss and N. Pérot. Probabilistic risk bounds for the characterization of radiological contamination. The European Journal of Physics - Nuclear Sciences & Technology (EPJ-N), 3, 23, 2017
- P-C. Pupion and G. Pupion, Méthodes statistiques applicables aux petits échantillons, Hermann, 2010
- G.J. Hahn and W.Q. Meeker, Statistical intervals. A guide for practitionners, Wiley-Interscience, 1991