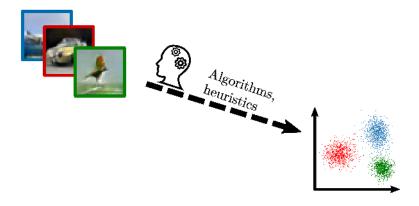
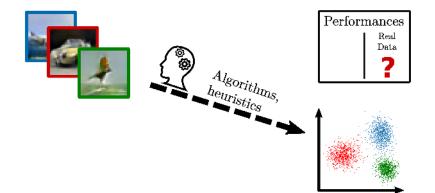
Can Random Matrices Change the Future of Machine Learning? MASCOT PhD student 2020 Meeting

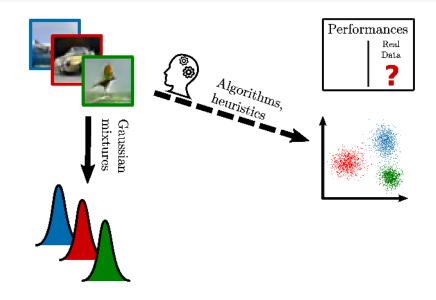
Romain COUILLET

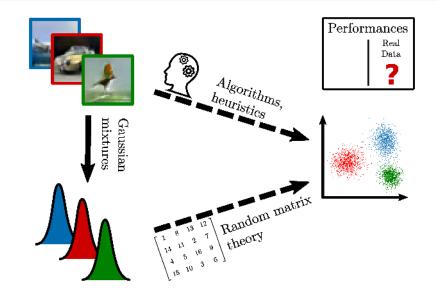
CentraleSupélec, L2S, University of ParisSaclay, France GSTATS IDEX DataScience Chair, GIPSA-lab, University Grenoble–Alpes, France.

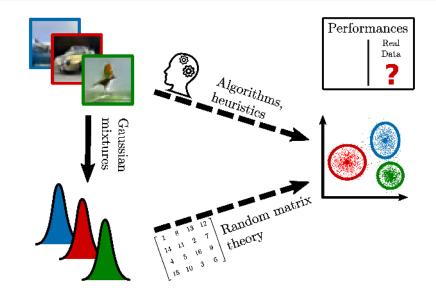
September 15, 2020

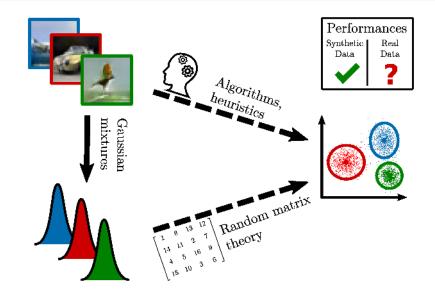


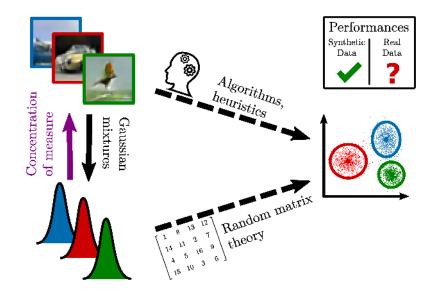


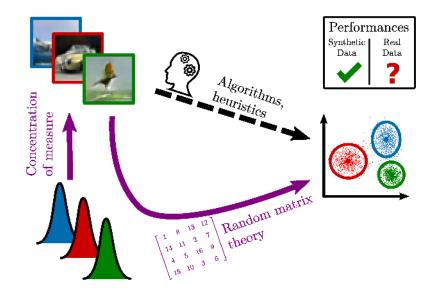


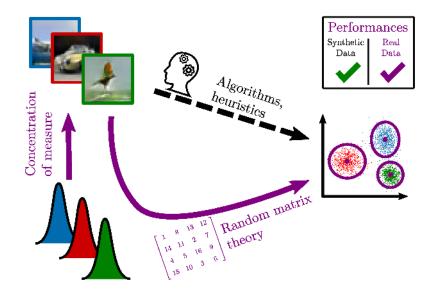












Basics of Random Matrix Theory Motivation: Large Sample Covariance Matrices Spiked Models

Outline

Basics of Random Matrix Theory

Motivation: Large Sample Covariance Matrices Spiked Models

Basics of Random Matrix Theory Motivation: Large Sample Covariance Matrices

Baseline scenario: $y_1, \ldots, y_n \in \mathbb{C}^p$ (or \mathbb{R}^p) i.i.d. with $E[y_1] = 0$, $E[y_1y_1^*] = C_p$:

Baseline scenario: $y_1, \ldots, y_n \in \mathbb{C}^p$ (or \mathbb{R}^p) i.i.d. with $E[y_1] = 0$, $E[y_1y_1^*] = C_p$: If $y_1 \sim \mathcal{N}(0, C_p)$, ML estimator for C_p is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} Y_p Y_p^* = \frac{1}{n} \sum_{i=1}^n y_i y_i^*$$

 $(Y_p = [y_1, \ldots, y_n] \in \mathbb{C}^{p \times n}).$

Baseline scenario: $y_1, \ldots, y_n \in \mathbb{C}^p$ (or \mathbb{R}^p) i.i.d. with $E[y_1] = 0$, $E[y_1y_1^*] = C_p$: If $y_1 \sim \mathcal{N}(0, C_p)$, ML estimator for C_p is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} Y_p Y_p^* = \frac{1}{n} \sum_{i=1}^n y_i y_i^*$$

(Y_p = [y₁,..., y_n] ∈ C^{p×n}).
If n → ∞, then, strong law of large numbers

$$\hat{C}_p \xrightarrow{\mathrm{a.s.}} C_p.$$

or equivalently, in spectral norm

$$\left\|\dot{C}_p - C_p\right\| \xrightarrow{\text{a.s.}} 0.$$

Baseline scenario: $y_1, \ldots, y_n \in \mathbb{C}^p$ (or \mathbb{R}^p) i.i.d. with $E[y_1] = 0$, $E[y_1y_1^*] = C_p$: If $y_1 \sim \mathcal{N}(0, C_p)$, ML estimator for C_p is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} Y_p Y_p^* = \frac{1}{n} \sum_{i=1}^n y_i y_i^*$$

(Y_p = [y₁,..., y_n] ∈ C^{p×n}).
If n → ∞, then, strong law of large numbers

$$\hat{C}_p \xrightarrow{\mathrm{a.s.}} C_p.$$

or equivalently, in spectral norm

$$\left\|\dot{C}_p - C_p\right\| \xrightarrow{\text{a.s.}} 0.$$

Random Matrix Regime

▶ No longer valid if $p, n \to \infty$ with $p/n \to c \in (0, \infty)$,

$$\left\| \hat{C}_p - C_p \right\| \not\to 0.$$

Baseline scenario: $y_1, \ldots, y_n \in \mathbb{C}^p$ (or \mathbb{R}^p) i.i.d. with $E[y_1] = 0$, $E[y_1y_1^*] = C_p$: If $y_1 \sim \mathcal{N}(0, C_p)$, ML estimator for C_p is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} Y_p Y_p^* = \frac{1}{n} \sum_{i=1}^n y_i y_i^*$$

(Y_p = [y₁,..., y_n] ∈ C^{p×n}).
If n → ∞, then, strong law of large numbers

$$\hat{C}_p \xrightarrow{\mathrm{a.s.}} C_p.$$

or equivalently, in spectral norm

$$\left\|\dot{C}_p - C_p\right\| \xrightarrow{\text{a.s.}} 0.$$

Random Matrix Regime

▶ No longer valid if $p, n \to \infty$ with $p/n \to c \in (0, \infty)$,

$$\left\| \hat{C}_p - C_p \right\| \not\to 0.$$

For practical p, n with $p \simeq n$, leads to dramatically wrong conclusions

Baseline scenario: $y_1, \ldots, y_n \in \mathbb{C}^p$ (or \mathbb{R}^p) i.i.d. with $E[y_1] = 0$, $E[y_1y_1^*] = C_p$: If $y_1 \sim \mathcal{N}(0, C_p)$, ML estimator for C_p is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} Y_p Y_p^* = \frac{1}{n} \sum_{i=1}^n y_i y_i^*$$

(Y_p = [y₁,..., y_n] ∈ C^{p×n}).
If n → ∞, then, strong law of large numbers

$$\hat{C}_p \xrightarrow{\mathrm{a.s.}} C_p.$$

or equivalently, in spectral norm

$$\left\|\dot{C}_p - C_p\right\| \xrightarrow{\text{a.s.}} 0.$$

Random Matrix Regime

▶ No longer valid if $p, n \to \infty$ with $p/n \to c \in (0, \infty)$,

$$\left\| \hat{C}_p - C_p \right\| \not\to 0.$$

For practical p, n with p ≃ n, leads to dramatically wrong conclusions
 Even for p = n/100.

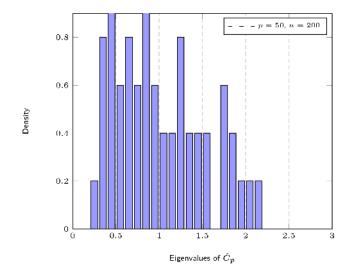


Figure: Histogram of the eigenvalues of \hat{C}_p for $c=1/4,\,C_p=I_p,$

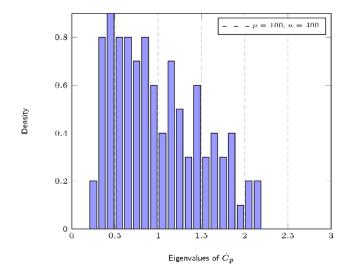


Figure: Histogram of the eigenvalues of \hat{C}_p for $c=1/4,\,C_p=I_p,$

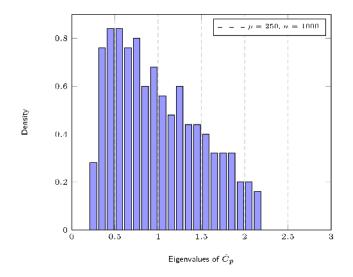


Figure: Histogram of the eigenvalues of \hat{C}_p for $c=1/4,\,C_p=I_p,$

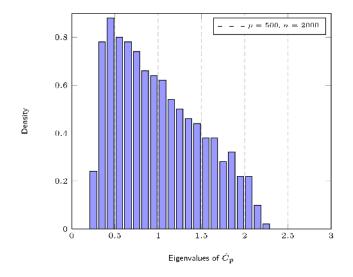


Figure: Histogram of the eigenvalues of \hat{C}_p for $c=1/4,\,C_p=I_p,$

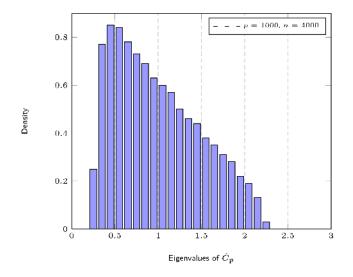


Figure: Histogram of the eigenvalues of \hat{C}_p for $c=1/4,\,C_p=I_p,$

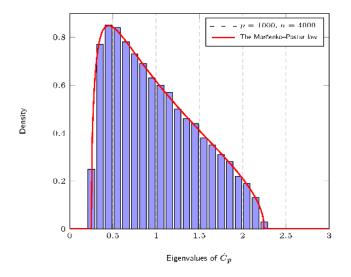


Figure: Histogram of the eigenvalues of \hat{C}_p for $c=1/4,\,C_p=I_p,$

Definition (Empirical Spectral Density)

Empirical spectral density (e.s.d.) μ_p of Hermitian matrix $A_p \in \mathbb{C}^{p imes p}$ is

$$\mu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(A_p)}.$$

Definition (Empirical Spectral Density)

Empirical spectral density (e.s.d.) μ_p of Hermitian matrix $A_p \in \mathbb{C}^{p imes p}$ is

$$\mu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(A_p)}.$$

Theorem (Marčenko–Pastur Law [Marčenko,Pastur'67]) $X_p \in \mathbb{C}^{p \times n}$ with i.i.d. zero mean, unit variance entries. As $p, n \to \infty$ with $p/n \to c \in (0, \infty)$, e.s.d. μ_p of $\frac{1}{n}X_pX_p^*$ satisfies

$$\mu_p \xrightarrow{\mathrm{a.s.}} \mu_e$$

weakly, where

•
$$\mu_e(\{0\}) = \max\{0, 1 - c^{-1}\}$$

Definition (Empirical Spectral Density)

Empirical spectral density (e.s.d.) μ_p of Hermitian matrix $A_p \in \mathbb{C}^{p imes p}$ is

$$\mu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(A_p)}.$$

Theorem (Marčenko–Pastur Law [Marčenko,Pastur'67]) $X_p \in \mathbb{C}^{p \times n}$ with i.i.d. zero mean, unit variance entries. As $p, n \to \infty$ with $p/n \to c \in (0, \infty)$, e.s.d. μ_p of $\frac{1}{n}X_pX_p^*$ satisfies

$$\mu_p \stackrel{\mathrm{a.s.}}{\longrightarrow} \mu_q$$

weakly, where

•
$$\mu_c(\{0\}) = \max\{0, 1 - c^{-1}\}$$

• on $(0, \infty)$, μ_c has continuous density f_c supported on $[(1 - \sqrt{c})^2, (1 + \sqrt{c})^2]$

$$f_e(x) = \frac{1}{2\pi cx} \sqrt{(x - (1 - \sqrt{c})^2)((1 + \sqrt{c})^2 - x)}$$

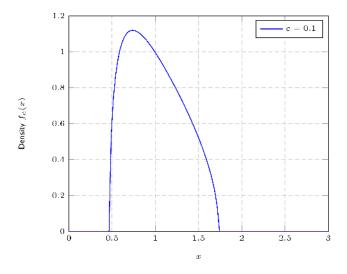


Figure: Marčenko-Pastur law for different limit ratios $c = \lim_{p \to \infty} p/n$.

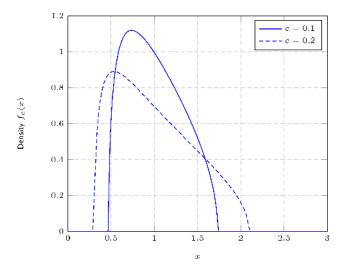


Figure: Marčenko-Pastur law for different limit ratios $c = \lim_{p \to \infty} p/n$.

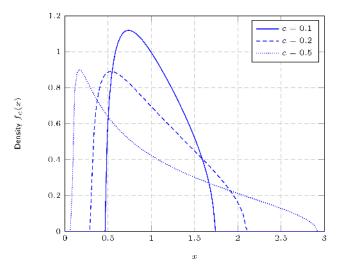


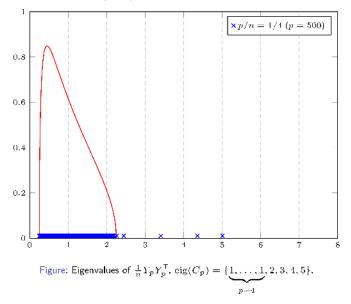
Figure: Marčenko-Pastur law for different limit ratios $c = \lim_{p \to \infty} p/n$.

Outline

Basics of Random Matrix Theory Motivation: Large Sample Covariance Matrice Spiked Models

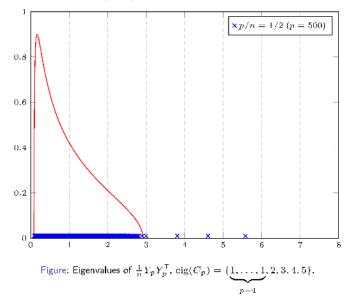
Spiked Models

Small rank perturbation: $C_p = I_p + P$, P of low rank.

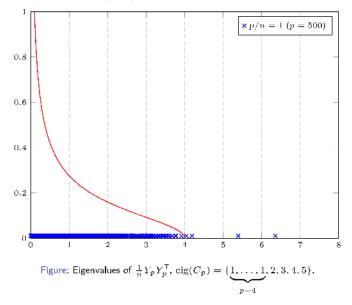


Spiked Models

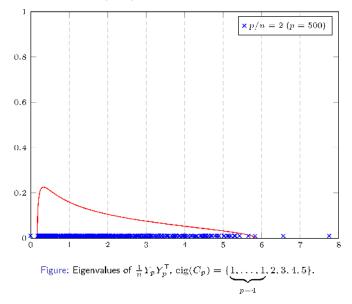
Small rank perturbation: $C_p = I_p + P$, P of low rank.



Small rank perturbation: $C_p = I_p + P$, P of low rank.



Small rank perturbation: $C_p = I_p + P$, P of low rank.



Theorem (Eigenvalues [Baik,Silverstein'06]) Let $Y_p = C_p^{\frac{1}{2}} X_p$, with

▶ X_p with i.i.d. zero mean, unit variance, $E[|X_p|_{ij}^4] < \infty$.

•
$$C_p = I_p + P$$
, $P = U\Omega U^*$, where, for K fixed,

 $\Omega = \operatorname{diag}\left(\omega_1, \ldots, \omega_K\right) \in \mathbb{R}^{K \times K}, \text{ with } \omega_1 \geq \ldots \geq \omega_K > 0.$

Theorem (Eigenvalues [Baik,Silverstein'06]) Let $Y_p = C_p^{\frac{1}{2}} X_p$, with

- ▶ X_p with i.i.d. zero mean, unit variance, $E[|X_p|_{ij}^4] < \infty$.
- $C_p = I_p + P$, $P = U\Omega U^*$, where, for K fixed,

$$\Omega = \operatorname{diag}\left(\omega_1, \ldots, \omega_K\right) \in \mathbb{R}^{K \times K}, \text{ with } \omega_1 \geq \ldots \geq \omega_K > 0.$$

 $\text{ Then, as } p,n \to \infty, \ p/n \to c \in (0,\infty), \ \text{denoting } \lambda_m = \lambda_m (\frac{1}{n} Y_p Y_p^*) \ (\lambda_m > \lambda_{m-1}),$

$$\lambda_m \xrightarrow{\text{a.s.}} \begin{cases} 1 + \omega_m + e^{\frac{1 - \omega_m}{\omega_m}} > (1 + \sqrt{e})^2 &, \ \omega_m > \sqrt{e} \\ (1 + \sqrt{e})^2 &, \ \omega_m \in (0, \sqrt{e}]. \end{cases}$$

Theorem (Eigenvectors [Paul'07]) Let $Y_p = C_p^{\frac{1}{2}} X_p$, with

• X_p with i.i.d. zero mean, unit variance, $E[|X_p|_{ij}^4] < \infty$.

•
$$C_p = I_p + P$$
, $P = U\Omega U^* = \sum_{i=1}^K \omega_i u_i u_i^*$, $\omega_1 > \ldots > \omega_M > 0$.

Theorem (Eigenvectors [Paul'07]) Let $Y_p = C_p^{\frac{1}{2}} X_p$, with

▶ X_p with i.i.d. zero mean, unit variance, $E[|X_p|_{ij}^4] < \infty$.

•
$$C_p = I_p + P$$
, $P = U\Omega U^* = \sum_{i=1}^K \omega_i u_i u_i^*$, $\omega_1 > \ldots > \omega_M > 0$.

Then, as $p, n \to \infty$, $p/n \to c \in (0, \infty)$, for $a, b \in \mathbb{C}^p$ deterministic and \hat{u}_i eigenvector of $\lambda_i(\frac{1}{n}Y_pY_p^*)$,

$$a^*\hat{u}_i\hat{u}_i^*b - \frac{1 - c\omega_i^{-2}}{1 + c\omega_i^{-1}}a^*u_iu_i^*b \cdot 1_{\omega_i > \sqrt{c}} \xrightarrow{\text{a.s.}} 0$$

In particular,

$$|\hat{u}_i^* u_i|^2 \xrightarrow{\mathbf{a.s}_i} \frac{1 - \alpha \omega_i^{-2}}{1 + \alpha \omega_i^{-1}} \cdot \mathbf{1}_{\omega_i > \sqrt{c}}.$$

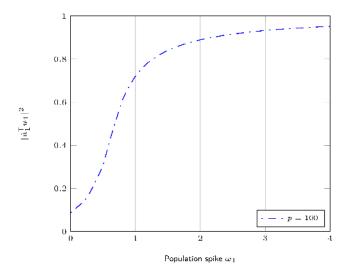


Figure: Simulated versus limiting $|\hat{u}_1^{\mathsf{T}}u_1|^2$ for $Y_p = C_p^{\frac{1}{2}}X_p$, $C_p = I_p + \omega_1 u_1 u_1^{\mathsf{T}}$, p/n = 1/3, varying ω_1 .

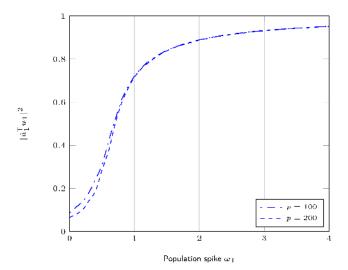


Figure: Simulated versus limiting $|\hat{u}_1^{\mathsf{T}}u_1|^2$ for $Y_p = C_p^{\frac{1}{2}}X_p$, $C_p = I_p + \omega_1 u_1 u_1^{\mathsf{T}}$, p/n = 1/3, varying ω_1 .

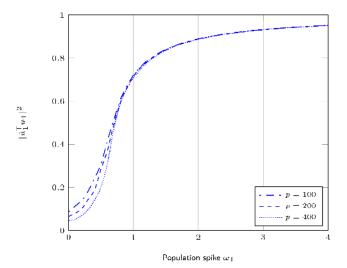


Figure: Simulated versus limiting $|\hat{u}_1^{\mathsf{T}}u_1|^2$ for $Y_p = C_p^{\frac{1}{2}}X_p$, $C_p = I_p + \omega_1 u_1 u_1^{\mathsf{T}}$, p/n = 1/3, varying ω_1 .

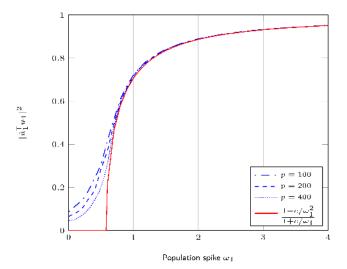


Figure: Simulated versus limiting $|\hat{u}_1^{\mathsf{T}}u_1|^2$ for $Y_p = C_p^{\frac{1}{2}}X_p$, $C_p = I_p + \omega_1 u_1 u_1^{\mathsf{T}}$, p/n = 1/3, varying ω_1 .

Similar results for multiple matrix models:

$$\begin{array}{l} \blacktriangleright \ Y_p = \frac{1}{n}(I+P)^{\frac{1}{2}}X_pX_p^*(I+P)^{\frac{1}{2}} \\ \blacktriangleright \ Y_p = \frac{1}{n}X_pX_p^* + P \\ \vdash \ Y_p = \frac{1}{n}X_p^*(I+P)X \\ \vdash \ Y_p = \frac{1}{n}(X_p+P)^*(X_p+P) \\ \vdash \ \text{etc.} \end{array}$$

Basics of Random Matrix Theory Motivation: Large Sample Covariance Matrices Spiked Models

Application to Machine Learning

Takeaway Message 1

"RMT Explains Why Machine Learning Intuitions Collapse in Large Dimensions"

Clustering setting in (not so) large n, p:

Clustering setting in (not so) large n, p:

▶ GMM setting: $x_1^{(a)}, \ldots, x_{n_a}^{(a)} \sim \mathcal{N}(\mu_a, C_a), a = 1, \ldots, k$

Clustering setting in (not so) large n, p:

- ▶ GMM setting: $x_1^{(a)}, \ldots, x_{n_a}^{(a)} \sim \mathcal{N}(\mu_a, C_a), \ a = 1, \ldots, k$
- Non-trivial task:

$$||\mu_a - \mu_b|| = O(1), \quad \operatorname{tr} (C_a - C_b) = O(\sqrt{p}), \quad \operatorname{tr} [(C_a - C_b)^2] = O(p)$$

Clustering setting in (not so) large n, p:

- ▶ GMM setting: $x_1^{(a)}, \ldots, x_{n_a}^{(a)} \sim \mathcal{N}(\mu_a, C_a), a = 1, \ldots, k$
- Non-trivial task:

$$\|\mu_a - \mu_b\| = O(1), \quad \text{tr} \left(C_a - C_b\right) = O(\sqrt{p}), \quad \text{tr} \left[(C_a - C_b)^2\right] = O(p)$$

Classical method: spectral clustering

Clustering setting in (not so) large n, p:

- ▶ GMM setting: $x_1^{(a)}, \ldots, x_{n_a}^{(a)} \sim \mathcal{N}(\mu_a, C_a), \ a = 1, \ldots, k$
- Non-trivial task:

$$||\mu_a - \mu_b|| = O(1), \quad \text{tr} (C_a - C_b) = O(\sqrt{p}), \quad \text{tr} [(C_a - C_b)^2] = O(p)$$

Classical method: spectral clustering

Extract and cluster the dominant eigenvectors of

$$K = \{\kappa(x_i, x_j)\}_{i,j=1}^n$$

Clustering setting in (not so) large n, p:

- ▶ GMM setting: $x_1^{(a)}, \ldots, x_{n_a}^{(a)} \sim \mathcal{N}(\mu_a, C_a), \ a = 1, \ldots, k$
- Non-trivial task:

$$\|\mu_a - \mu_b\| = O(1), \quad \text{tr} \left(C_a - C_b\right) = O(\sqrt{p}), \quad \text{tr} \left[(C_a - C_b)^2\right] = O(p)$$

Classical method: spectral clustering

Extract and cluster the dominant eigenvectors of

$$K = \{\kappa(x_i, x_j)\}_{i,j=1}^n, \quad \kappa(x_i, x_j) = f\left(\frac{1}{p} ||x_i - x_j||^2\right).$$

Clustering setting in (not so) large n, p:

- ▶ GMM setting: $x_1^{(a)}, \ldots, x_{n_a}^{(a)} \sim \mathcal{N}(\mu_a, C_a), \ a = 1, \ldots, k$
- Non-trivial task:

$$||\mu_a - \mu_b|| = O(1), \quad \operatorname{tr} (C_a - C_b) = O(\sqrt{p}), \quad \operatorname{tr} [(C_a - C_b)^2] = O(p)$$

Classical method: spectral clustering

Extract and cluster the dominant eigenvectors of

$$K = \{\kappa(x_i, x_j)\}_{i,j=1}^n, \quad \kappa(x_i, x_j) = f\left(\frac{1}{p} ||x_i - x_j||^2\right).$$

Why? Finite-dimensional intuition

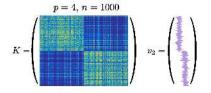
$$K = \begin{pmatrix} x_{(x_1, x_2)} & x_{(x_1, x_2)} & x_{(x_2, x_3)} \\ y & 1 & \ll 1 & \ll 1 \\ x_{(x_2, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ y & 1 & y & 1 & \ll 1 \\ x_{(x_2, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_1, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_3)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_1, x_2)} & x_{(x_2, x_3)} & x_{(x_2, x_3)} \\ x_{(x_2, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3, x_3)} \\ x_{(x_3, x_3)} & x_{(x_3, x_3)} & x_{(x_3$$

In reality, here is what happens...

Kernel $K_{ij} = \exp(-\frac{1}{2p} ||x_i - x_j||^2)$ and second eigenvector v_2 $(x_i \sim \mathcal{N}(\pm \mu, I_p), \ \mu = (2, 0, \dots, 0)^{\mathsf{T}} \in \mathbb{R}^p).$

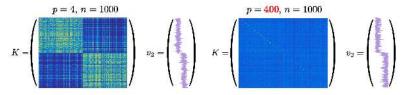
In reality, here is what happens...

Kernel $K_{ij} = \exp(-\frac{1}{2p} ||x_i - x_j||^2)$ and second eigenvector v_2 $(x_i \sim \mathcal{N}(\pm \mu, I_p), \ \mu = (2, 0, \dots, 0)^{\mathsf{T}} \in \mathbb{R}^p).$



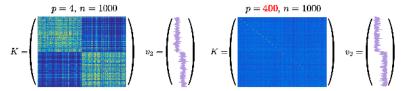
In reality, here is what happens...

Kernel $K_{ij} = \exp(-\frac{1}{2p} ||x_i - x_j||^2)$ and second eigenvector v_2 $(x_i \sim \mathcal{N}(\pm \mu, I_p), \ \mu = (2, 0, \dots, 0)^{\mathsf{T}} \in \mathbb{R}^p).$



In reality, here is what happens...

Kernel $K_{ij} = \exp(-\frac{1}{2p} ||x_i - x_j||^2)$ and second eigenvector v_2 $(x_i \sim \mathcal{N}(\pm \mu, I_p), \ \mu = (2, 0, \dots, 0)^{\mathsf{T}} \in \mathbb{R}^p).$

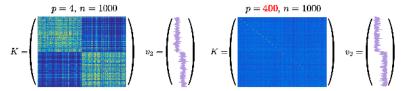


Key observation: Under growth rate assumptions,

$$\boxed{\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| x_i - x_j \|^2 - \tau \right| \right\} \xrightarrow{\text{a.s.}} 0}, \quad \tau = \frac{2}{p} \sum_{i=1}^k \operatorname{tr} \frac{n_a}{n} C_{\mathfrak{a}}.$$

In reality, here is what happens...

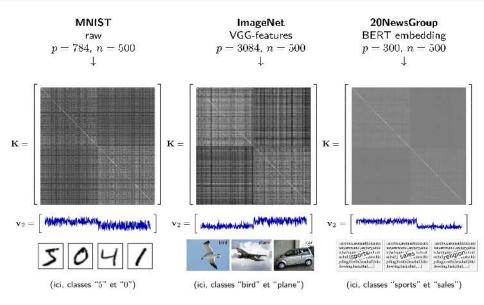
Kernel $K_{ij} = \exp(-\frac{1}{2p} ||x_i - x_j||^2)$ and second eigenvector v_2 $(x_i \sim \mathcal{N}(\pm \mu, I_p), \ \mu = (2, 0, \dots, 0)^{\mathsf{T}} \in \mathbb{R}^p).$



Key observation: Under growth rate assumptions,

$$\boxed{\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| x_i - x_j \|^2 - \tau \right| \right\} \xrightarrow{\text{a.s.}} 0}, \quad \tau = \frac{2}{p} \sum_{i=1}^k \operatorname{tr} \frac{n_a}{n} C_{\mathfrak{a}}.$$

• this suggests $K \simeq f(\tau) \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}!$



(Major) consequences:

Most machine learning intuitions collapse

(Major) consequences:

- Most machine learning intuitions collapse
- ▶ But luckily, concentration of distances allows for Taylor expansion, linearization...

(Major) consequences:

- Most machine learning intuitions collapse
- ▶ But luckily, concentration of distances allows for Taylor expansion, linearization...

Theorem ([C-Benaych'16] Asymptotic Kernel Behavior)

Under growth rate assumptions, as $p,n
ightarrow \infty$,

$$\left\| K - \hat{K} \right\| \xrightarrow{\text{a.s.}} 0, \quad \hat{K} \simeq \underbrace{f(\tau) \mathbb{1}_n \mathbb{1}_n^\mathsf{T}}_{O_{\|\cdot\cdot\|}(n)}$$

(Major) consequences:

- Most machine learning intuitions collapse
- **But luckily**, concentration of distances allows for Taylor expansion, linearization...

Theorem ([C-Benaych'16] Asymptotic Kernel Behavior)

Under growth rate assumptions, as $p, n
ightarrow \infty$,

$$\left\| K - \hat{K} \right\| \xrightarrow{\text{a.s.}} 0, \quad \hat{K} \simeq \underbrace{f(\tau) \mathbf{1}_n \mathbf{1}_n^\mathsf{T}}_{O_{\|\cdot\|}(n)} + \frac{1}{p} Z Z^\mathsf{T} + J A J^\mathsf{T} + \ast$$

(Major) consequences:

- Most machine learning intuitions collapse
- **But luckily**, concentration of distances allows for Taylor expansion, linearization...

Theorem ([C-Benaych'16] Asymptotic Kernel Behavior)

Under growth rate assumptions, as $p,n
ightarrow \infty$,

$$\left\| K - \hat{K} \right\| \xrightarrow{\text{a.s.}} 0, \quad \hat{K} \simeq \underbrace{f(\tau) \mathbf{1}_n \mathbf{1}_n^\mathsf{T}}_{O_{\|\cdot\|}(n)} + \frac{1}{p} Z Z^\mathsf{T} + J A J^\mathsf{T} + \ast$$

with $J = [j_1, \ldots, j_k] \in \mathbb{R}^{n \times k}$, $j_a = (0, 1_{n_a}, 0)^{\mathsf{T}}$ (the clusters!)

(Major) consequences:

- Most machine learning intuitions collapse
- But luckily, concentration of distances allows for Taylor expansion, linearization...

Theorem ([C-Benaych'16] Asymptotic Kernel Behavior)

Under growth rate assumptions, as $p,n
ightarrow \infty$,

$$\left\| K - \hat{K} \right\| \xrightarrow{\text{a.s.}} 0, \quad \hat{K} \simeq \underbrace{f(\tau) \mathbf{1}_n \mathbf{1}_n^\mathsf{T}}_{O_{\|\cdot\|}(n)} + \frac{1}{p} Z Z^\mathsf{T} + J A J^\mathsf{T} + \ast$$

with $J = [j_1, \ldots, j_k] \in \mathbb{R}^{n \times k}$, $j_a = (0, 1_{n_a}, 0)^{\mathsf{T}}$ (the clusters!) and $A \in \mathbb{R}^{k \times k}$ function of:

- ► $f(\tau), f'(\tau), f''(\tau)$
- ▶ $\|\mu_a \mu_b\|$, $tr(C_a C_b)$, $tr((C_a C_b)^2)$, for $a, b \in \{1, ..., k\}$.

(Major) consequences:

- Most machine learning intuitions collapse
- But luckily, concentration of distances allows for Taylor expansion, linearization...

Theorem ([C-Benaych'16] Asymptotic Kernel Behavior)

Under growth rate assumptions, as $p,n
ightarrow \infty$,

$$\left\| K - \hat{K} \right\| \xrightarrow{\text{a.s.}} 0, \quad \hat{K} \simeq \underbrace{f(\tau) \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}}_{O_{\|\cdot\|}(n)} + \frac{1}{p} Z Z^{\mathsf{T}} + J A J^{\mathsf{T}} + \ast$$

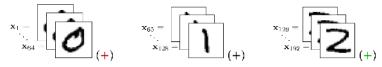
with $J = [j_1, \ldots, j_k] \in \mathbb{R}^{n \times k}$, $j_a = (0, 1_{n_a}, 0)^{\mathsf{T}}$ (the clusters!) and $A \in \mathbb{R}^{k \times k}$ function of:

► $f(\tau), f'(\tau), f''(\tau)$ ► $\|\mu_a - \mu_b\|, tr(C_a - C_b), tr((C_a - C_b)^2), \text{ for } a, b \in \{1, ..., k\}.$

This is a spiked model! We can study it fully!

Performance prediction: spectral clustering

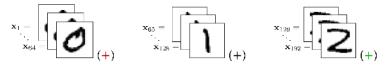
• Asymptotic analysis of eigenvectors of K: (MNIST, $p = 28 \times 28(=784)$)



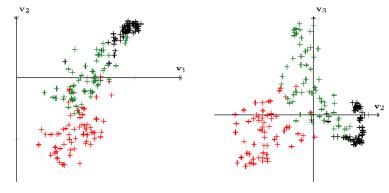
$$\mathbf{v}_1 = \begin{bmatrix} \mathsf{v}_1 \mathsf{w}_1 \mathsf{v}_1 \mathsf{w}_1 \mathsf{w$$

Performance prediction: spectral clustering

• Asymptotic analysis of eigenvectors of K: (MNIST, $p = 28 \times 28(-784)$)

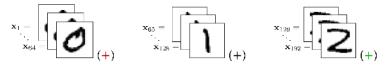


$$\mathbf{v}_1 = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \\ \mathbf{v}_3 & \mathbf{v}_3 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_3 \\ \mathbf{v}_1 & \mathbf{v}_3 \end{bmatrix} \quad \mathbf{v}_3 = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_1 \\ \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix}$$

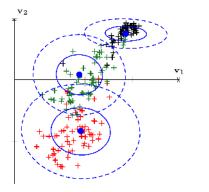


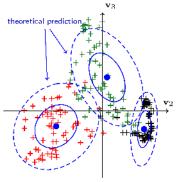
Performance prediction: spectral clustering

• Asymptotic analysis of eigenvectors of K: (MNIST, $p = 28 \times 28(=784)$)



$$\mathbf{v}_1 = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\$$





Takeaway Message 2

"RMT Reassesses and Improves Data Processing"

• Going further than ([Kammoun,Couillet'17]),

$$K \simeq \underbrace{f(\tau)\mathbf{1}_{n}\mathbf{1}_{n}^{\mathsf{T}}}_{\mathcal{O}_{\|\cdot\|}(n)} + f'(\tau)\frac{1}{p}ZZ^{\mathsf{T}} + JAJ^{\mathsf{T}}, \text{ avec } A = F\left(\begin{array}{c}f(\tau), f'(\tau), f''(\tau)\\ \|\mu_{a} - \mu_{b}\|, \operatorname{tr}(C_{a} - C_{b}), \dots\end{array}\right).$$

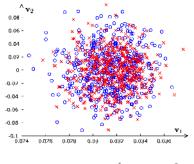
• Going further than ([Kammoun,Couillet'17]), if $f'(\tau) = 0$,

$$K \simeq \underbrace{f(\tau) \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}}_{O_{\|\cdot\|}(n)} + \underbrace{f'(\tau)}_p^{\mathsf{L}} Z Z^{\mathsf{T}} + J A J^{\mathsf{T}}, \text{ avec } A = F\left(\begin{array}{c} f(\tau), f'(\tau), f''(\tau) \\ \|\mu_{u} - \mu_{b}\|, \operatorname{tr} (C_a - C_b), \dots \end{array}\right).$$

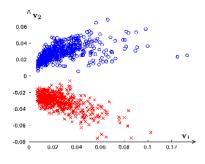
Going further than ([Kammoun,Couillet'17]), if f'(τ) = 0,

$$K \simeq \underbrace{f(\tau) \mathbb{1}_n \mathbb{1}_n^{\mathsf{T}}}_{O_{\|\cdot\|}(n)} + \underbrace{f'(\tau)}_p^{\mathsf{T}} ZZ^{\mathsf{T}} + JAJ^{\mathsf{T}}, \text{ avec } A = F\left(\begin{array}{c} f(\tau), f'(\tau), f''(\tau) \\ \|\mu_{\mu} - \mu_{b}\|, \operatorname{tr}(C_a - C_b), \dots \end{array}\right).$$

• Gaussian case: $\mathcal{N}(0,\mathbf{C}_1)$ vs. $\mathcal{N}(0,\mathbf{C}_2)$

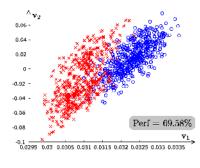


Kernel $K_{ij} = \exp(-\frac{1}{2p} |x_i - x_j|^2)$

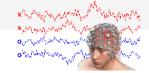


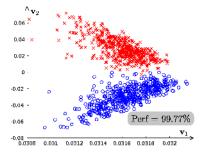
Kernel $K_{ij} = (rac{1}{p} || x_i - x_j ||^2 - au)^2$

• EEG data: sane vs. epileptic patients



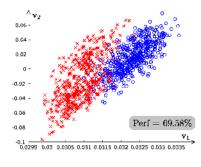
Kernel
$$K_{ij} = \exp(-\frac{1}{2p} |x_i - x_j|^2)$$



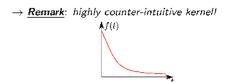


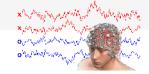
Kernel
$$K_{ij} = (\frac{1}{p} || x_i - x_j ||^2 - \tau)^2$$

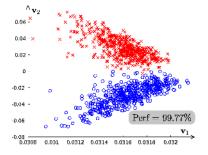
• EEG data: sane vs. epileptic patients



Kernel
$$K_{ij} = \exp(-\frac{1}{2p} |x_i - x_j|^2)$$







Kernel
$$K_{ij} = (\frac{1}{p} || x_i - x_j ||^2 - \tau)^2$$

25/47

Semi-supervised learning: a great idea that never worked!

Semi-supervised learning: a great idea that never worked!

Setting: assume now

$$\begin{array}{l} \bullet \ x_1^{(a)}, \ldots, x_{n_{\alpha_l}[l]}^{(a)} \ \text{already labelled (few),} \\ \bullet \ x_{n_{\alpha_l}[l]}^{(a)} = 1, \ldots, x_{n_{\alpha}}^{(a)} \ \text{unlabelled (a lot).} \end{array}$$

Semi-supervised learning: a great idea that never worked!

- Setting: assume now
 - $\begin{array}{l} \blacktriangleright \ x_1^{(\alpha)}, \ldots, x_{m_{\alpha_1}[l]}^{(\alpha)} \text{ already labelled (few),} \\ \blacktriangleright \ x_{m_{\alpha_1[l]}=1}^{(\alpha)}, \ldots, x_{m_{\alpha}}^{(\alpha)} \text{ unlabelled (a lot).} \end{array}$

• Machine Learning original idea: find "scores" F_{ia} for x_i to belong to class a

$$F = \operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij} \left(F_{ia} - F_{ja} \right)^{2}, \quad F_{ia}^{[l]} = \delta_{\{w_{i} \in \mathcal{C}_{a}\}}.$$

Semi-supervised learning: a great idea that never worked!

- Setting: assume now
 - $\begin{array}{l} \blacktriangleright \ x_1^{(\alpha)}, \ldots, x_{m_{\alpha_1}[l]}^{(\alpha)} \text{ already labelled (few),} \\ \blacktriangleright \ x_{m_{\alpha_1[l]}=1}^{(\alpha)}, \ldots, x_{m_{\alpha}}^{(\alpha)} \text{ unlabelled (a lot).} \end{array}$

• Machine Learning original idea: find "scores" F_{ia} for x_i to belong to class a

$$F = \operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij} \left(F_{ia} D_{ii}^{\alpha} - F_{ja} D_{jj}^{\alpha} \right)^{2}, \quad F_{ia}^{[l]} = \delta_{\{w_{i} \in \mathcal{C}_{a}\}}.$$

Semi-supervised learning: a great idea that never worked!

- Setting: assume now
 - $\begin{array}{l} \blacktriangleright \ x_1^{(\alpha)}, \ldots, x_{n_{\alpha_1}[l]}^{(\alpha)} \text{ already labelled (few),} \\ \blacktriangleright \ x_{n_{\alpha_1[l]}-1}^{(\alpha)}, \ldots, x_{n_{\alpha}}^{(\alpha)} \text{ unlabelled (a lot).} \end{array}$

• Machine Learning original idea: find "scores" F_{ia} for x_i to belong to class a

$$F = \operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij} \left(F_{ia} D_{ii}^{\alpha} - F_{ja} D_{jj}^{\alpha} \right)^{2}, \quad F_{ia}^{[l]} = \delta_{\{w_{i} \in \mathcal{C}_{n}\}}.$$

Explicit solution:

$$F^{[u]} = \left(I_{n_{[u]}} - D_{[u]}^{-1-\alpha} K_{[uu]} D^{\alpha}{}_{[u]} \right)^{-1} D_{[u]}^{-1-\alpha} K_{[uu]} D^{\alpha}{}_{[l]} F^{[l]}$$

where $D = \text{diag}(K1_n)$ (degree matrix) and $[ul], [uu], \ldots$ blocks of labeled/unlabeled data.

The finite-dimensional case: What we expect

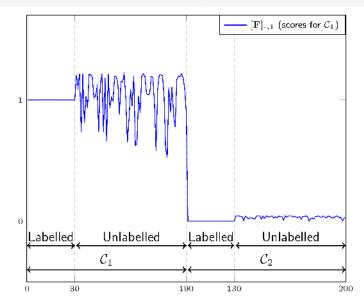


Figure: Outcome **F** of Laplacian algorithms ($\alpha = -1$) for $\mathcal{N}(\pm \mu, I_p)$ with p = 1.

The finite-dimensional case: What we expect

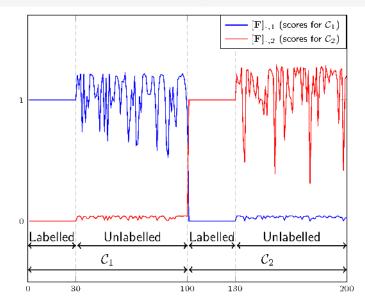


Figure: Outcome **F** of Laplacian algorithms ($\alpha = -1$) for $\mathcal{N}(\pm \mu, I_p)$ with p = 1.

The reality: What we see!

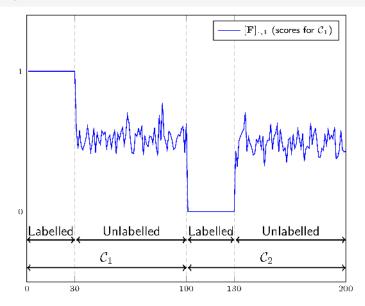


Figure: Outcome F of Laplacian algorithms ($\alpha = -1$) for $\mathcal{N}(\pm \mu, I_p)$ with p = 80.

The reality: What we see!

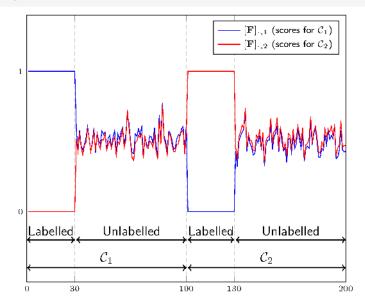


Figure: Outcome **F** of Laplacian algorithms ($\alpha = -1$) for $\mathcal{N}(\pm \mu, I_p)$ with p = 80.

The reality: What we see! (on MNIST)

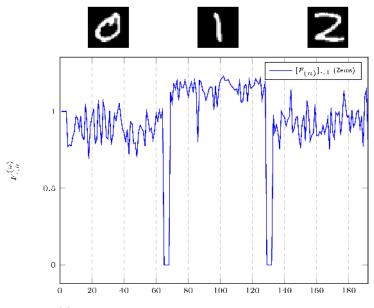


Figure: Vectors $[F^{(u)}]_{+,n},\, a=1,2,3,$ for 3-class MNIST data (zeros, ones, twos), $n=192,\,\,p=784,\,n_l/n=1/16,$ Gaussian kernel.

The reality: What we see! (on MNIST)

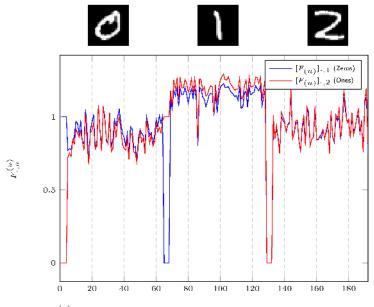


Figure: Vectors $[F^{(n)}]_{,\,\alpha},\,a=1,2,3,$ for 3-class MNIST data (zeros, ones, twos), $n=192,\,p=784,\,n_t/n=1/16,$ Gaussian kernel.

The reality: What we see! (on MNIST)

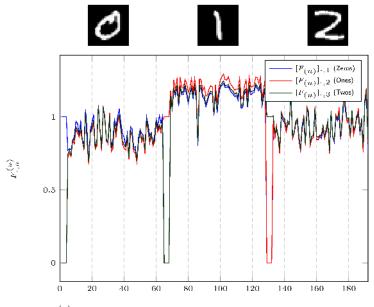


Figure: Vectors $[F^{(n)}]_{,\,\alpha},\,a=1,2,3,$ for 3-class MNIST data (zeros, ones, twos), $n=192,\,p=784,\,n_t/n=1/16,$ Gaussian kernel.

Consequences of the finite-dimensional "mismatch"

A priori, the algorithm should not work

- A priori, the algorithm should not work
- Indeed "in general" it does not!

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization (e.g., $\alpha = -1$, F_{i} , $\leftarrow F_{i}$, $/n_{|l|,i}$), it works again...

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization (e.g., $\alpha = -1$, F_{i} , $\leftarrow F_{i}$, $/n_{[l],i}$), it works again...
- BUT it does not use efficiently unlabelled data!

Consequences of the finite-dimensional "mismatch"

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization (e.g., $\alpha = -1$, $F_{i} \leftarrow F_{i} / n_{|l|,i}$), it works again...
- BUT it does not use efficiently unlabelled data!

Chapelle, Schölkopf, Zien, "Semi-Supervised Learning", Chapter 4, 2009.

Our concern is this: it is frequently the case that we would be better off just discarding the unlabeled data and employing a supervised method, rather than taking a semi-supervised route. Thus we worry about the embarrassing situation where the addition of unlabeled data degrades the performance of a classifier.

Asymptotic Performance Analysis

Theorem ([Mai,C'18] Asymptotic Performance of SSL) For $x_i \in C_b$ unlabelled, score vector $F_{i,\cdot} \in \mathbb{R}^k$ satisfies:

 $F_{i,\cdot} - G_b \rightarrow 0, \ G_b \sim \mathcal{N}(m_b, \Sigma_b)$

with $m_b \in \mathbb{R}^k$, $\Sigma_b \in \mathbb{R}^{k \times k}$ function of

• $f(\tau), f'(\tau), f''(\tau), \mu_1, \dots, \mu_k, C_1, \dots, C_k$

 \blacktriangleright only n_l .

Asymptotic Performance Analysis

Theorem ([Mai,C'18] Asymptotic Performance of SSL) For $x_i \in C_b$ unlabelled, score vector $F_{i,\cdot} \in \mathbb{R}^k$ satisfies:

 $F_{i,c} - G_b
ightarrow 0, \ G_b \sim \mathcal{N}(m_b, \Sigma_b)$

with $m_b \in \mathbb{R}^k$, $\Sigma_b \in \mathbb{R}^{k \times k}$ function of

• $f(\tau), f'(\tau), f''(\tau), \mu_1, \dots, \mu_k, C_1, \dots, C_k$

 \blacktriangleright only n_l .

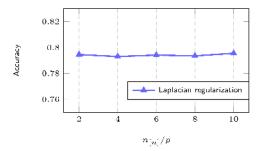


Figure: Accuracy as a function of $n_{[i]}/p$ with $n_{[i]}/p = 2$, $c_1 = c_2$, p = 100, $-\mu_1 = \mu_2 = [1; \mathbf{0}_{p-1}], \{\mathbf{C}\}_{i,j} = .1^{|i-j|}$. Graph constructed with $K_{ij} = e^{-||x_i - x_j||^2/p}$.

Asymptotic Performance Analysis

Theorem ([Mai,C'18] Asymptotic Performance of SSL) For $x_i \in C_b$ unlabelled, score vector $F_{i,\cdot} \in \mathbb{R}^k$ satisfies:

 $F_{i,c} - G_b
ightarrow 0, \ G_b \sim \mathcal{N}(m_b, \Sigma_b)$

with $m_b \in \mathbb{R}^k$, $\Sigma_b \in \mathbb{R}^{k \times k}$ function of

• $f(\tau), f'(\tau), f''(\tau), \mu_1, \dots, \mu_k, C_1, \dots, C_k$

 \blacktriangleright only n_l .

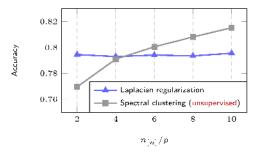


Figure: Accuracy as a function of $n_{[i]}/p$ with $n_{[i]}/p = 2$, $c_1 = c_2$, p = 100, $-\mu_1 = \mu_2 = [1; \mathbf{0}_{p-1}], \{\mathbf{C}\}_{i,j} = .1^{|i-j|}$. Graph constructed with $K_{ij} = e^{-||x_i - x_j||^2/p}$.

Solution: From RMT calculus (but not from ML intuition!), solution is to replace K by

$$\tilde{K} \equiv PKP, \quad P = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}.$$

Solution: From RMT calculus (but not from ML intuition!), solution is to replace K by

$$\tilde{K} \equiv PKP, \quad P = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}.$$

Theorem ([Mai,C'19] Asymptotic Performance of Improved SSL) For $x_i \in C_b$ unlabelled, score vector $\tilde{F}_{i,\cdot} \in \mathbb{R}^k$ satisfies:

$$\tilde{F}_{i,*} - \tilde{G}_b \rightarrow 0, \ \tilde{G}_b \sim \mathcal{N}(\tilde{m}_b, \tilde{\Sigma}_b)$$

with $\tilde{m}_b \in \mathbb{R}^k$, $\tilde{\Sigma}_b \in \mathbb{R}^{k \times k}$ function of

• $f(\tau), f'(\tau), f''(\tau), \mu_1, \dots, \mu_k, C_1, \dots, C_k$

 \triangleright n_l and n_u .

Solution: From RMT calculus (but not from ML intuition!), solution is to replace K by

$$\tilde{K} \equiv PKP, \quad P = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}.$$

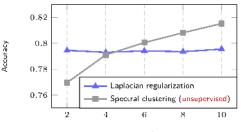
Theorem ([Mai,C'19] Asymptotic Performance of Improved SSL) For $x_i \in C_b$ unlabelled, score vector $\tilde{F}_{i,\cdot} \in \mathbb{R}^k$ satisfies:

$$\tilde{F}_{i,*} - \tilde{G}_b \rightarrow 0, \ \tilde{G}_b \sim \mathcal{N}(\tilde{m}_b, \tilde{\Sigma}_b)$$

with $\tilde{m}_b \in \mathbb{R}^k$, $\tilde{\Sigma}_b \in \mathbb{R}^{k \times k}$ function of

• $f(\tau), f'(\tau), f''(\tau), \mu_1, \dots, \mu_k, C_1, \dots, C_k$

 \triangleright n_l and n_{w_l}



Solution: From RMT calculus (but not from ML intuition!), solution is to replace K by

$$\tilde{K} \equiv PKP, \quad P = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}.$$

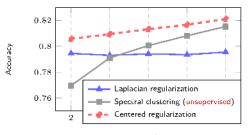
Theorem ([Mai,C'19] Asymptotic Performance of Improved SSL) For $x_i \in C_b$ unlabelled, score vector $\tilde{F}_{i,\cdot} \in \mathbb{R}^k$ satisfies:

$$\tilde{F}_{i,*} - \tilde{G}_b \rightarrow 0, \ \tilde{G}_b \sim \mathcal{N}(\tilde{m}_b, \tilde{\Sigma}_b)$$

with $\tilde{m}_b \in \mathbb{R}^k$, $\tilde{\Sigma}_b \in \mathbb{R}^{k \times k}$ function of

• $f(\tau), f'(\tau), f''(\tau), \mu_1, \dots, \mu_k, C_1, \dots, C_k$

 \triangleright n_l and n_{w_l}



$$n_{[n]}/r$$

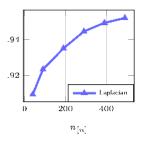


Figure: Top: distribution of normalized pairwise distances for noisy MNIST data (8,9). Bottom: average accuracy as a function of $n_{[n]}$ with $n_{[i]} = 10$, computed over 1000 random realizations.

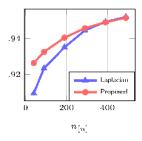


Figure: Top: distribution of normalized pairwise distances for noisy MNIST data (8,9). Bottom: average accuracy as a function of $n_{[n]}$ with $n_{[i]} = 10$, computed over 1000 random realizations.

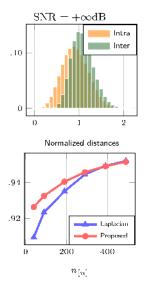


Figure: Top: distribution of normalized pairwise distances for noisy MNIST data (8,9). Bottom: average accuracy as a function of $n_{[n]}$ with $n_{[l]} = 10$, computed over 1000 random realizations.

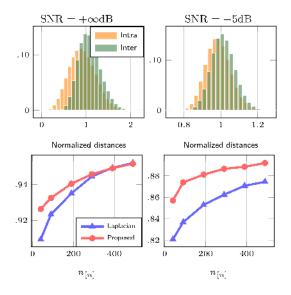


Figure: Top: distribution of normalized pairwise distances for noisy MNIST data (8,9). Bottom: average accuracy as a function of $n_{[n]}$ with $n_{[i]} = 10$, computed over 1000 random realizations.

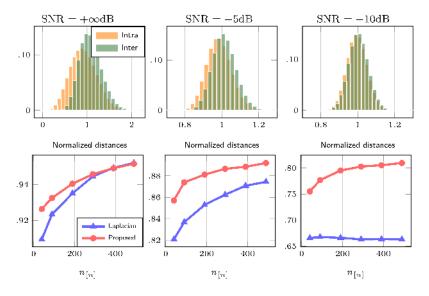


Figure: Top: distribution of normalized pairwise distances for noisy MNIST data (8,9). Bottom: average accuracy as a function of $n_{[n]}$ with $n_{[l]} = 10$, computed over 1000 random realizations.

Experimental evidence: MNIST

O	١	2	2		
Digits	(0,8)	(2,7)	(6,9)		
$n_u = 100$					
Centered kernel (RMT) Iterated centered kernel (RMT) Laplacian Iterated Laplacian Manifold	89.53.6 89.53.6 75.5±5.6 87.2±4.7 88.0±4.7 = 1000	89.5±3.4 89.5±3.4 74.2=5.8 86.0=5.2 88.4=3.9	$\begin{array}{c} 85.3{\pm}5.9\\ 85.3{\pm}5.9\\ 70.0{\pm}5.5\\ 81.4{\pm}6.8\\ 82.8{\pm}6.5 \end{array}$		
Centered kernel (RMT) Iterated centered kernel (RMT) Laplacian Iterated Laplacian Manifold	92.2±0.9 92.3±0.9 65.6±4.1 92.2±0.9 91.1±1.7	92.5 ± 0.8 92.5 ± 0.8 74.4 ± 4.0 92.4 ± 0.9 91.4 ± 1.9	92.6 ± 1.6 92.9 ± 1.4 69.5 ± 3.7 92.0 ± 1.6 91.4 ± 2.0		

Table: Comparison of classification accuracy (%) on MNIST datasets with $n_l = 10$. Computed over 1000 random iterations for $n_n = 100$ and 100 for $n_n = 1000$.

Experimental evidence: Traffic signs (HOG features)

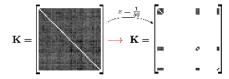
(3)	1	
	0	30-
 70		

Class ID	(2,7)	(9,10)	(11,18)		
$n_n = 100$					
Centered kernel (RMT)	79.0±10.4	77.5±9.2	78.5 ± 7.1		
Iterated centered kernel (RMT)	85.3±5.9	$89.2{\pm}5.6$	$90.1{\pm}6.7$		
Laplacian	73.8 ± 9.8	77.3 ± 9.5	78.6±7.2		
Iterated Laplacian	83.7±7.2	88.0 ± 6.8	87.1 ± 8.8		
Manifold	77.618.9	81.4 10.4	82.3 10.8		
n _n 1000					
Centered kernel (RMT)	83.6±2.4	84.6±2.4	88.7±9.4		
Iterated centered kernel (RMT)	84.8 3.8	88.0 5.5	96.4 3.0		
Laplacian	72.7±4.2	$88.9 {\pm} 5.7$	95.8±3.2		
Iterated Laplacian	83.0 ± 5.5	88.2 ± 6.0	92.7 ± 6.1		
Manifold	77.7±5.8	$85.0{\pm}9.0$	90.6±8.1		

Table: Comparison of classification accuracy (%) on German Traffic Sign datasets with $n_t = 10$. Computed over 1000 random iterations for $n_u = 100$ and 100 for $n_u = 1000$.

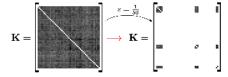
• Computation cost reduction: $(p, n \gg 1)$

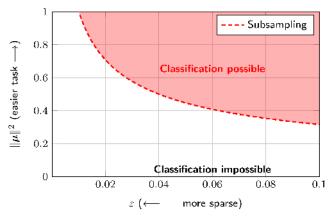
 $\rightarrow \varepsilon$ -subsampling $K \in \mathbb{R}^{n \varepsilon \times n \varepsilon}$



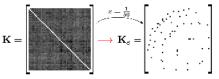
• Computation cost reduction: $(p, n \gg 1)$

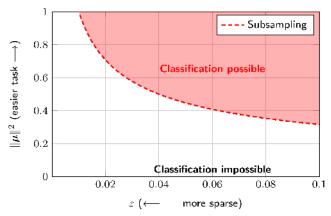
 $\rightarrow \varepsilon$ -subsampling $K \in \mathbb{R}^{n \varepsilon \times n \varepsilon}$



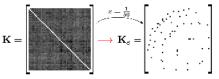


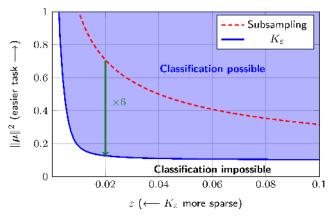
- Computation cost reduction: $(p, n \gg 1)$



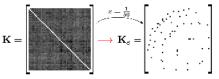


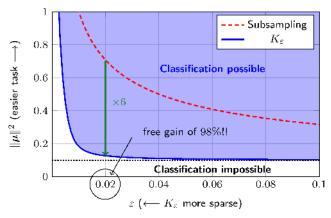
- Computation cost reduction: $(p, n \gg 1)$





- Computation cost reduction: $(p, n \gg 1)$
 - $\begin{array}{l} \to \ \varepsilon\text{-subsampling} \ K \in \mathbb{R}^{n\varepsilon \times n\varepsilon} \\ \to \ K_{\varepsilon} \equiv K \odot B \ \text{with} \ B_{ij} \sim \text{Bern}(\varepsilon) \ \text{i.i.d.} \end{array}$





Takeaway Message 3

"RMT Also Grasps 'Real Data' Processing"

From i.i.d. to concentrated random vectors

Beyond Gaussian Mixtures: results still valid for concentrated random vectors.

From i.i.d. to concentrated random vectors

Beyond Gaussian Mixtures: results still valid for concentrated random vectors.

Definition (Concentrated Random Vector)

 $x\in\mathbb{R}^p$ is concentrated if, for all Lipschitz $f:\mathbb{R}^p\to\mathbb{R},$ there exists $m_f\in\mathbb{R},$ such that

 $P\left(|f(x) - m_f| > \varepsilon\right) \le e^{-g(\varepsilon)}, \quad g \text{ increasing function}.$

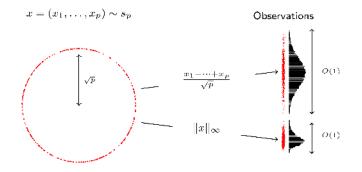
From i.i.d. to concentrated random vectors

Beyond Gaussian Mixtures: results still valid for concentrated random vectors.

Definition (Concentrated Random Vector)

 $x\in\mathbb{R}^p$ is concentrated if, for all Lipschitz $f:\mathbb{R}^p\to\mathbb{R},$ there exists $m_f\in\mathbb{R},$ such that

 $P\left(|f(x) - m_f| > \varepsilon\right) \le e^{-g(\varepsilon)}, \quad g \text{ increasing function}.$



Theorem ([Louart,C'18] [Seddik,C'19] Kernel Universality) For $x_i \sim \mathcal{L}(\mu_a, C_a)$ concentrated random vector, under the conditions of [C-Benaych'16],

$$\|K - \hat{K}\| \xrightarrow{\text{a.s.}} 0, \quad \hat{K} = f(\tau) \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}} + \frac{1}{p} Z Z^{\mathsf{T}} + J A J^{\mathsf{T}} + *$$

with A only dependent on $f(\tau), f'(\tau), f''(\tau), \mu_1, \ldots, \mu_k, C_1, \ldots, C_k$.

Theorem ([Louart,C'18] [Seddik,C'19] Kernel Universality) For $x_i \sim \mathcal{L}(\mu_a, C_a)$ concentrated random vector, under the conditions of [C-Benaych'16],

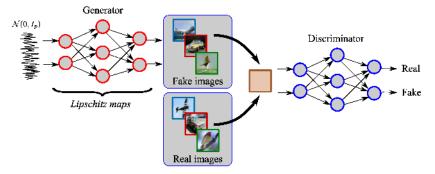
$$\|K - \hat{K}\| \xrightarrow{\text{a.s.}} 0, \quad \hat{K} = f(\tau) \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}} + \frac{1}{p} Z Z^{\mathsf{T}} + J A J^{\mathsf{T}} + *$$

with A only dependent on $f(\tau), f'(\tau), f''(\tau), \mu_1, \ldots, \mu_k, C_1, \ldots, C_k$.

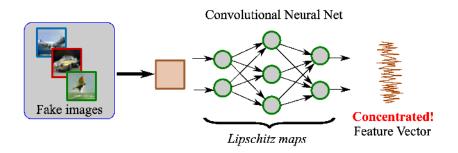
~ Same result as [C-Benaych'16]... Universality of first two moments!

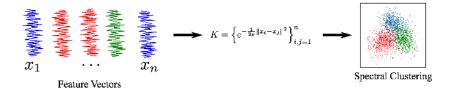
Key Finding. GAN-generated data are concentrated random vectors!

Ok...so what?

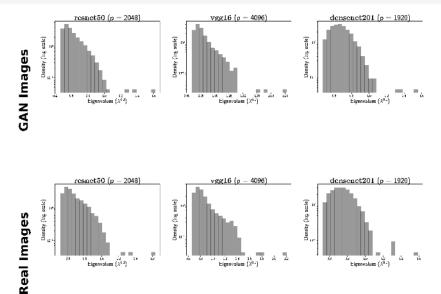


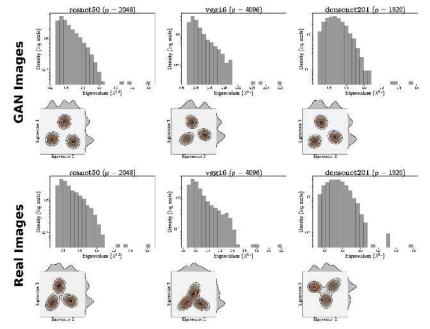
Key Finding. GAN-generated data are concentrated random vectors!



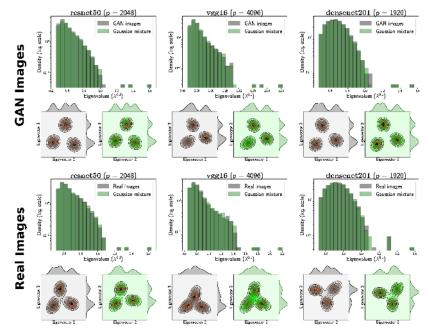


Results. [Seddik,C'19]

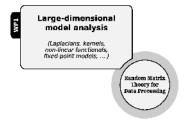


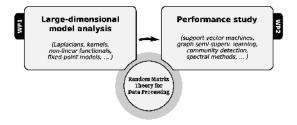


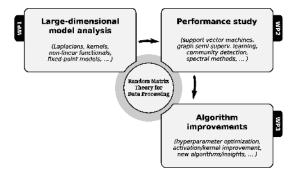
44/47

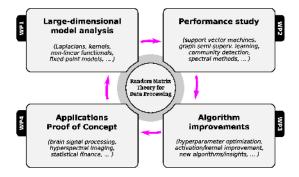


44/47

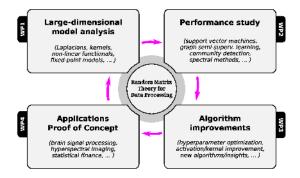








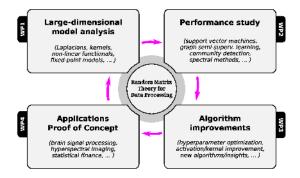
Our Research Activities:



The road ahead:

from theory to practice: exploit theory to improve real-data learning

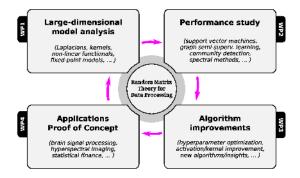
Our Research Activities:



The road ahead:

- from theory to practice: exploit theory to improve real-data learning
- beyond explicit learning: implicit optimizations, non-convex problems.

Our Research Activities:



The road ahead:

- from theory to practice: exploit theory to improve real-data learning
- beyond explicit learning: implicit optimizations, non-convex problems.
- ML = representation + stat-learning (VAE, NN dynamics?)

Our Team: the MIAI "LargeDATA" chair @ University Grenoble-Alpes

G. Basson Institut Fourier géamétric

GIPSA statistiques

P. Comon E. Gaussier G/PSA LIC tonsours

(+P.D

N. Le Bihan GIPSA traifement langage stats, physique

N. Tremblay CIPSA graphes

CIPSA GIPSA théorie de l'info signal, physique

M. Seddik Apprentissage appli's vision

C. Louart Methématiques concentration

M. Tiomoko Apprentissage transfer; SSL

H. Chakroun Methématiques géométrie

C. Doz Anorentissage

RMT et revier

T. Zarrouk Apprentissage RMT storchuré

C. Sélourné Apprentissage RMT non converse

B. Nabet Finance M & 5-state

H. Goulart Trait, signal fensours.

The End

Thank you!

C-Benaych'16] R. Couillet, Benaych-Georges, "Kernel Spectral Clustering of Large Dimensional Data". Electronic Journal of Statistics, vol. 10, no. 1, pp. 1393-1454, 2016. [article]

🐚 [Mai,C'18] X. Mai, R. Couillet, "A random matrix analysis and improvement of semi-supervised learning for large dimensional data". Journal of Machine Learning Research. vol. 19, no. 79, pp. 1-27, 2018, [article]

🐚 [Louart,C'18] C. Louart, Z. Liao, R. Couillet, "A Random Matrix Approach to Neural Networks", The Annals of Applied Probability, vol. 28, no. 2, pp. 1190-1248, 2018, [article]

🐚 [Seddik,C'19] M. Seddik, M. Tamaazousti, R. Couillet, "Kernel Random Matrices of Large Concentrated Data: The Example of GAN-Generated Image", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'19), Brighton, UK, 2019. [article]

🥦 H. Tiomoko Ali, R. Couillet, "Improved spectral community detection in large heterogeneous networks", Journal of Machine Learning Research, vol. 18, no. 225, pp. 1-49, 2018. [article]

🕐 R. Couillet, M. Tiomoko, S. Zozor, E. Moisan, "Random matrix-improved estimation of covariance matrix distances", Journal of Multivariate Analysis, vol. 174, pp. 104531, 2019. [article]

📎 Z. Liao, R. Couillet, "A Large Dimensional Analysis of Least Squares Support Vector Machines", IEEE Transactions on Signal Processing, vol. 67, no.4, pp. 1065-1074, 2018. [article]