# Can Random Matrices Change the Future of Machine Learning? MASCOT PhD student 2020 Meeting

### Romain COUILLET

CentraleSupélec, L2S, University of ParisSaclay, France GSTATS IDEX DataScience Chair, GIPSA-lab, University Grenoble–Alpes, France.

September 15, 2020



























Basics of Random Matrix Theory Motivation: Large Sample Covariance Matrices Spiked Models

# Outline

#### Basics of Random Matrix Theory

Motivation: Large Sample Covariance Matrices Spiked Models

# Basics of Random Matrix Theory Motivation: Large Sample Covariance Matrices

**Baseline scenario**:  $y_1, \ldots, y_n \in \mathbb{C}^p$  (or  $\mathbb{R}^p$ ) i.i.d. with  $E[y_1] = 0$ ,  $E[y_1y_1^*] = C_p$ :

**Baseline scenario**:  $y_1, \ldots, y_n \in \mathbb{C}^p$  (or  $\mathbb{R}^p$ ) i.i.d. with  $E[y_1] = 0$ ,  $E[y_1y_1^*] = C_p$ : If  $y_1 \sim \mathcal{N}(0, C_p)$ , ML estimator for  $C_p$  is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} Y_p Y_p^* = \frac{1}{n} \sum_{i=1}^n y_i y_i^*$$

 $(Y_p = [y_1, \ldots, y_n] \in \mathbb{C}^{p \times n}).$ 

**Baseline scenario**:  $y_1, \ldots, y_n \in \mathbb{C}^p$  (or  $\mathbb{R}^p$ ) i.i.d. with  $E[y_1] = 0$ ,  $E[y_1y_1^*] = C_p$ : If  $y_1 \sim \mathcal{N}(0, C_p)$ , ML estimator for  $C_p$  is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} Y_p Y_p^* = \frac{1}{n} \sum_{i=1}^n y_i y_i^*$$

(Y<sub>p</sub> = [y<sub>1</sub>,..., y<sub>n</sub>] ∈ C<sup>p×n</sup>).
If n → ∞, then, strong law of large numbers

$$\hat{C}_p \xrightarrow{\mathrm{a.s.}} C_p.$$

or equivalently, in spectral norm

$$\left\|\dot{C}_p - C_p\right\| \xrightarrow{\text{a.s.}} 0.$$

**Baseline scenario**:  $y_1, \ldots, y_n \in \mathbb{C}^p$  (or  $\mathbb{R}^p$ ) i.i.d. with  $E[y_1] = 0$ ,  $E[y_1y_1^*] = C_p$ : If  $y_1 \sim \mathcal{N}(0, C_p)$ , ML estimator for  $C_p$  is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} Y_p Y_p^* = \frac{1}{n} \sum_{i=1}^n y_i y_i^*$$

(Y<sub>p</sub> = [y<sub>1</sub>,..., y<sub>n</sub>] ∈ C<sup>p×n</sup>).
If n → ∞, then, strong law of large numbers

$$\hat{C}_p \xrightarrow{\mathrm{a.s.}} C_p.$$

or equivalently, in spectral norm

$$\left\|\dot{C}_p - C_p\right\| \xrightarrow{\text{a.s.}} 0.$$

#### Random Matrix Regime

▶ No longer valid if  $p, n \to \infty$  with  $p/n \to c \in (0, \infty)$ ,

$$\left\| \hat{C}_p - C_p \right\| \not\to 0.$$

**Baseline scenario**:  $y_1, \ldots, y_n \in \mathbb{C}^p$  (or  $\mathbb{R}^p$ ) i.i.d. with  $E[y_1] = 0$ ,  $E[y_1y_1^*] = C_p$ : If  $y_1 \sim \mathcal{N}(0, C_p)$ , ML estimator for  $C_p$  is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} Y_p Y_p^* = \frac{1}{n} \sum_{i=1}^n y_i y_i^*$$

(Y<sub>p</sub> = [y<sub>1</sub>,..., y<sub>n</sub>] ∈ C<sup>p×n</sup>).
If n → ∞, then, strong law of large numbers

$$\hat{C}_p \xrightarrow{\mathrm{a.s.}} C_p.$$

or equivalently, in spectral norm

$$\left\|\dot{C}_p - C_p\right\| \xrightarrow{\text{a.s.}} 0.$$

#### Random Matrix Regime

▶ No longer valid if  $p, n \to \infty$  with  $p/n \to c \in (0, \infty)$ ,

$$\left\| \hat{C}_p - C_p \right\| \not\to 0.$$

For practical p, n with  $p \simeq n$ , leads to dramatically wrong conclusions

**Baseline scenario**:  $y_1, \ldots, y_n \in \mathbb{C}^p$  (or  $\mathbb{R}^p$ ) i.i.d. with  $E[y_1] = 0$ ,  $E[y_1y_1^*] = C_p$ : If  $y_1 \sim \mathcal{N}(0, C_p)$ , ML estimator for  $C_p$  is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} Y_p Y_p^* = \frac{1}{n} \sum_{i=1}^n y_i y_i^*$$

(Y<sub>p</sub> = [y<sub>1</sub>,..., y<sub>n</sub>] ∈ C<sup>p×n</sup>).
If n → ∞, then, strong law of large numbers

$$\hat{C}_p \xrightarrow{\mathrm{a.s.}} C_p.$$

or equivalently, in spectral norm

$$\left\|\dot{C}_p - C_p\right\| \xrightarrow{\text{a.s.}} 0.$$

#### Random Matrix Regime

▶ No longer valid if  $p, n \to \infty$  with  $p/n \to c \in (0, \infty)$ ,

$$\left\| \hat{C}_p - C_p \right\| \not\to 0.$$

For practical p, n with p ≃ n, leads to dramatically wrong conclusions
 Even for p = n/100.



Figure: Histogram of the eigenvalues of  $\hat{C}_p$  for  $c=1/4,\,C_p=I_p,$ 



Figure: Histogram of the eigenvalues of  $\hat{C}_p$  for  $c=1/4,\,C_p=I_p,$ 



Figure: Histogram of the eigenvalues of  $\hat{C}_p$  for  $c=1/4,\,C_p=I_p,$ 



Figure: Histogram of the eigenvalues of  $\hat{C}_p$  for  $c=1/4,\,C_p=I_p,$ 



Figure: Histogram of the eigenvalues of  $\hat{C}_p$  for  $c=1/4,\,C_p=I_p,$ 



Figure: Histogram of the eigenvalues of  $\hat{C}_p$  for  $c=1/4,\,C_p=I_p,$ 

# Definition (Empirical Spectral Density)

Empirical spectral density (e.s.d.)  $\mu_p$  of Hermitian matrix  $A_p \in \mathbb{C}^{p imes p}$  is

$$\mu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(A_p)}.$$

### Definition (Empirical Spectral Density)

Empirical spectral density (e.s.d.)  $\mu_p$  of Hermitian matrix  $A_p \in \mathbb{C}^{p imes p}$  is

$$\mu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(A_p)}.$$

Theorem (Marčenko–Pastur Law [Marčenko,Pastur'67])  $X_p \in \mathbb{C}^{p \times n}$  with i.i.d. zero mean, unit variance entries. As  $p, n \to \infty$  with  $p/n \to c \in (0, \infty)$ , e.s.d.  $\mu_p$  of  $\frac{1}{n}X_pX_p^*$  satisfies

$$\mu_p \xrightarrow{\mathrm{a.s.}} \mu_e$$

weakly, where

• 
$$\mu_e(\{0\}) = \max\{0, 1 - c^{-1}\}$$

### Definition (Empirical Spectral Density)

Empirical spectral density (e.s.d.)  $\mu_p$  of Hermitian matrix  $A_p \in \mathbb{C}^{p imes p}$  is

$$\mu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(A_p)}.$$

Theorem (Marčenko–Pastur Law [Marčenko,Pastur'67])  $X_p \in \mathbb{C}^{p \times n}$  with i.i.d. zero mean, unit variance entries. As  $p, n \to \infty$  with  $p/n \to c \in (0, \infty)$ , e.s.d.  $\mu_p$  of  $\frac{1}{n}X_pX_p^*$  satisfies

$$\mu_p \stackrel{\mathrm{a.s.}}{\longrightarrow} \mu_q$$

weakly, where

• 
$$\mu_c(\{0\}) = \max\{0, 1 - c^{-1}\}$$
  
• on  $(0, \infty)$ ,  $\mu_c$  has continuous density  $f_c$  supported on  $[(1 - \sqrt{c})^2, (1 + \sqrt{c})^2]$ 

$$f_e(x) = \frac{1}{2\pi cx} \sqrt{(x - (1 - \sqrt{c})^2)((1 + \sqrt{c})^2 - x)}$$



Figure: Marčenko-Pastur law for different limit ratios  $c = \lim_{p \to \infty} p/n$ .



Figure: Marčenko-Pastur law for different limit ratios  $c = \lim_{p \to \infty} p/n$ .



Figure: Marčenko-Pastur law for different limit ratios  $c = \lim_{p \to \infty} p/n$ .

# Outline

#### Basics of Random Matrix Theory Motivation: Large Sample Covariance Matrice Spiked Models

### Spiked Models

Small rank perturbation:  $C_p = I_p + P$ , P of low rank.



### Spiked Models

Small rank perturbation:  $C_p = I_p + P$ , P of low rank.



Small rank perturbation:  $C_p = I_p + P$ , P of low rank.



Small rank perturbation:  $C_p = I_p + P$ , P of low rank.



Theorem (Eigenvalues [Baik,Silverstein'06]) Let  $Y_p = C_p^{\frac{1}{2}} X_p$ , with

▶  $X_p$  with i.i.d. zero mean, unit variance,  $E[|X_p|_{ij}^4] < \infty$ .

• 
$$C_p = I_p + P$$
,  $P = U\Omega U^*$ , where, for K fixed,

 $\Omega = \operatorname{diag}\left(\omega_1, \ldots, \omega_K\right) \in \mathbb{R}^{K \times K}, \text{ with } \omega_1 \geq \ldots \geq \omega_K > 0.$ 

Theorem (Eigenvalues [Baik,Silverstein'06]) Let  $Y_p = C_p^{\frac{1}{2}} X_p$ , with

- ▶  $X_p$  with i.i.d. zero mean, unit variance,  $E[|X_p|_{ij}^4] < \infty$ .
- $C_p = I_p + P$ ,  $P = U\Omega U^*$ , where, for K fixed,

$$\Omega = \operatorname{diag}\left(\omega_1, \ldots, \omega_K\right) \in \mathbb{R}^{K \times K}, \text{ with } \omega_1 \geq \ldots \geq \omega_K > 0.$$

 $\text{ Then, as } p,n \to \infty, \ p/n \to c \in (0,\infty), \ \text{denoting } \lambda_m = \lambda_m (\frac{1}{n} Y_p Y_p^*) \ (\lambda_m > \lambda_{m-1}),$ 

$$\lambda_m \xrightarrow{\text{a.s.}} \begin{cases} 1 + \omega_m + e^{\frac{1 - \omega_m}{\omega_m}} > (1 + \sqrt{e})^2 &, \ \omega_m > \sqrt{e} \\ (1 + \sqrt{e})^2 &, \ \omega_m \in (0, \sqrt{e}]. \end{cases}$$

Theorem (Eigenvectors [Paul'07]) Let  $Y_p = C_p^{\frac{1}{2}} X_p$ , with

•  $X_p$  with i.i.d. zero mean, unit variance,  $E[|X_p|_{ij}^4] < \infty$ .

• 
$$C_p = I_p + P$$
,  $P = U\Omega U^* = \sum_{i=1}^K \omega_i u_i u_i^*$ ,  $\omega_1 > \ldots > \omega_M > 0$ .

Theorem (Eigenvectors [Paul'07]) Let  $Y_p = C_p^{\frac{1}{2}} X_p$ , with

▶  $X_p$  with i.i.d. zero mean, unit variance,  $E[|X_p|_{ij}^4] < \infty$ .

• 
$$C_p = I_p + P$$
,  $P = U\Omega U^* = \sum_{i=1}^K \omega_i u_i u_i^*$ ,  $\omega_1 > \ldots > \omega_M > 0$ .

Then, as  $p, n \to \infty$ ,  $p/n \to c \in (0, \infty)$ , for  $a, b \in \mathbb{C}^p$  deterministic and  $\hat{u}_i$  eigenvector of  $\lambda_i(\frac{1}{n}Y_pY_p^*)$ ,

$$a^*\hat{u}_i\hat{u}_i^*b - \frac{1 - c\omega_i^{-2}}{1 + c\omega_i^{-1}}a^*u_iu_i^*b \cdot 1_{\omega_i > \sqrt{c}} \xrightarrow{\text{a.s.}} 0$$

In particular,

$$|\hat{u}_i^* u_i|^2 \xrightarrow{\mathbf{a.s}_i} \frac{1 - \alpha \omega_i^{-2}}{1 + \alpha \omega_i^{-1}} \cdot \mathbf{1}_{\omega_i > \sqrt{c}}.$$



Figure: Simulated versus limiting  $|\hat{u}_1^{\mathsf{T}}u_1|^2$  for  $Y_p = C_p^{\frac{1}{2}}X_p$ ,  $C_p = I_p + \omega_1 u_1 u_1^{\mathsf{T}}$ , p/n = 1/3, varying  $\omega_1$ .



Figure: Simulated versus limiting  $|\hat{u}_1^{\mathsf{T}}u_1|^2$  for  $Y_p = C_p^{\frac{1}{2}}X_p$ ,  $C_p = I_p + \omega_1 u_1 u_1^{\mathsf{T}}$ , p/n = 1/3, varying  $\omega_1$ .



Figure: Simulated versus limiting  $|\hat{u}_1^{\mathsf{T}}u_1|^2$  for  $Y_p = C_p^{\frac{1}{2}}X_p$ ,  $C_p = I_p + \omega_1 u_1 u_1^{\mathsf{T}}$ , p/n = 1/3, varying  $\omega_1$ .



Figure: Simulated versus limiting  $|\hat{u}_1^{\mathsf{T}}u_1|^2$  for  $Y_p = C_p^{\frac{1}{2}}X_p$ ,  $C_p = I_p + \omega_1 u_1 u_1^{\mathsf{T}}$ , p/n = 1/3, varying  $\omega_1$ .

Similar results for multiple matrix models:

$$\begin{array}{l} \blacktriangleright \ Y_p = \frac{1}{n}(I+P)^{\frac{1}{2}}X_pX_p^*(I+P)^{\frac{1}{2}} \\ \blacktriangleright \ Y_p = \frac{1}{n}X_pX_p^* + P \\ \vdash \ Y_p = \frac{1}{n}X_p^*(I+P)X \\ \vdash \ Y_p = \frac{1}{n}(X_p+P)^*(X_p+P) \\ \vdash \ \text{etc.} \end{array}$$

Basics of Random Matrix Theory Motivation: Large Sample Covariance Matrices Spiked Models

Application to Machine Learning

# Takeaway Message 1

# "RMT Explains Why Machine Learning Intuitions Collapse in Large Dimensions"

Clustering setting in (not so) large n, p:

Clustering setting in (not so) large n, p:

▶ GMM setting:  $x_1^{(a)}, \ldots, x_{n_a}^{(a)} \sim \mathcal{N}(\mu_a, C_a), a = 1, \ldots, k$ 

Clustering setting in (not so) large n, p:

- ▶ GMM setting:  $x_1^{(a)}, \ldots, x_{n_a}^{(a)} \sim \mathcal{N}(\mu_a, C_a), \ a = 1, \ldots, k$
- Non-trivial task:

$$||\mu_a - \mu_b|| = O(1), \quad \operatorname{tr} (C_a - C_b) = O(\sqrt{p}), \quad \operatorname{tr} [(C_a - C_b)^2] = O(p)$$

Clustering setting in (not so) large n, p:

- ▶ GMM setting:  $x_1^{(a)}, \ldots, x_{n_a}^{(a)} \sim \mathcal{N}(\mu_a, C_a), a = 1, \ldots, k$
- Non-trivial task:

$$\|\mu_a - \mu_b\| = O(1), \quad \text{tr} \left(C_a - C_b\right) = O(\sqrt{p}), \quad \text{tr} \left[(C_a - C_b)^2\right] = O(p)$$

#### Classical method: spectral clustering

Clustering setting in (not so) large n, p:

- ▶ GMM setting:  $x_1^{(a)}, \ldots, x_{n_a}^{(a)} \sim \mathcal{N}(\mu_a, C_a), \ a = 1, \ldots, k$
- Non-trivial task:

$$||\mu_a - \mu_b|| = O(1), \quad \text{tr} (C_a - C_b) = O(\sqrt{p}), \quad \text{tr} [(C_a - C_b)^2] = O(p)$$

#### Classical method: spectral clustering

Extract and cluster the dominant eigenvectors of

$$K = \{\kappa(x_i, x_j)\}_{i,j=1}^n$$

Clustering setting in (not so) large n, p:

- ▶ GMM setting:  $x_1^{(a)}, \ldots, x_{n_a}^{(a)} \sim \mathcal{N}(\mu_a, C_a), \ a = 1, \ldots, k$
- Non-trivial task:

$$\|\mu_a - \mu_b\| = O(1), \quad \text{tr} \left(C_a - C_b\right) = O(\sqrt{p}), \quad \text{tr} \left[(C_a - C_b)^2\right] = O(p)$$

#### Classical method: spectral clustering

Extract and cluster the dominant eigenvectors of

$$K = \{\kappa(x_i, x_j)\}_{i,j=1}^n, \quad \kappa(x_i, x_j) = f\left(\frac{1}{p} ||x_i - x_j||^2\right).$$

Clustering setting in (not so) large n, p:

- ▶ GMM setting:  $x_1^{(a)}, \ldots, x_{n_a}^{(a)} \sim \mathcal{N}(\mu_a, C_a), \ a = 1, \ldots, k$
- Non-trivial task:

$$||\mu_a - \mu_b|| = O(1), \quad \operatorname{tr} (C_a - C_b) = O(\sqrt{p}), \quad \operatorname{tr} [(C_a - C_b)^2] = O(p)$$

#### Classical method: spectral clustering

Extract and cluster the dominant eigenvectors of

$$K = \{\kappa(x_i, x_j)\}_{i,j=1}^n, \quad \kappa(x_i, x_j) = f\left(\frac{1}{p} ||x_i - x_j||^2\right).$$

Why? Finite-dimensional intuition

$$K = \begin{pmatrix} x_{(x_1, x_2)} & x_{(x_1, x_2)} & x_{(x_2, x_3)} \\ y & 1 & \ll 1 & \ll 1 \\ x_{(x_2, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ y & 1 & y & 1 & \ll 1 \\ x_{(x_2, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_2, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3$$

In reality, here is what happens...

Kernel  $K_{ij} = \exp(-\frac{1}{2p} ||x_i - x_j||^2)$  and second eigenvector  $v_2$  $(x_i \sim \mathcal{N}(\pm \mu, I_p), \ \mu = (2, 0, \dots, 0)^{\mathsf{T}} \in \mathbb{R}^p).$ 

In reality, here is what happens...

Kernel  $K_{ij} = \exp(-\frac{1}{2p} ||x_i - x_j||^2)$  and second eigenvector  $v_2$  $(x_i \sim \mathcal{N}(\pm \mu, I_p), \ \mu = (2, 0, \dots, 0)^{\mathsf{T}} \in \mathbb{R}^p).$ 



#### In reality, here is what happens...

Kernel  $K_{ij} = \exp(-\frac{1}{2p} ||x_i - x_j||^2)$  and second eigenvector  $v_2$  $(x_i \sim \mathcal{N}(\pm \mu, I_p), \ \mu = (2, 0, \dots, 0)^{\mathsf{T}} \in \mathbb{R}^p).$ 



#### In reality, here is what happens...

Kernel  $K_{ij} = \exp(-\frac{1}{2p} ||x_i - x_j||^2)$  and second eigenvector  $v_2$  $(x_i \sim \mathcal{N}(\pm \mu, I_p), \ \mu = (2, 0, \dots, 0)^{\mathsf{T}} \in \mathbb{R}^p).$ 



Key observation: Under growth rate assumptions,

$$\boxed{\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| x_i - x_j \|^2 - \tau \right| \right\} \xrightarrow{\text{a.s.}} 0}, \quad \tau = \frac{2}{p} \sum_{i=1}^k \operatorname{tr} \frac{n_a}{n} C_{\mathfrak{a}}.$$

#### In reality, here is what happens...

Kernel  $K_{ij} = \exp(-\frac{1}{2p} ||x_i - x_j||^2)$  and second eigenvector  $v_2$  $(x_i \sim \mathcal{N}(\pm \mu, I_p), \ \mu = (2, 0, \dots, 0)^{\mathsf{T}} \in \mathbb{R}^p).$ 



Key observation: Under growth rate assumptions,

$$\boxed{\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| x_i - x_j \|^2 - \tau \right| \right\} \xrightarrow{\text{a.s.}} 0}, \quad \tau = \frac{2}{p} \sum_{i=1}^k \operatorname{tr} \frac{n_a}{n} C_{\mathfrak{a}}.$$

• this suggests  $K \simeq f(\tau) \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}!$ 



(Major) consequences:

Most machine learning intuitions collapse

#### (Major) consequences:

- Most machine learning intuitions collapse
- ▶ But luckily, concentration of distances allows for Taylor expansion, linearization...

#### (Major) consequences:

- Most machine learning intuitions collapse
- ▶ But luckily, concentration of distances allows for Taylor expansion, linearization...

Theorem ([C-Benaych'16] Asymptotic Kernel Behavior)

Under growth rate assumptions, as  $p,n 
ightarrow \infty$ ,

$$\left\| K - \hat{K} \right\| \xrightarrow{\text{a.s.}} 0, \quad \hat{K} \simeq \underbrace{f(\tau) \mathbb{1}_n \mathbb{1}_n^\mathsf{T}}_{O_{\|\cdot\cdot\|}(n)}$$

(Major) consequences:

- Most machine learning intuitions collapse
- **But luckily**, concentration of distances allows for Taylor expansion, linearization...

Theorem ([C-Benaych'16] Asymptotic Kernel Behavior)

Under growth rate assumptions, as  $p, n 
ightarrow \infty$ ,

$$\left\| K - \hat{K} \right\| \xrightarrow{\text{a.s.}} 0, \quad \hat{K} \simeq \underbrace{f(\tau) \mathbf{1}_n \mathbf{1}_n^\mathsf{T}}_{O_{\|\cdot\|}(n)} + \frac{1}{p} Z Z^\mathsf{T} + J A J^\mathsf{T} + \ast$$

#### (Major) consequences:

- Most machine learning intuitions collapse
- **But luckily**, concentration of distances allows for Taylor expansion, linearization...

Theorem ([C-Benaych'16] Asymptotic Kernel Behavior)

Under growth rate assumptions, as  $p,n 
ightarrow \infty$ ,

$$\left\| K - \hat{K} \right\| \xrightarrow{\text{a.s.}} 0, \quad \hat{K} \simeq \underbrace{f(\tau) \mathbf{1}_n \mathbf{1}_n^\mathsf{T}}_{O_{\|\cdot\|}(n)} + \frac{1}{p} Z Z^\mathsf{T} + J A J^\mathsf{T} + \ast$$

with  $J = [j_1, \ldots, j_k] \in \mathbb{R}^{n \times k}$ ,  $j_a = (0, 1_{n_a}, 0)^{\mathsf{T}}$  (the clusters!)

#### (Major) consequences:

- Most machine learning intuitions collapse
- But luckily, concentration of distances allows for Taylor expansion, linearization...

#### Theorem ([C-Benaych'16] Asymptotic Kernel Behavior)

Under growth rate assumptions, as  $p,n 
ightarrow \infty$ ,

$$\left\| K - \hat{K} \right\| \xrightarrow{\text{a.s.}} 0, \quad \hat{K} \simeq \underbrace{f(\tau) \mathbf{1}_n \mathbf{1}_n^\mathsf{T}}_{O_{\|\cdot\|}(n)} + \frac{1}{p} Z Z^\mathsf{T} + J A J^\mathsf{T} + \ast$$

with  $J = [j_1, \ldots, j_k] \in \mathbb{R}^{n \times k}$ ,  $j_a = (0, 1_{n_a}, 0)^{\mathsf{T}}$  (the clusters!) and  $A \in \mathbb{R}^{k \times k}$  function of:

- ►  $f(\tau), f'(\tau), f''(\tau)$
- ▶  $\|\mu_a \mu_b\|$ ,  $tr(C_a C_b)$ ,  $tr((C_a C_b)^2)$ , for  $a, b \in \{1, ..., k\}$ .

#### (Major) consequences:

- Most machine learning intuitions collapse
- But luckily, concentration of distances allows for Taylor expansion, linearization...

#### Theorem ([C-Benaych'16] Asymptotic Kernel Behavior)

Under growth rate assumptions, as  $p,n 
ightarrow \infty$ ,

$$\left\| K - \hat{K} \right\| \xrightarrow{\text{a.s.}} 0, \quad \hat{K} \simeq \underbrace{f(\tau) \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}}_{O_{\|\cdot\|}(n)} + \frac{1}{p} Z Z^{\mathsf{T}} + J A J^{\mathsf{T}} + \ast$$

with  $J = [j_1, \ldots, j_k] \in \mathbb{R}^{n \times k}$ ,  $j_a = (0, 1_{n_a}, 0)^{\mathsf{T}}$  (the clusters!) and  $A \in \mathbb{R}^{k \times k}$  function of:

►  $f(\tau), f'(\tau), f''(\tau)$ ►  $\|\mu_a - \mu_b\|, tr(C_a - C_b), tr((C_a - C_b)^2), \text{ for } a, b \in \{1, ..., k\}.$ 

#### This is a spiked model! We can study it fully!

#### Performance prediction: spectral clustering

• Asymptotic analysis of eigenvectors of K: (MNIST,  $p = 28 \times 28(=784)$ )



$$\mathbf{v}_1 = \begin{bmatrix} \mathsf{v}_1 \mathsf{w}_1 \mathsf{v}_1 \mathsf{w}_1 \mathsf{w$$

#### Performance prediction: spectral clustering

• Asymptotic analysis of eigenvectors of K: (MNIST,  $p = 28 \times 28(-784)$ )



$$\mathbf{v}_1 = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \\ \mathbf{v}_3 & \mathbf{v}_3 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_3 \\ \mathbf{v}_1 & \mathbf{v}_3 \end{bmatrix} \quad \mathbf{v}_3 = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_1 \\ \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix}$$



#### Performance prediction: spectral clustering

• Asymptotic analysis of eigenvectors of K: (MNIST,  $p = 28 \times 28(=784)$ )



$$\mathbf{v}_1 = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\$$





# Takeaway Message 2

"RMT Reassesses and Improves Data Processing"

• Going further than ([Kammoun,Couillet'17]),

$$K \simeq \underbrace{f(\tau)\mathbf{1}_{n}\mathbf{1}_{n}^{\mathsf{T}}}_{\mathcal{O}_{\|\cdot\|}(n)} + f'(\tau)\frac{1}{p}ZZ^{\mathsf{T}} + JAJ^{\mathsf{T}}, \text{ avec } A = F\left(\begin{array}{c}f(\tau), f'(\tau), f''(\tau)\\ \|\mu_{a} - \mu_{b}\|, \operatorname{tr}(C_{a} - C_{b}), \dots\end{array}\right).$$

• Going further than ([Kammoun,Couillet'17]), if  $f'(\tau) = 0$ ,

$$K \simeq \underbrace{f(\tau) \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}}_{O_{\|\cdot\|}(n)} + \underbrace{f'(\tau)}_p^{\mathsf{L}} Z Z^{\mathsf{T}} + J A J^{\mathsf{T}}, \text{ avec } A = F\left(\begin{array}{c} f(\tau), f'(\tau), f''(\tau) \\ \|\mu_{u} - \mu_{b}\|, \operatorname{tr} (C_a - C_b), \dots \end{array}\right).$$

Going further than ([Kammoun,Couillet'17]), if f'(τ) = 0,

$$K \simeq \underbrace{f(\tau) \mathbb{1}_n \mathbb{1}_n^{\mathsf{T}}}_{O_{\|\cdot\|}(n)} + \underbrace{f'(\tau)}_p^{\mathsf{T}} ZZ^{\mathsf{T}} + JAJ^{\mathsf{T}}, \text{ avec } A = F\left(\begin{array}{c} f(\tau), f'(\tau), f''(\tau) \\ \|\mu_{\mu} - \mu_{b}\|, \operatorname{tr}(C_a - C_b), \dots \end{array}\right).$$

• Gaussian case:  $\mathcal{N}(0,\mathbf{C}_1)$  vs.  $\mathcal{N}(0,\mathbf{C}_2)$ 



Kernel  $K_{ij} = \exp(-\frac{1}{2p} |x_i - x_j|^2)$ 



Kernel  $K_{ij} = (rac{1}{p} || x_i - x_j ||^2 - au)^2$ 

• EEG data: sane vs. epileptic patients



Kernel 
$$K_{ij} = \exp(-\frac{1}{2p} |x_i - x_j|^2)$$





Kernel 
$$K_{ij} = (\frac{1}{p} || x_i - x_j ||^2 - \tau)^2$$

• EEG data: sane vs. epileptic patients



Kernel 
$$K_{ij} = \exp(-\frac{1}{2p} |x_i - x_j|^2)$$







Kernel 
$$K_{ij} = (\frac{1}{p} || x_i - x_j ||^2 - \tau)^2$$



25/47

Semi-supervised learning: a great idea that never worked!

Semi-supervised learning: a great idea that never worked!

Setting: assume now

$$\begin{array}{l} \bullet \ x_1^{(a)}, \ldots, x_{n_{\alpha_l}[l]}^{(a)} \ \text{already labelled (few),} \\ \bullet \ x_{n_{\alpha_l}[l]}^{(a)} = 1, \ldots, x_{n_{\alpha}}^{(a)} \ \text{unlabelled (a lot).} \end{array}$$

Semi-supervised learning: a great idea that never worked!

- Setting: assume now
  - $\begin{array}{l} \blacktriangleright \ x_1^{(\alpha)}, \ldots, x_{m_{\alpha_1}[l]}^{(\alpha)} \text{ already labelled (few),} \\ \blacktriangleright \ x_{m_{\alpha_1[l]}=1}^{(\alpha)}, \ldots, x_{m_{\alpha}}^{(\alpha)} \text{ unlabelled (a lot).} \end{array}$

**•** Machine Learning original idea: find "scores"  $F_{ia}$  for  $x_i$  to belong to class a

$$F = \operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij} \left( F_{ia} - F_{ja} \right)^{2}, \quad F_{ia}^{[l]} = \delta_{\{w_{i} \in \mathcal{C}_{a}\}}.$$

Semi-supervised learning: a great idea that never worked!

- Setting: assume now
  - $\begin{array}{l} \blacktriangleright \ x_1^{(\alpha)}, \ldots, x_{m_{\alpha_1}[l]}^{(\alpha)} \text{ already labelled (few),} \\ \blacktriangleright \ x_{m_{\alpha_1[l]}=1}^{(\alpha)}, \ldots, x_{m_{\alpha}}^{(\alpha)} \text{ unlabelled (a lot).} \end{array}$

**•** Machine Learning original idea: find "scores"  $F_{ia}$  for  $x_i$  to belong to class a

$$F = \operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij} \left( F_{ia} D_{ii}^{\alpha} - F_{ja} D_{jj}^{\alpha} \right)^{2}, \quad F_{ia}^{[l]} = \delta_{\{w_{i} \in \mathcal{C}_{a}\}}.$$

Semi-supervised learning: a great idea that never worked!

- Setting: assume now
  - $\begin{array}{l} \blacktriangleright \ x_1^{(\alpha)}, \ldots, x_{n_{\alpha_1}[l]}^{(\alpha)} \text{ already labelled (few),} \\ \blacktriangleright \ x_{n_{\alpha_1[l]}-1}^{(\alpha)}, \ldots, x_{n_{\alpha}}^{(\alpha)} \text{ unlabelled (a lot).} \end{array}$

**•** Machine Learning original idea: find "scores"  $F_{ia}$  for  $x_i$  to belong to class a

$$F = \operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij} \left( F_{ia} D_{ii}^{\alpha} - F_{ja} D_{jj}^{\alpha} \right)^{2}, \quad F_{ia}^{[l]} = \delta_{\{w_{i} \in \mathcal{C}_{n}\}}.$$

Explicit solution:

$$F^{[u]} = \left( I_{n_{[u]}} - D_{[u]}^{-1-\alpha} K_{[uu]} D^{\alpha}{}_{[u]} \right)^{-1} D_{[u]}^{-1-\alpha} K_{[uu]} D^{\alpha}{}_{[l]} F^{[l]}$$

where  $D = \text{diag}(K1_n)$  (degree matrix) and  $[ul], [uu], \ldots$  blocks of labeled/unlabeled data.

### The finite-dimensional case: What we expect



Figure: Outcome **F** of Laplacian algorithms ( $\alpha = -1$ ) for  $\mathcal{N}(\pm \mu, I_p)$  with p = 1.

### The finite-dimensional case: What we expect



Figure: Outcome **F** of Laplacian algorithms ( $\alpha = -1$ ) for  $\mathcal{N}(\pm \mu, I_p)$  with p = 1.

### The reality: What we see!



Figure: Outcome F of Laplacian algorithms ( $\alpha = -1$ ) for  $\mathcal{N}(\pm \mu, I_p)$  with p = 80.

### The reality: What we see!



Figure: Outcome **F** of Laplacian algorithms ( $\alpha = -1$ ) for  $\mathcal{N}(\pm \mu, I_p)$  with p = 80.

## The reality: What we see! (on MNIST)



Figure: Vectors  $[F^{(u)}]_{+,n},\, a=1,2,3,$  for 3-class MNIST data (zeros, ones, twos),  $n=192,\,\,p=784,\,n_l/n=1/16,$  Gaussian kernel.

## The reality: What we see! (on MNIST)



Figure: Vectors  $[F^{(n)}]_{,\,\alpha},\,a=1,2,3,$  for 3-class MNIST data (zeros, ones, twos),  $n=192,\,p=784,\,n_t/n=1/16,$  Gaussian kernel.

## The reality: What we see! (on MNIST)



Figure: Vectors  $[F^{(n)}]_{,\,\alpha},\,a=1,2,3,$  for 3-class MNIST data (zeros, ones, twos),  $n=192,\,p=784,\,n_t/n=1/16,$  Gaussian kernel.

Consequences of the finite-dimensional "mismatch"

A priori, the algorithm should not work

- A priori, the algorithm should not work
- Indeed "in general" it does not!

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization (e.g.,  $\alpha = -1$ ,  $F_{i}$ ,  $\leftarrow F_{i}$ ,  $/n_{|l|,i}$ ), it works again...

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization (e.g.,  $\alpha = -1$ ,  $F_{i}$ ,  $\leftarrow F_{i}$ ,  $/n_{[l],i}$ ), it works again...
- BUT it does not use efficiently unlabelled data!

#### Consequences of the finite-dimensional "mismatch"

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization (e.g.,  $\alpha = -1$ ,  $F_{i} \leftarrow F_{i} / n_{|l|,i}$ ), it works again...
- BUT it does not use efficiently unlabelled data!

Chapelle, Schölkopf, Zien, "Semi-Supervised Learning", Chapter 4, 2009.

Our concern is this: it is frequently the case that we would be better off just discarding the unlabeled data and employing a supervised method, rather than taking a semi-supervised route. Thus we worry about the embarrassing situation where the addition of unlabeled data degrades the performance of a classifier.

## Asymptotic Performance Analysis

Theorem ([Mai,C'18] Asymptotic Performance of SSL) For  $x_i \in C_b$  unlabelled, score vector  $F_{i,\cdot} \in \mathbb{R}^k$  satisfies:

 $F_{i,\cdot} - G_b \rightarrow 0, \ G_b \sim \mathcal{N}(m_b, \Sigma_b)$ 

with  $m_b \in \mathbb{R}^k$ ,  $\Sigma_b \in \mathbb{R}^{k \times k}$  function of

•  $f(\tau), f'(\tau), f''(\tau), \mu_1, \dots, \mu_k, C_1, \dots, C_k$ 

 $\blacktriangleright$  only  $n_l$ .

### Asymptotic Performance Analysis

Theorem ([Mai,C'18] Asymptotic Performance of SSL) For  $x_i \in C_b$  unlabelled, score vector  $F_{i,\cdot} \in \mathbb{R}^k$  satisfies:

 $F_{i,c} - G_b 
ightarrow 0, \ G_b \sim \mathcal{N}(m_b, \Sigma_b)$ 

with  $m_b \in \mathbb{R}^k$ ,  $\Sigma_b \in \mathbb{R}^{k \times k}$  function of

•  $f(\tau), f'(\tau), f''(\tau), \mu_1, \dots, \mu_k, C_1, \dots, C_k$ 

 $\blacktriangleright$  only  $n_l$ .



Figure: Accuracy as a function of  $n_{[i]}/p$  with  $n_{[i]}/p = 2$ ,  $c_1 = c_2$ , p = 100,  $-\mu_1 = \mu_2 = [1; \mathbf{0}_{p-1}], \{\mathbf{C}\}_{i,j} = .1^{|i-j|}$ . Graph constructed with  $K_{ij} = e^{-||x_i - x_j||^2/p}$ .

### Asymptotic Performance Analysis

Theorem ([Mai,C'18] Asymptotic Performance of SSL) For  $x_i \in C_b$  unlabelled, score vector  $F_{i,\cdot} \in \mathbb{R}^k$  satisfies:

 $F_{i,c} - G_b 
ightarrow 0, \ G_b \sim \mathcal{N}(m_b, \Sigma_b)$ 

with  $m_b \in \mathbb{R}^k$ ,  $\Sigma_b \in \mathbb{R}^{k \times k}$  function of

•  $f(\tau), f'(\tau), f''(\tau), \mu_1, \dots, \mu_k, C_1, \dots, C_k$ 

 $\blacktriangleright$  only  $n_l$ .



Figure: Accuracy as a function of  $n_{[i]}/p$  with  $n_{[i]}/p = 2$ ,  $c_1 = c_2$ , p = 100,  $-\mu_1 = \mu_2 = [1; \mathbf{0}_{p-1}], \{\mathbf{C}\}_{i,j} = .1^{|i-j|}$ . Graph constructed with  $K_{ij} = e^{-||x_i - x_j||^2/p}$ .

Solution: From RMT calculus (but not from ML intuition!), solution is to replace K by

$$\tilde{K} \equiv PKP, \quad P = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}.$$

**Solution:** From RMT calculus (but not from ML intuition!), solution is to replace K by

$$\tilde{K} \equiv PKP, \quad P = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}.$$

Theorem ([Mai,C'19] Asymptotic Performance of Improved SSL) For  $x_i \in C_b$  unlabelled, score vector  $\tilde{F}_{i,\cdot} \in \mathbb{R}^k$  satisfies:

$$\tilde{F}_{i,*} - \tilde{G}_b \rightarrow 0, \ \tilde{G}_b \sim \mathcal{N}(\tilde{m}_b, \tilde{\Sigma}_b)$$

with  $\tilde{m}_b \in \mathbb{R}^k$ ,  $\tilde{\Sigma}_b \in \mathbb{R}^{k \times k}$  function of

•  $f(\tau), f'(\tau), f''(\tau), \mu_1, \dots, \mu_k, C_1, \dots, C_k$ 

 $\triangleright$   $n_l$  and  $n_u$ .

Solution: From RMT calculus (but not from ML intuition!), solution is to replace K by

$$\tilde{K} \equiv PKP, \quad P = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}.$$

Theorem ([Mai,C'19] Asymptotic Performance of Improved SSL) For  $x_i \in C_b$  unlabelled, score vector  $\tilde{F}_{i,\cdot} \in \mathbb{R}^k$  satisfies:

$$\tilde{F}_{i,*} - \tilde{G}_b \rightarrow 0, \ \tilde{G}_b \sim \mathcal{N}(\tilde{m}_b, \tilde{\Sigma}_b)$$

with  $\tilde{m}_b \in \mathbb{R}^k$ ,  $\tilde{\Sigma}_b \in \mathbb{R}^{k \times k}$  function of

•  $f(\tau), f'(\tau), f''(\tau), \mu_1, \dots, \mu_k, C_1, \dots, C_k$ 

 $\triangleright$   $n_l$  and  $n_{w_l}$ 



Solution: From RMT calculus (but not from ML intuition!), solution is to replace K by

$$\tilde{K} \equiv PKP, \quad P = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}.$$

Theorem ([Mai,C'19] Asymptotic Performance of Improved SSL) For  $x_i \in C_b$  unlabelled, score vector  $\tilde{F}_{i,\cdot} \in \mathbb{R}^k$  satisfies:

$$\tilde{F}_{i,*} - \tilde{G}_b \rightarrow 0, \ \tilde{G}_b \sim \mathcal{N}(\tilde{m}_b, \tilde{\Sigma}_b)$$

with  $\tilde{m}_b \in \mathbb{R}^k$ ,  $\tilde{\Sigma}_b \in \mathbb{R}^{k \times k}$  function of

•  $f(\tau), f'(\tau), f''(\tau), \mu_1, \dots, \mu_k, C_1, \dots, C_k$ 

 $\triangleright$   $n_l$  and  $n_{w_l}$ 



$$n_{[n]}/r$$



Figure: Top: distribution of normalized pairwise distances for noisy MNIST data (8,9). Bottom: average accuracy as a function of  $n_{[n]}$  with  $n_{[i]} = 10$ , computed over 1000 random realizations.



Figure: Top: distribution of normalized pairwise distances for noisy MNIST data (8,9). Bottom: average accuracy as a function of  $n_{[n]}$  with  $n_{[i]} = 10$ , computed over 1000 random realizations.



Figure: Top: distribution of normalized pairwise distances for noisy MNIST data (8,9). Bottom: average accuracy as a function of  $n_{[n]}$  with  $n_{[l]} = 10$ , computed over 1000 random realizations.



Figure: Top: distribution of normalized pairwise distances for noisy MNIST data (8,9). Bottom: average accuracy as a function of  $n_{[n]}$  with  $n_{[i]} = 10$ , computed over 1000 random realizations.



Figure: Top: distribution of normalized pairwise distances for noisy MNIST data (8,9). Bottom: average accuracy as a function of  $n_{[n]}$  with  $n_{[l]} = 10$ , computed over 1000 random realizations.

## Experimental evidence: MNIST

| O                                                                                                      | ١                                                                              | 2                                                                                           | 2                                                                                                       |  |  |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| Digits                                                                                                 | (0,8)                                                                          | (2,7)                                                                                       | (6,9)                                                                                                   |  |  |
| $n_u = 100$                                                                                            |                                                                                |                                                                                             |                                                                                                         |  |  |
| Centered kernel (RMT)<br>Iterated centered kernel (RMT)<br>Laplacian<br>Iterated Laplacian<br>Manifold | <b>89.53.6</b><br><b>89.53.6</b><br>75.5±5.6<br>87.2±4.7<br>88.0±4.7<br>= 1000 | <b>89.5±3.4</b><br><b>89.5±3.4</b><br><b>74.2=5.8</b><br><b>86.0=5.2</b><br><b>88.4=3.9</b> | $\begin{array}{c} 85.3{\pm}5.9\\ 85.3{\pm}5.9\\ 70.0{\pm}5.5\\ 81.4{\pm}6.8\\ 82.8{\pm}6.5 \end{array}$ |  |  |
| Centered kernel (RMT)<br>Iterated centered kernel (RMT)<br>Laplacian<br>Iterated Laplacian<br>Manifold | 92.2±0.9<br>92.3±0.9<br>65.6±4.1<br>92.2±0.9<br>91.1±1.7                       | $92.5\pm0.8$<br>$92.5\pm0.8$<br>$74.4\pm4.0$<br>$92.4\pm0.9$<br>$91.4\pm1.9$                | $92.6\pm1.6$<br>$92.9\pm1.4$<br>$69.5\pm3.7$<br>$92.0\pm1.6$<br>$91.4\pm2.0$                            |  |  |

Table: Comparison of classification accuracy (%) on MNIST datasets with  $n_l = 10$ . Computed over 1000 random iterations for  $n_n = 100$  and 100 for  $n_n = 1000$ .

## Experimental evidence: Traffic signs (HOG features)

| (3)    | 1 |     |
|--------|---|-----|
|        | 0 | 30- |
| <br>70 |   |     |

| Class ID                       | (2,7)          | (9,10)            | (11,18)        |  |  |
|--------------------------------|----------------|-------------------|----------------|--|--|
| $n_n = 100$                    |                |                   |                |  |  |
| Centered kernel (RMT)          | 79.0±10.4      | 77.5±9.2          | $78.5 \pm 7.1$ |  |  |
| Iterated centered kernel (RMT) | 85.3±5.9       | $89.2{\pm}5.6$    | $90.1{\pm}6.7$ |  |  |
| Laplacian                      | $73.8 \pm 9.8$ | $77.3 \pm 9.5$    | 78.6±7.2       |  |  |
| Iterated Laplacian             | 83.7±7.2       | $88.0 \pm 6.8$    | $87.1 \pm 8.8$ |  |  |
| Manifold                       | 77.618.9       | 81.4   10.4       | 82.3   10.8    |  |  |
| n <sub>n</sub> 1000            |                |                   |                |  |  |
| Centered kernel (RMT)          | 83.6±2.4       | 84.6±2.4          | 88.7±9.4       |  |  |
| Iterated centered kernel (RMT) | 84.8   3.8     | <b>88.0   5.5</b> | 96.4   3.0     |  |  |
| Laplacian                      | 72.7±4.2       | $88.9 {\pm} 5.7$  | 95.8±3.2       |  |  |
| Iterated Laplacian             | $83.0 \pm 5.5$ | $88.2 \pm 6.0$    | $92.7 \pm 6.1$ |  |  |
| Manifold                       | 77.7±5.8       | $85.0{\pm}9.0$    | 90.6±8.1       |  |  |

Table: Comparison of classification accuracy (%) on German Traffic Sign datasets with  $n_t = 10$ . Computed over 1000 random iterations for  $n_u = 100$  and 100 for  $n_u = 1000$ .

• Computation cost reduction:  $(p, n \gg 1)$ 

 $\rightarrow \varepsilon$ -subsampling  $K \in \mathbb{R}^{n \varepsilon \times n \varepsilon}$ 



• Computation cost reduction:  $(p, n \gg 1)$ 

 $\rightarrow \varepsilon$ -subsampling  $K \in \mathbb{R}^{n \varepsilon \times n \varepsilon}$ 





- Computation cost reduction:  $(p, n \gg 1)$





- Computation cost reduction:  $(p, n \gg 1)$





- Computation cost reduction:  $(p, n \gg 1)$ 
  - $\begin{array}{l} \to \ \varepsilon\text{-subsampling} \ K \in \mathbb{R}^{n\varepsilon \times n\varepsilon} \\ \to \ K_{\varepsilon} \equiv K \odot B \ \text{with} \ B_{ij} \sim \text{Bern}(\varepsilon) \ \text{i.i.d.} \end{array}$





# Takeaway Message 3

"RMT Also Grasps 'Real Data' Processing"

## From i.i.d. to concentrated random vectors

Beyond Gaussian Mixtures: results still valid for concentrated random vectors.

## From i.i.d. to concentrated random vectors

### Beyond Gaussian Mixtures: results still valid for concentrated random vectors.

## Definition (Concentrated Random Vector)

 $x\in\mathbb{R}^p$  is concentrated if, for all Lipschitz  $f:\mathbb{R}^p\to\mathbb{R},$  there exists  $m_f\in\mathbb{R},$  such that

 $P\left(|f(x) - m_f| > \varepsilon\right) \le e^{-g(\varepsilon)}, \quad g \text{ increasing function}.$ 

## From i.i.d. to concentrated random vectors

### Beyond Gaussian Mixtures: results still valid for concentrated random vectors.

## Definition (Concentrated Random Vector)

 $x\in\mathbb{R}^p$  is concentrated if, for all Lipschitz  $f:\mathbb{R}^p\to\mathbb{R},$  there exists  $m_f\in\mathbb{R},$  such that

 $P\left(|f(x) - m_f| > \varepsilon\right) \le e^{-g(\varepsilon)}, \quad g \text{ increasing function}.$ 



Theorem ([Louart,C'18] [Seddik,C'19] Kernel Universality) For  $x_i \sim \mathcal{L}(\mu_a, C_a)$  concentrated random vector, under the conditions of [C-Benaych'16],

$$\|K - \hat{K}\| \xrightarrow{\text{a.s.}} 0, \quad \hat{K} = f(\tau) \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}} + \frac{1}{p} Z Z^{\mathsf{T}} + J A J^{\mathsf{T}} + *$$

with A only dependent on  $f(\tau), f'(\tau), f''(\tau), \mu_1, \ldots, \mu_k, C_1, \ldots, C_k$ .

Theorem ([Louart,C'18] [Seddik,C'19] Kernel Universality) For  $x_i \sim \mathcal{L}(\mu_a, C_a)$  concentrated random vector, under the conditions of [C-Benaych'16],

$$\|K - \hat{K}\| \xrightarrow{\text{a.s.}} 0, \quad \hat{K} = f(\tau) \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}} + \frac{1}{p} Z Z^{\mathsf{T}} + J A J^{\mathsf{T}} + *$$

with A only dependent on  $f(\tau), f'(\tau), f''(\tau), \mu_1, \ldots, \mu_k, C_1, \ldots, C_k$ .

~ Same result as [C-Benaych'16]... Universality of first two moments!

Key Finding. GAN-generated data are concentrated random vectors!

Ok...so what?



### Key Finding. GAN-generated data are concentrated random vectors!





## Results. [Seddik,C'19]







44/47



44/47











**Our Research Activities:** 



### The road ahead:

from theory to practice: exploit theory to improve real-data learning

**Our Research Activities:** 



### The road ahead:

- from theory to practice: exploit theory to improve real-data learning
- beyond explicit learning: implicit optimizations, non-convex problems.

**Our Research Activities:** 



### The road ahead:

- from theory to practice: exploit theory to improve real-data learning
- beyond explicit learning: implicit optimizations, non-convex problems.
- ML = representation + stat-learning (VAE, NN dynamics?)

## Our Team: the MIAI "LargeDATA" chair @ University Grenoble-Alpes













G. Basson Institut Fourier géamétric

GIPSA statistiques

P. Comon E. Gaussier G/PSA LIC tonsours

(+P.D

N. Le Bihan GIPSA traifement langage stats, physique

N. Tremblay CIPSA graphes

**CIPSA** GIPSA théorie de l'info signal, physique





M. Seddik Apprentissage appli's vision



C. Louart Methématiques concentration

M. Tiomoko Apprentissage transfer; SSL



H. Chakroun Methématiques géométrie

C. Doz Anorentissage

RMT et revier

T. Zarrouk Apprentissage RMT storchuré

C. Sélourné Apprentissage RMT non converse

B. Nabet Finance M & 5-state

H. Goulart Trait, signal fensours.









## The End

# Thank you!



C-Benaych'16] R. Couillet, Benaych-Georges, "Kernel Spectral Clustering of Large Dimensional Data". Electronic Journal of Statistics, vol. 10, no. 1, pp. 1393-1454, 2016. [article]



🐚 [Mai,C'18] X. Mai, R. Couillet, "A random matrix analysis and improvement of semi-supervised learning for large dimensional data". Journal of Machine Learning Research. vol. 19, no. 79, pp. 1-27, 2018, [article]



🐚 [Louart,C'18] C. Louart, Z. Liao, R. Couillet, "A Random Matrix Approach to Neural Networks", The Annals of Applied Probability, vol. 28, no. 2, pp. 1190-1248, 2018, [article]



🐚 [Seddik,C'19] M. Seddik, M. Tamaazousti, R. Couillet, "Kernel Random Matrices of Large Concentrated Data: The Example of GAN-Generated Image", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'19), Brighton, UK, 2019. [article]



🥦 H. Tiomoko Ali, R. Couillet, "Improved spectral community detection in large heterogeneous networks", Journal of Machine Learning Research, vol. 18, no. 225, pp. 1-49, 2018. [article]



🕐 R. Couillet, M. Tiomoko, S. Zozor, E. Moisan, "Random matrix-improved estimation of covariance matrix distances", Journal of Multivariate Analysis, vol. 174, pp. 104531, 2019. [article]



📎 Z. Liao, R. Couillet, "A Large Dimensional Analysis of Least Squares Support Vector Machines", IEEE Transactions on Signal Processing, vol. 67, no.4, pp. 1065-1074, 2018. [article]