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@ DoE: objectives & examples

© DoE based on asymptotic normality

© Construction of (locally) optimal designs
© Problems with nonlinear models

© Small-sample properties

© Nonlocal optimum design
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1 DoE: objectives & examples

A/ Parameter estimation

Ex1: Weighing with a two-pan balance

i.id. errors”; N (0; 2)
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1 DoE: objectives & examples

A/ Parameter estimation

Ex1: Weighing with a two-pan balance

+ Determine the weights of 8 objets, with mass;, i =1;:::;8

ii.d. errors"; N (0; ?)

Method a: weigh each objet successively

P y()=m+",i=1;:::;8

I estimated weights m*=y, N (mj; ?)

Repeat 8 times, average the result§; N (m;; 2=8) (with 64 observations. .)
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pRTeI SR EMGEERAIEWEE A/ Parameter estimation

Method b: more sophisticated. ..

Vi = Mp+m+mg+mg+ Mg+ Mg+ M+ Mg+ g
Yo = mpt+mp+mg Mg mMs Mg M7+ mg+ "
y3 = mp My Mg+ mg+Ms Mg M7+ Mg+ "3
Y4 = Mg Mp M3 Mg Mg+ Mg+ M7+ Mg+ "y
Y5 = m+m, mg+m; mMs+mg m;+mg+"s
Y6 = m+m mzg Mg+mg Mg+ Mmy+ mg+ "g
yr = my my+mg+mg Mg Mg+ M7+ Mg+ "y
Yg = mp M+ Mz Mg+ Ms+ Mg M7+ Mg+ g
18
bohg = 3 Yi
i=1

"1t Mot Mgt Mgt s+ et 7t g
8
N (mg; ?=8) (idem forallm;,j 7)

mg +
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pRTeI SR EMGEERAIEWEE A/ Parameter estimation

Method b: more sophisticated. ..

Y1
Y2
Y3
Ya
Ys
Ye
y7
Ys

mi+my+mzg+mg+ Ms+ Mg+ My + Mg+ 1
mg+my+mzg My Mg Mg My+ mg+ ")
mg My mMg+mMg+mMs Mg M7+ Mg+ "3
mg My Mg Mg Ms+ Mg+ M7+ Mg+ "y
m+m, mg+m; mMs+mg m;+mg+"s
m+my M3 Mg+Msg Mg+ M7+ Mg+ g
my my+mg+mg Mg Mg+ M7+ Mg+ "y
mg M+ m3 Mg+ Ms+ Mg M7+ Mg+ g
18
5 Yi
8.

RS T - T S S ST S 0 -

8

N (mg; ?=8) (idem forallm;,j 7)

mg +

a 8 observations only, against 64 with method a!
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pRTeI SR EMGEERAIEWEE A/ Parameter estimation

Here, selection of a good design = combinatorial problem

_P8 f "= f> n
Y =z TkiMi + T = Tem+ 7y,

(e.g., in Method bf,=[111 1 1 1 11})
y = Fm+ " with
method a:F, = Ig
method b: F, =8 8 Hadamard matrix,F; F, =8 Ig
( = fractional factorial design with 2 levels)

X
LS estimatorh = argmin  [yx fy m]?
m k=1
[ i
= ficfy vk = (F F) 'Fy
k=1 k=1
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pRTeI SR EMGEERAIEWEE A/ Parameter estimation

Here, selection of a good design = combinatorial problem

_P8 f "= > n
Y =z TkiMi+ Tk = Tgm+ Ty,

(e.g., in Method bf,=[111 1 1 1 11})
y = Fm+ " with
method a:F, = Ig
method b: F, =8 8 Hadamard matrix,F; F, =8 Ig
( = fractional factorial design with 2 levels)

X
LS estimatorh = argmin  [yx fy m]?
m k:l|
X St
= ficfy v = (F°F) 'Fy
k=1 k=1

P
=) Choose thef's such thatM, = 2° [, fif; = 1F” F is nonsingular
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pRTeI SR EMGEERAIEWEE A/ Parameter estimation

Here, selection of a good design = combinatorial problem

_P8 f "= > n
Y =z TkiMi+ Tk = Tgm+ Ty,

(e.g., in Method bf,=[111 1 1 1 11})
y = Fm+ " with
method a:F, = Ig
method b: F, =8 8 Hadamard matrix,F; F, =8 Ig
( = fractional factorial design with 2 levels)

xn
LS estimatorh = argmin  [yx fy m]?
m k:l|
X St
= ficfe yfk = (F°F) Py

k=1 k=1
P

=) Choose thef's such thatM, = 2° [, fif; = 1F” F is nonsingular

Ef mg = m (no bias)

Ef(h m)(th m)>g= —M,?

=) | minimize a scalar function o, !
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pRTeI SR EMGEERAIEWEE A/ Parameter estimation

In this particular situation: combinatorial problem (sindg; 2 f 1;0; 1g) [Fisher
1925 ...]

More generally, when the design variablésputs) are real numbers, optimum
design for parameter estimation is obtained bgtimization of a scalar function of
the (asymptotic) covariance matrix of the estimator
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pRTeI SR EMGEERAIEWEE A/ Parameter estimation

Ex2: [D'Argenio 1981] two-compartment model in pharmacokinetics
A productx is injected in blood { input u(t)),
Xc(t) (product in blood) moves to another tissue xp(t)
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pRTeI SR EMGEERAIEWEE A/ Parameter estimation

Ex2: [D'Argenio 1981] two-compartment model in pharmacokinetics
A productx is injected in blood { input u(t)),
Xc(t) (product in blood) moves to another tissue xp(t)

I Linear di erential equations:

(
P = (Ker  Kep)xo(t) +  Keexp(t)+ u(t)

dt
dxgt(t) = Kepxc(t) Kpexp (t)

we observe the concentration af in blood: y(t) = Xc(t)=V + "(t),
the errors (t;)'s are i.i.d.N(0; 2), =0:2 g/ml
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pRTeI SR EMGEERAIEWEE A/ Parameter estimation

Ex2: [D'Argenio 1981] two-compartment model in pharmacokinetics
A productx is injected in blood { input u(t)),
Xc(t) (product in blood) moves to another tissue xp(t)

I Linear di erential equations:

(
dxccit(t) = ( Ker Kep)xe(t) +  Kpexp(t)+ u(t)
et = Kepxc(t) Kpexe (t)

we observe the concentration af in blood: y(t) = Xc(t)=V + "(t),
the errors (t;)'s are i.i.d.N(0; 2), =0:2 g/ml

There are 4 unknown parameters= ( Kcp; Kpe; Kgr; V)
The pro le of the input u(t) is given (fast infusion 75 mg/min for 1 min, then

1.45 mg/min)
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pRTeI SR EMGEERAIEWEE A/ Parameter estimation

Ex2: [D'Argenio 1981] two-compartment model in pharmacokinetics
A productx is injected in blood { input u(t)),
Xc(t) (product in blood) moves to another tissue xp(t)

I Linear di erential equations:

(
dxccit(t) = ( Ker Kep)xe(t) +  Kpexp(t)+ u(t)
dxgt(t) = KCPXC(t) KpcXp (t)

we observe the concentration af in blood: y(t) = Xc(t)=V + "(t),
the errors (t;)'s are i.i.d.N(0; 2), =0:2 g/ml

There are 4 unknown parameters= ( Kcp; Kpe; Kgr; V)

The pro le of the input u(t) is given (fast infusion 75 mg/min for 1 min, then
1.45 mg/min)

+ simulated experiments with true parameter values

= (0:066min *; 0:038min ; 0:0242min *; 301)

Luc Pronzato (CNRS) Design of experiments in nonlinear models Ecole ETICS, Porquerolles, 5 oct. 2017 7174



pRTeI SR EMGEERAIEWEE A/ Parameter estimation

Experimental variables = sampling timeag, 1 t; 720 min
conventional design:

t = (5;10;30; 60; 120, 180, 360, 720) (in min)
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pRTeI SR EMGEERAIEWEE A/ Parameter estimation

Experimental variables = sampling timeag, 1 t; 720 min
conventional design:

t =(5;10; 30;60; 120, 180, 360, 720) (in min)
optimal design (for ):
t =(1;1;10; 10; 74, 74; 720, 720) (in min)

(assumes that independent measurements at the same timepassible)
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pRTeI SR EMGEERAIEWEE A/ Parameter estimation

Experimental variables = sampling timeag, 1 t; 720 min
conventional design:

t =(5;10; 30;60; 120, 180, 360, 720) (in min)
optimal design (for ):
t =(1;1;10; 10; 74, 74; 720, 720) (in min)

(assumes that independent measurements at the same timepassible)
I 400 simulations

I 400 sets of 8 observations each, for each design

I 400 parameter estimates (LS) for each design ...

O histograms of’;

(and approximated marginalg?azman & P 1996)
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pRTeI SR EMGEERAIEWEE A/ Parameter estimation

a optimal design gives more precise estimation
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Design of experiments in nonlinear models
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pRTeI SR EMGEERAIEWEE A/ Parameter estimation

a optimal design gives more precise estimation

Rep [Kep = 0:066]

25 T T T T

— L
0 0.05 0.1 0.15 0.2 0.25
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pRTeI SR EMGEERAIEWEE A/ Parameter estimation

a optimal design gives more precise estimation

Rpc [Kpc = 0:038]

30 T T T T T T T

20F

15

0
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
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pRTeI SR EMGEERAIEWEE A/ Parameter estimation

a optimal design gives more precise estimation

¥ [V =30]

0.25 T T T T T T T T T
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pRTeI SN EMGEERAIE N B/ Model discrimination

B/ Model discrimination J

Ex3: [Box & Hill 1967] Chemical reactiorA! B
2 design variablesx = (time t; temperatureT )
reaction of 1st, 2nd, 3rd ou 4th order?

! 4 model structures are candidate:

O 1) = expl ntexp( 1=T)]
1
@) (v _
x; 2) 1+ ptexp( 22=T)
1
@) (v _
2 = Az atexp( =TI
D0 ) = -

[1+3 stexp( 4o=T)]=
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pRTeI SN EMGEERAIE N B/ Model discrimination

Simulated experiment

Observations with 2nd structure (true ):y(x) = @ (x; 2) + "}, with

4 ,=(400; 5000y the true value (unknown) of parameters in model 2
a (;)iid. N(©; ?, =0:05

Admissible experimental domain: 0t 150,450 T 600
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pRTeI SN EMGEERAIE N B/ Model discrimination

Simulated experiment

Observations with 2nd structure (true ):y(x) = @ (x; 2) + "}, with

4 ,=(400; 5000y the true value (unknown) of parameters in model 2
a (;)iid. N(©; ?, =0:05

Admissible experimental domain: 0t 150,450 T 600

Sequential designafter the observation of/(x;), j = 1;:::;K,
estimate ™ (LS) fori =1;2;3;4
compute posterior probability ; (k) that modeli is correct fori =1;2;3;4

Initialization: (0)=1=4,i=1;:::;4 andXy;:::;X4 are given
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pRTeI SN EMGEERAIE N B/ Model discrimination
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pRTeI SN EMGEERAIE N B/ Model discrimination

design pointsx

1 T == T T T
! 600 4
L @
0.9 . 2 1
08 * x / 4 seor *1 *4 1
, \ "
’ \ 7
0.7 / N ’ 4 560 B
J s 578
X
06 X ‘,* 1 5401 4
sl N | 6,9,12,14 10,11,13
5201 4
x "
04} o ]
o AN x 5001 4
x *
03r /’; 4
x 4801 2 3 1
02 " < 4 * *
4 x 460 d
01p -
1 X . , . . . . .
o . N . X
0 2 4 6 8 10 12 14 20 40 60 80 100 120 140 160
c Pronzato (CNRS) Design of experiments in nonlinear models Ecole ETICS, Porquerolles, 5 oct. 2017 12/ 74



pRTeI SN EMGEERAIE N B/ Model discrimination

Design for discrimination is not considered in the following

A simple sequential method for discriminating betweo structures @ (x; 1),
@(x; ,) [Atkinson & Fedorov 1975]

e place next pointx+; where [ (x; %) @ (x; %)]? is maximum
e k! k+1, repeat
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pRTeI SN EMGEERAIE N B/ Model discrimination

Design for discrimination is not considered in the following

A simple sequential method for discriminating betweo structures @ (x; 1),
@(x; ,) [Atkinson & Fedorov 1975]

e place next pointx+; where [ (x; %) @ (x; %)]? is maximum
e k! k+1, repeat

If more than two modelsestimate"ik for all of them, place next point using the
two models with best and second best tting
(see[Atkinson & Cox 1974; Hill 1978for surveys)
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3 Dok based on asymptotic normalicy SRRt i e = EY

2 DoE based on asymptotic normality

A/ Regression models

vi = y(xi) = n(x.0) + ¢

y(x)

System
EE— + Criterion J(£)

> Model ( @)

7 0)

o System: physical experimental device, experimental conditions x;,
i=1.2,....n _
o Model(#): mathematical equations, parameters # = (#1,...,6,) "
(response n{x, 8) known explicitly or result of simulation of ODEs or PDEs)
e Criterion: similarity between y; = y(x) and n(x;,8), i = 1.2,... .0, eg.,

J(0) = 5 22 alyi — u(xi, )7 (LS)

Lresign ot experivents in narlinear mcdels Eccle ETICS, Parqueralles, 5 acz. 2017 40T



AN SLERECNNIES N[O ClCnEIA A/ Regression models

Remarks:
e Model( ) also provides derivatives

plus higher-order derivatives if necessary
via simulation of sensitivity functionsor automatic di erentiation (adjoint
code)
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AN SLERECNNIES N[O ClCnEIA A/ Regression models

Remarks:
e Model( ) also provides derivatives

@Q(x; )=@=(@(x; )=@1;:::;@(X; )=@p)~
plus higher-order derivatives if necessary
via simulation of sensitivity functionsor automatic di erentiation (adjoint

code)
o Criterion; I:,other criteria than LS can be used, e.g.,
J()= iz JYi  (%; )i (! robust estimation) including

MaX|mumFL|keI|hood (ML) estimation in more general settings
(J()= 5 izlog (vij)! maxt)
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AN SLERECNNIES N[O ClCnEIA A/ Regression models

Remarks:
e Model( ) also provides derivatives

@Q(x; )=@=(@(x; )=@1;:::;@(X; )=@p)~
plus higher-order derivatives if necessary
via simulation of sensitivity functionsor automatic di erentiation (adjoint

code)
o Criterion; I:,other criteria than LS can be used, e.g.,
J()= iz JYi  (%; )i (! robust estimation) including

MaX|mumFL|keI|hood (ML) estimation in more general settings
(J()= 5 izlog (vij)! maxt)

e We always assume independent observatig(ig) (independent’; in
regression) often much more di cult otherwise!
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AN SLERECNNIES N[O ClCnEIA A/ Regression models

Remarks:
e Model( ) also provides derivatives

@Q(x; )=@=(@(x; )=@1;:::;@(X; )=@p)~
plus higher-order derivatives if necessary
via simulation of sensitivity functionsor automatic di erentiation (adjoint

code)
o Criterion; I:,other criteria than LS can be used, e.g.,
J()= iz JYi  (%; )i (! robust estimation) including

MaX|mumFL|keI|hood (ML) estimation in more general settings
(J()= 5 izlog (vij)! maxt)

e We always assume independent observatig(ig) (independent’; in
regression) often much more di cult otherwise!

Most of the following can be found ifP_& Pazman Design of Experiments in
Nonlinear Models, Springer, 2013]
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PRSI SGEREL NNIEEY Nl NEYA B/ LS estimation

B/ LS estimation J

) P
argmin & Ly ()12

/\n:
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PRSI SGEREL NNIEEY Nl NEYA B/ LS estimation

B/ LS estimation

) P
M=argmin ;0 Ly 06 )1

Linear model: (x; )= f>(x) ! |™M=(FF) Py]|

=) choose thex; such thatM,, = % F> F has full rank
(Mp = normalized information matrix)
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PRSI SGEREL NNIEEY Nl NEYA B/ LS estimation

B/ LS estimation

) P
M=argmin ;0 Ly 06 )1

Linear model: (x; )= f>(x) ! |™M=(FF) Py]|

=) choose thex; such thatM,, = % F> F has full rank
(Mp = normalized information matrix)

Sincey; = f> (x;) + "i for some and E";g=0 for all i, Efyg= F
and Ef g =

Also,var(™ =Ef("™ )™ )>g= 2(FF) '= M, when the"; are

i.i.d. with nite variance 2

=) choose thex; to minimize a scalar function of,,*
(see Example 1: weighing with a two-pan balance)
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PRSI SGEREL NNIEEY Nl NEYA B/ LS estimation

Nonlinear model: (X; )
Under standard assumptions (2 compact, (X; ) continuous in for all
X...) and for a suitable sequence;}

‘ MES asniil ‘ (strong consistency)
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PRSI SGEREL NNIEEY Nl NEYA B/ LS estimation

Nonlinear model: (X; )
Under standard assumptions (2 compact, (X; ) continuous in for all
X...) and for a suitable sequence;}

‘ MES asniil ‘ (strong consistency)

Moreover, under standard regularity assumptions (x; ) twice continuously
di erentiable in for all x...), for i.i.d. errors"; with nite variance 2, for a
suitable sequencex|)

P A )N (0 2M Yasn!l | (asymptotic normality)

with M = lim pg %r n % % (information matrix)
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PRSI SGEREL NNIEEY Nl NEYA B/ LS estimation

Nonlinear model: (X; )
Under standard assumptions (2 compact, (X; ) continuous in for all
X...) and for a suitable sequence;}

‘ MES asniil ‘ (strong consistency)

Moreover, under standard regularity assumptions (x; ) twice continuously
di erentiable in for all x...), for i.i.d. errors"; with nite variance 2, for a
suitable sequencex|)

P A )N (0 2M Yasn!l | (asymptotic normality)

with M = lim pg %r n % % (information matrix)

=) choose thex; (design) to minimize a scalar function &fl 1,
or maximize a function (M)

= classical approach for DoE
(see Example 2 with a two-compartment model)
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PRSI SGEREL NNIEEY Nl NEYA B/ LS estimation

Remarks:
e Weighted LS suppose heteroscedastic errors
varf'ig=Ef"fg=Ef"?(x)g=*(x)
Weighted LS estimatof}, s minimizesdwis( ) = 5wy (6 )P
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PRSI SGEREL NNIEEY Nl NEYA B/ LS estimation

Remarks:
e Weighted LS suppose heteroscedastic errors
varf"ig=Ef"2g=Ef"2(x)g= ?(x)
Weighted LS estimatof}, s minimizesdwis( ) = 5wy (6 )P

Strong consistency and asymptotic normalﬁ’yﬁ(’\{}\,LS ) 1N (0;C) as
n!l ,where
C=M,M,M_Land

Ma=limpy = e W(x) 0L ) (C:)i; ) 7@@()(;; )
Mp = lim p % in=1 w2(x) 2(x) @(@Xi, ) @@(Xi; )
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PRSI SGEREL NNIEEY Nl NEYA B/ LS estimation

Remarks:
e Weighted LS suppose heteroscedastic errors
varf'ig=Ef"fg=Ef"?(x)g=*(x)
Weighted LS estimatof}, s minimizesdwis( ) = 5wy (6 )P

Strong consistency and asymptotic normalﬁ’yﬁ("{}\,LS ) 1N (0;C) as
n!l ,where
C=M,M,M_Land

Ma=limpy = e W(x) 0L ) (C:)i; ) 7@@()(;; )
My = lim % in=1 W2(Xi) Z(Xi) @(@Xi; ) @@(Xi>§ )
ac m?

. P . .
M =1im o % 'n=1 z(lx.) @(@3’ ) @@S)X'; )

a Cc=M Ywhenw(x) _ ?(x)
=) choose the best estimator, then the best design
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PRSI SGEREL NNIEEY Nl NEYA B/ LS estimation

Remarks (continued):

e One may also consider the case g = 2(x;; ) (errors with
parameterized variance)

a Use two-stage LS: 1/ usev(x) 1! "?1); 2lusew(x) = 2(x; ’\'(“1))
or use iteratively-reweighted LS (i.e., go on with more stages),
penalized LS. ..
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PRSI SGEREL NNIEEY Nl NEYA B/ LS estimation

Remarks (continued):

e One may also consider the case g = 2(x;; ) (errors with
parameterized variance)

a Use two-stage LS: 1/ usev(x) 1! "?1); 2lusew(x) = 2(x; ’\'(“1))
or use iteratively-reweighted LS (i.e., go on with more stages),
penalized LS. ..

e Similar asymptotic results for ML estimatioh At ) IN (0 2MY
asn!1l , with Mg = Fisher information matrix
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PRSI SGEREL NNIEEY Nl NEYA B/ LS estimation

Remarks (continued):

e One may also consider the case g = 2(x;; ) (errors with
parameterized variance)

a Use two-stage LS: 1/ usev(x) 1! "?1); 2lusew(x) = 2(x; ’\'(“1))
or use iteratively-reweighted LS (i.e., go on with more stages),
penalized LS. ..

e Similar asymptotic results for ML estimatioh At ) IN (0 2MY
asn!1l , with Mg = Fisher information matrix

e Model( ) = linear ODE, experimental design = system inpui(t)
a ( simple) analytic expression fdr
a optimal input design, optimal control problem (frequency domain
optimal combination of sinusoidal signalgpoodwin & Paynel977; Zarrop
1979; Ljung1987; Walter & P 1994, 1997]
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ATl S EREL RIS EIVA  C/ Design based on the information matrix

C/ Design based on the information matrix J

Maximize (M), but which ( )?

a There are many possibilities!
LS estimation in linear regressiomith i.i.d. errorsN (0; ?2)

R(™ )=f 2R:( "™yMa( ™) ;S(l )9

= con dence region (ellipsoid) at level : Probf 2 R (™; )g=
(asymptotically true in nonlinear situations e.g., nonlinear regression
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ATl S EREL RIS EIVA  C/ Design based on the information matrix

C/ Design based on the information matrix J

Maximize (M), but which ( )?

a There are many possibilities!
LS estimation in linear regressiomith i.i.d. errorsN (0; ?2)

R(™ )=f 2R:( "™yMa( ™) ;S(l )9

= con dence region (ellipsoid) at level : Probf 2 R (™; )g=
(asymptotically true in nonlinear situations e.g., nonlinear regression

& Most criteria can be related to geometrical propertiesR{™; )
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ATl S EREL RIS EIVA  C/ Design based on the information matrix

C/ Design based on the information matrix J

Maximize (M), but which ( )?

a There are many possibilities!
LS estimation in linear regressiomith i.i.d. errorsN (0; ?2)

R(™ )=f 2R:( "™yMa( ™) ;S(l )9

= con dence region (ellipsoid) at level : Probf 2 R (™; )g=
(asymptotically true in nonlinear situations e.g., nonlinear regression

Most criteria can be related to geometrical propertiesR{™; )

Q-

Nonlinear modeE) M = M( ) depends on the where (x; ) is linearized:
for the moment use aominal value °©

Q-

a ‘Iocally optimum design ‘
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ATl S EREL RIS EIVA  C/ Design based on the information matrix

A few choices for () J

e A-optimality: maximize trace[M ], maximize Hrace[M 1]
., minimize the sum of lengtHsof axes of (asymptotic) con dence ellipsoids
R(™ )
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ATl S EREL RIS EIVA  C/ Design based on the information matrix

A few choices for ()

e A-optimality: maximize trace[M ], maximize Hrace[M 1]
., minimize the sum of lengtHsof axes of (asymptotic) con dence ellipsoids
R(™ )

e E-optimality: maximize min(M)
., minimize the longest axis dR(™; )
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ATl S EREL RIS EIVA  C/ Design based on the information matrix

A few choices for ()

e A-optimality: maximize trace[M ], maximize Hrace[M 1]
., minimize the sum of lengtHsof axes of (asymptotic) con dence ellipsoids
R(™ )
e E-optimality: maximize min(M)
., minimize the longest axis dR(™; )
e D-optimality: maximize log deM p
., minimize volume oR("™; ) (proportional to 1= detM)
Very much used:

o a D-optimum design is invariant by reparametrization

detM% ( ))=det M( )det 2 @C?>
o often leads to repeat the same experimental conditions (regtions)

(remember Ex2:dim( ) =4 ! 4 dierent sampling times, several
observations at each)
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ATl S EREL RIS EIVA  C/ Design based on the information matrix

e Ds-optimality: only s < p parameters of interestand p s nuisance

parameters)) ~ =( 7; 3), with ; the vector ofs parameters of interest
_ Mu M | 1,y A Ap
M()= M2 M2 M O)= Az A
with
A = [Mui1 MM 221|V| 21] !
Ap = M1z MM 221M21] M 12M221
Ay = My Mai[M1r MMy Mag] *
Az = My + My'Mar[Mur MMy Mar] *M1aM st

I maximize DS[M] = det[Mll M oM ZZlM 21]
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A S ERECNNMIEEY N ClNEIAl C/ Design based on the information matrix

e Ds-optimality: only s < p parameters of interestand p s nuisance

parameters)) ~ =( 7; 3), with ; the vector ofs parameters of interest

_ Mun My | 1,y- An A
M) = M21 M2 M) = Az Az
with
A = [Mn |V|12|V|221|V|21] !
Ap = M1z M12Mp'Mar] *M 1My,
Ay = My Mai[M1r MMy Mag] *
Ax = M221+ M221M21[M11 M12M221M21] 1M12M22l

I maximize DS[M] = det[Mll M oM 221M 21]

a Useful formodel discrimination :

if @x; )= D(x; 1)+ (X; 2nm) (nested models),
estimate ,n; in @ to decide whether @ or @ is more
appropriate, seg¢Atkinson & Cox 1974]
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3 Construction of (locally) optimal designs RRAYASEERE ST

3 Construction of (locally) optimal designs

A/ Exact design

Each design poink; can be anything, e.g. a point in a subskt of R¢

P ’ ’
+ maximize (M) W.rt Xo with M= M(Xy; 9= 27 L, @) @l
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3 Construction of (locally) optimal designs

A/ Exact design

n observations alX,, = ( x3;:::;X,) in a regression model (for simplicity)
Each design poink; can be anything, e.g. a point in a subskt of R¢
P
+ maximize (M) w.r.t. X, with My = M(Xq; 9= 1 1) @(@X)' ) 0@(’" )
If problem dimensiom d not too large! standard algorithm (but W|th
constraints, local optimas. . .)
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3 Construction of (locally) optimal designs

A/ Exact design

n observations alX,, = ( x3;:::;X,) in a regression model (for simplicity)
Each design poink; can be anything, e.g. a point in a subskt of R¢
+ maximize (M) w.r.t. X, with M, = M(X,; ©) = %P n @(@X)' ) 0@("' )
If problem dimensiom d not too large! standard algorithm (but W|th
constraints, local optimas. . .)
Otherwise, use an algorithm that takes the particular form difet problem into
account

Exchange methodsat iteration k, exchangeone support pointx; with a better
onex in X (design space) better for ( )

XK= (x5 X [riii%)
I
X
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3 Construction of (locally) optimal designs RAYRSTETE R CET]

o [Fedorov1972} consider alln possible exchanges successively, each time
starting from XX, retain the best one among thesen ! XX*1

Luc Pronzato (CNRS) Design of experiments in nonlinear models Ecole ETICS, Porquerolles, 5 oct. 2017 2474



3 Construction of (locally) optimal designs RRAYASEERE ST

o [Fedorov1972} consider alln possible exchanges successively, each time
starting from XX, retain the best one among thesen ! XX*1

One iteration! n optimizations of dimensiom followed by rankingn
criterion values
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3 Construction of (locally) optimal designs RAYRSTETE R CET]

e [Mitchell, 1974} DETMAX algorithm
If one additional observation were allow&d optimal choice

Then, remove one support point to return to m-points design:

O consider alin + 1 possible cancellations,
retain the less penalizing in the sense of )(
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3 Construction of (locally) optimal designs RRAYASEERE ST

e [Mitchell, 1974} DETMAX algorithm
If one additional observation were allow&d optimal choice

Then, remove one support point to return to m-points design:

O consider alin + 1 possible cancellations,
retain the less penalizing in the sense of )(

O globally, exchange somg with x,.,

[= excursion of length llonger excursions are possible...]
One iteration! 1 optimization of dimensiord followed by rankingn + 1
criterion values
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3 Construction of (locally) optimal designs RRAYASEERE ST

e DETMAX has simpler iterations than Fedorov, but usually regsirmore
iterations
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3 Construction of (locally) optimal designs RAYRSTETE R CET]

e DETMAX has simpler iterations than Fedorov, but usually regsirmore
iterations

e dead ends are possible:
DETMAX: the point to be removed iXn+1
Fedorov: no possible improvement when optimizioige x; at a time
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3 Construction of (locally) optimal designs RRAYASEERE ST

e DETMAX has simpler iterations than Fedorov, but usually regsirmore
iterations

e dead ends are possible:
DETMAX: the point to be removed iXn+1
Fedorov: no possible improvement when optimizioige x; at a time

e s both give local optima onls
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3 Construction of (locally) optimal designs RAYRSTETE R CET]

e DETMAX has simpler iterations than Fedorov, but usually regsirmore
iterations

e dead ends are possible:
DETMAX: the point to be removed iXn+1
Fedorov: no possible improvement when optimizioige x; at a time
e s both give local optima onls
o Other methods
e Branch and bound: guaranteed convergence, but complicatéd/elch 1982]
e Rounding an optimal design measurgsupport points x; and associated
weightsw; , i = 1;:::; m, presented next in B/):
ghoosen integersr; (ri= nb. of replications of observations atx) such that

Cori=nandri=n w,

Reider 1992)

Luc Pronzato (CNRS) Design of experiments in nonlinear models Ecole ETICS, Porquerolles, 5 oct. 2017 26/ 74



NS ST NO NI WRCTNINEEE I B/ Design measures: approximate design theory

B/ Design measures: approximate design theory J

[Cherno 1953; Kiefer & Wolfowitz 1960 Fedorov1972; Silveyl980, Pazman
1986, Pukelsheim 993, Fedorov & Leono014...]

(nonlinear) regressiom observations afX, = (X1;:::;Xy) with i.i.d. errors:
M 9= 17 @) @0 )
ns n - @ 0 @> 0

(the additive form is essentialrelated to the independence of observations)
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NS ST NO NI WRCTNINEEE I B/ Design measures: approximate design theory

B/ Design measures: approximate design theory J

[Cherno 1953; Kiefer & Wolfowitz 1960 Fedorov1972; Silveyl980, Pazman
1986, Pukelsheim 993, Fedorov & Leono014...]

(nonlinear) regressiom observations afX, = (X1;:::;Xy) with i.i.d. errors:
M 9= 17 @) @ )
ns n - @ 0 @> 0

(the additive form is essentialrelated to the independence of observations)
Suppose that severad's coincide (replications): onlyn < n di erent x;'s

T rnax: ) @)

M (Xn; 0): n @ 0 @> 0

i=1

proportion of observations collected at

S

percentage of experimental e ort atx;
weightw; of support pointx;
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NS ST NO NI WRCTNINEEE I B/ Design measures: approximate design theory

s Wi@(Xi; ) @(x; )

M (Xn; 0) = 0 o
i=1 @ @~
A : X1 Xm P
O designX, , w W with 2, wi =1
1 m

O normalized discrete distribution on thg,
with | constraintsri=n = w,
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NS ST NO NI WRCTNINEEE I B/ Design measures: approximate design theory

s Wi@(Xi; ) @(x; )

M (Xn; 0) = 0 o
i=1 @ @~
A : X1 Xm P
O designX, , w W with 2, wi =1
1 m

O normalized discrete distribution on thg,
with | constraintsri=n = w, ‘

a Release the constraintonly enforcew; 0 with P mowi=1
O = discrete probability measure o% (= design space)
support pointsx; and associated weights;
= approximate design
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NS ST NO NI WRCTNINEEE I B/ Design measures: approximate design theory

s Wi@(Xi; ) @(x; )

M (Xn; 0) = 0 o
i=1 @ @~
A : X1 Xm P
O designX, , w W with 2, wi =1
1 m

O normalized discrete distribution on thg,
with | constraintsri=n = w, ‘

a Release the constraintonly enforcew; 0 with P mowi=1
O = discrete probability measure o% (= design space)
support pointsx; and associated weights;
= approximate design

More general expression:= any probability measure oX
z
@(x; ) @(x; )
dx); dx) =1
L@ . @ . (dx) y (dx)

M()=M(; 9=
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[/ Cresign measures: approxiniate design cheory

M(¢) € convex closure of M= set of rank 1 matrices
Mid.) = ity (=0 LIERD)
(6x) = Z557 o0 57 | g0

M(£) is symmetric p x p: € g-dimensicnal space, ¢ — @
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13/ Lresizn measures: approxiniate design cheory

M(¢) € convex closure of M= set of rank 1 matrices

- ity x.8) IERD)
M(6.) = =55 |9n o |90
M(£) is symmetric p x p: € g-dimensicnal space, ¢ —
M@ xz)\
I'. /
s

-

o

MOx,) __1

..——--<:’I\1(§)

K MOx)
g -l

S

Lresign ot experivents in narlinear models

pletl)
z

‘i = W}.{SX| + WQ‘)‘XQ + W3§x3
(3 points are enough for g = 2}

Ecole ETICS, Parqueralles, 5 acz. 2017 el



NS ST NO NI WRCTNINEEE I B/ Design measures: approximate design theory

Caratheodory Theorem:
M( ) can be written as the linear combination of at mogt+ 1 elements ofM :

M()= Wi@((g’) "@(g)(:) o M 7p(p2+1)+1

i=1

) consider discrete probability measures Wﬂﬂzﬁ + 1 support points at most
(true in particular for the optimum design!)
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NS ST NO NI WRCTNINEEE I B/ Design measures: approximate design theory

Caratheodory Theorem:
M( ) can be written as the linear combination of at mogt+ 1 elements ofM :

M()= Wi@((g’) "@(g)(:) o M 7p(p2+1)+1

i=1

) consider discrete probability measures Wﬂﬂzﬁ + 1 support points at most
(true in particular for the optimum design!)

[Even better: for many criteria ( ), if  is optimal (maximizes [M( )]) then M( ) is

on the boundary of the convex closure dfl and @ support points are enough
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NS ST NO NI WRCTNINEEE I B/ Design measures: approximate design theory

Caratheodory Theorem:
M( ) can be written as the linear combination of at mogt+ 1 elements ofM :

T @) @) p(p +1)
M( ): Wi 0 > oy M +1
i=1 @ @ 2

) consider discrete probability measures Wﬂﬁzﬁ + 1 support points at most
(true in particular for the optimum design!)

[Even better: for many criteria ( ), if  is optimal (maximizes [M( )]) then M( ) is

on the boundary of the convex closure dfl and p(pﬂ) support points are enough

P
Suppose we found an optimal = i"ll W
+ for a givenn, choose ther; so that ' w; optimum
! rounding of an approximate design
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NS ST NO NI WRCTNINEEE I B/ Design measures: approximate design theory

Caratheodory Theorem:
M( ) can be written as the linear combination of at mogt+ 1 elements ofM :

@k ) @) p(p+1)
M( ) = Wi - 0 o 01 m ——*1
i=1 @ @~ 2
) consider discrete probability measures Wﬂﬁzﬁ + 1 support points at most
(true in particular for the optimum design!)
[Even better: for many criteria ( ), if  is optimal (maximizes [M( )]) then M( ) is
on the boundary of the convex closure dfl and % support points are enough

Suppose we found an optimal = P i"ll W
+ for a givenn, choose ther; so that ' w; optimum
! rounding of an approximate design
+ Sometimes, can be implementeavithout any approximation = power
spectral densityof an input signal
I design of optimal input for ODE model in the frequency domain
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NS ST NO NI WRCTNINEEE I B/ Design measures: approximate design theory

Caratheodory Theorem:
M( ) can be written as the linear combination of at mogt+ 1 elements ofM :

T @) @) p(p +1)
M( ): Wi 0 > oy M +1
i=1 @ @ 2

) consider discrete probability measures Wﬂﬁzﬁ + 1 support points at most
(true in particular for the optimum design!)

[Even better: for many criteria ( ), if  is optimal (maximizes [M( )]) then M( ) is

on the boundary of the convex closure dfl and p(‘”l) support points are enough

Suppose we found an optimal = P i"ll W
+ for a givenn, choose ther; so that ' w; optimum
! rounding of an approximate design
+ Sometimes, can be implementeavithout any approximation = power
spectral densityof an input signal
I design of optimal input for ODE model in the frequency domain

Why design measures are interesting?
How does it simplify the optimization problem?
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£ Optimal design measures

C/ Optimal design measures J

m Maximize ®(-) concave w.r.t. M({£) in a convex set
Ex: D-optimality: ¥ My = O, Mz = O, with My & Mo, ¥, 0 << o << 1,
log det[(1 — )My + aM3] = (1 — )} logdet My + o log det M,
= log det[] is (strictly) concave
convex set 4 concave criterion = one unigue optimum!

Lresign of experirents in norlinear rcdels Ecole ETICS, Parqueralles, 5 act. 2017 I






A ST WO N (ST WRCTNINER SN C/ Optimal design measures

= set of probability measures onX , ( ) concave, ( )= M()]
F(:;)=lim | ¢ @a )+ 1 ()
= directional derivative of () at in direction

Equivalence Theorem: maximizes (), max, F( ;) O
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A ST WO N (ST WRCTNINER SN C/ Optimal design measures

= set of probability measures onX , ( ) concave, ( )= M()]
F(:;)=lim | ¢ @a )+ 1 ()
= directional derivative of () at in direction

Equivalence Theorem: maximizes (), max, F( ;) O

O Takes a simple form when () is di erentiable
maximizes (), maxex F (; x) 0‘
+ Check optimality of by plotting F ( ; )
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A ST WO N (ST WRCTNINER SN C/ Optimal design measures

= set of probability measures onX , ( ) concave, ( )= M()]
F(:;)=lim | ¢ @a )+ 1 ()
= directional derivative of () at in direction

Equivalence Theorem: maximizes (), max, F( ;) O

O Takes a simple form when () is di erentiable
maximizes (), maxex F (; x) 0‘
+ Check optimality of by plotting F ( ; )

Ex: D-optimal design
m  maximizes logdetl( )] w.rt. 2
, maxex d( p;x) P
, p Minimizes max,x d(; x) w.rt. 2
whered( ; X) = % M Y )% o
Moreover,d( ;X)) = p = dim( ) for any x; = support point of
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A ST WO N (ST WRCTNINER SN C/ Optimal design measures

Ex: (x; )= 1exp( 2xX) (p=2)i.id.errors, X = R*

[2=2]
I d(; x) as a function ofx
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3 Construction of (locally) optimal designs

Ex: (X; )= 1exp( 2x) (p=2)i.i.d. errors, X

[2=2]

I d(; x) as a function ofx
_ 001 Q75
27 1=2 1=2

Luc Pronzato (CNRS)

Design of experiments in nonlinear models

C/ Optimal design measures

R+

Ecole ETICS, Porquerolles, 5 oct. 2017
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3 Construction of (locally) optimal designs

Ex: (x; )=

[2=2]

1exp(

2X) (p = 2) i.i.d. errors, X

I d(; x) as a function ofx
0:01 Q75

C/ Optimal design measures

R+

0 1=,=05
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J/\
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. $ b
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. § o
. .
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151 \/ B 151®
.
.
Y
1+ B 1t
05 B o5
. . . . . . . . I . . . . . . . . .
0 02 04 06 08 1 12 14 16 18 2 o 02 04 06 08 1 12 14 16 18 2
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A ST WO N (ST WRCTNINER SN C/ Optimal design measures

KW Eg. Th. relates optimality in space to optimality iny space(i.i.d. errors)
nvar[ (x;"M]1 28X M i(; )@&) = 2d(;x) ,n!1

‘ D-optimality , G-optimality‘
a | minimizes the maximum value of prediction variance oXer
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A ST WO N (ST WRCTNINER SN C/ Optimal design measures

KW Eg. Th. relates optimality in space to optimality iny space(i.i.d. errors)
nvar[ (x;"M]1 28X M i(; )@&) = 2d(;x) ,n!1

‘ D-optimality , G-optimality‘
a | minimizes the maximum value of prediction variance oXer

14 T

(x; ), (x;) 2std.

0.2

I put next observation wherd( ; x) is large

0.6 0.8 1 12 14 16 18 2
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A ST WO N (ST WRCTNINER SN C/ Optimal design measures

Remark:
Eq. Th. = stationarity condition = NS condition for optimality
6 duality property!
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A ST WO N (ST WRCTNINER SN C/ Optimal design measures

Remark:
Eq. Th. = stationarity condition = NS condition for optimality
6 duality property!

Dual problgm to D-optimum dgsign:
Dene S = @g; ) :x2X [S[S =Elfving's set]
E = minimum-volume ellipsoid centered d that containsS

Lagrangian theor) E =fz2 RP:Z> MFl( p)Z Ppgwhere 5 is D-optimum
support points of , = contact betweenE and S
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A ST WO N (ST WRCTNINER SN C/ Optimal design measures

Remark:
Eq. Th. = stationarity condition = NS condition for optimality
6 duality property!

Dual problgm to D-optimum dgsign:
Dene S = @g; ) :x2X [S[S =Elfving's set]
E = minimum-volume ellipsoid centered d that containsS

Lagrangian theor) E =fz2 RP:Z> MFl( p)Z Ppgwhere 5 is D-optimum
support points of , = contact betweenE and S

In general, few contact points repeat observations at the same plagsee[Yang
2010, Dette & Melas 201)]

There exist dual problems for other criteria ()
(= one of the main topics in [Pukelsheim1993)

Luc Pronzato (CNRS) Design of experiments in nonlinear models Ecole ETICS, Porquerolles, 5 oct. 2017 35/ 74



A ST WO N (ST WRCTNINER SN C/ Optimal design measures

Ex: (x; )= lexp( 2x)  exp( 1x)]

1 2

=(1;5), X =R*

L L L
02 0.15 0.1 0.05 [ 0.05 0.1 0.15

E andS

) D optimum design , supported on two points
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RS NI NI WYRCIIINEES I D/ Construction of an optimal design measure

D/ Construction of an optimal design measure I

= set of probability measures onX , () concave and di erentiable,
()=1 M(C)]
Concavity 3 ‘for any 2, () (Y+maxgax F (; %)
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RS NI NI WYRCIIINEES I D/ Construction of an optimal design measure

D/ Construction of an optimal design measure I

= set of probability measures onX , () concave and di erentiable,
()=1 M(C)]
Concavity 3 ‘for any 2, () (Y+maxgax F (; %)

Fedorov Wynn Algorithm: sort of steepest ascent
m 1: Choose ! not degenerate (dewi( 1) > 0)
2 : Computex, = argmaxx F ( %; x)
IfF (% x) <, stop: K'is -optimal
3: M= ) *+ (delta measure at,)

[Vertex Directior
k! k+1,return to Step 2
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RS NI NI WYRCIIINEES I D/ Construction of an optimal design measure

D/ Construction of an optimal design measure I

= set of probability measures onX , () concave and di erentiable,
()=1 M(C)]
Concavity 3 ‘for any 2, () (Y+maxgax F (; %)

Fedorov Wynn Algorithm: sort of steepest ascent
m 1: Choose ! not degenerate (dewi( 1) > 0)
2 : Computex, = argmaxx F ( %; x)
IfF (% x) <, stop: K'is -optimal
3: M= ) *+ (delta measure at,)

[Vertex Directior
k! k+1,return to Step 2

Step-size ?
a y=argmax (K1) = h for D-optimal design[Fedorov1972]
O monotone convergence
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RS NI NI WYRCIIINEES I D/ Construction of an optimal design measure

D/ Construction of an optimal design measure I

= set of probability measures onX , () concave and di erentiable,
()=1 M(C)]
Concavity 3 ‘for any 2, () (Y+maxgax F (; %)

Fedorov Wynn Algorithm: sort of steepest ascent
m 1: Choose ! not degenerate (dewi( 1) > 0)
2 : Computex, = argmaxx F ( %; x)
IfF (% x) <, stop: K'is -optimal
3: M= ) *+ (delta measure at,)

[Vertex Directior
k! k+1,return to Step 2

Step-size ?

a y=argmax (K1) = h for D-optimal design[Fedorov1972]
O monotone COE,Vergence
a ,>0; lim k=0 -1 k=1 [[Wynn 1970]for D-optimal design]
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RS NI NI WYRCIIINEES I D/ Construction of an optimal design measure

Remarks:

Consider sequential design, orgat a time entersM (X)

M (Xks1) = o M(Xk)

1 @ (Xk+1s ) @ (Xk+15 )
0 @

k+1 @
argmaxx F (% )
, Wynn algorithm with = 1~

0

with Xg+1
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RS NI NI WYRCIIINEES I D/ Construction of an optimal design measure

Remarks:

Consider sequential design, orgat a time entersM (X)
M (Xie1) = g M(X)
+ 1 @0k ) @i )
0 @>

k+1 @
with 341 = argmaxx F ( %; &)
, Wynn algorithm with = 1~

m Guaranteed convergence to the optimum

0
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RS NI NI WYRCIIINEES I D/ Construction of an optimal design measure

Remarks:

Consider sequential design, orgat a time entersM (X)
M (Xie1) = g M(X)
+ 1 @0k ) @i )
k+1 @ o @
with x4+ = argmaxx F ( 5; &)
, Wynn algorithm with = 1~
m Guaranteed convergence to the optimum

m There exist faster methods:

remove support points from ¥ ( allow  to be < 0) [Atwood 1973;
Bohning 1985, 1986]

= combine with gradient projection (or a second-order method)Vu 1978]

= use a multiplicative algorithm[Titterington 1976; Torsney 1983 2009; Yu
2010] [for D or A optimal design, far from the optimum]
combine di erent methods|[Yu 2011]

= Still an active topic. ..

0
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RS NI NI WYRCIIINEES I D/ Construction of an optimal design measure

Remarks: Usually,X = compact subset ofR? (e.g., the probability simplex for

mixture experiments)
I discretized intoX - with ~ elements (a grid or better, a low-discrepancy

sequence, sefNiederreiter1992)
O the algorithms above may be slow wherns large
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RS NI NI WYRCIIINEES I D/ Construction of an optimal design measure

Remarks: Usually,X = compact subset ofR? (e.g., the probability simplex for
mixture experiments)

I discretized intoX - with ~ elements (a grid or better, a low-discrepancy
sequence, segliederreiter1992)

O the algorithms above may be slow wherns large

a Combine continuous search for support pointsXn with optimization of a
design measure with few support points, say
a Exploit guaranteed (and fast) convergence of algorithms riorsmall

+ use Eq. Th. to check optimality[Yang et al., 2013, P & Zhigljavsky, 2014]

Luc Pronzato (CNRS) Design of experiments in nonlinear models Ecole ETICS, Porquerolles, 5 oct. 2017 39/ 74



RS NI NI WYRCIIINEES I D/ Construction of an optimal design measure

Ex: D-optimal design for
(X5 )= ot 1exp( 2x)+ ﬁ[exp( a%2)  exp( 3%2)]

with x = (X1;%) 2 X =[0;2] [0;10] (andp=5, 9=2, 9=0:7, 2=0:2)
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RS NI NI WYRCIIINEES I D/ Construction of an optimal design measure

Ex: D-optimal design for

3

(x; )= o+ 1exp( 2x1)+ [exp( a%2) exp( 3x%)]

4
with x = (X1;%) 2 X =[0;2] [0;10] (andp=5, 9=2, 9=0:7, 2=0:2)

Additive model[Schwabel995} , = tensor product of optimal designs for
&+ Pew( )
and

2 2 2 2 2 2
D+ Plexp( Px) exp( D= @ P)
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RS NI NI WYRCIIINEES I D/ Construction of an optimal design measure

Ex: D-optimal design for

3

(x; )= o+ 1exp( 2x1)+ [exp( a%2) exp( 3x%)]

4
with x = (X1;%) 2 X =[0;2] [0;10] (andp=5, 9=2, 9=0:7, 2=0:2)

Additive model[Schwabel995} , = tensor product of optimal designs for

1 1 1
P+ Dexp( Px)

and

2 2 2 2 2 2
D+ Plexp( Px) exp( D= @ P)

Use the Equivalence Th. to construct, (with arbitrary precision Maple)
[weight 1/9 at (0, 0:46268527927, 2) (0, 1:22947139883, 85768905493)]

a 7 iterations of the algorithm ifP & Zhigljavsky, 2014}yield such that
maxex F (5 x) < 10 °
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RS NI NI WYRCIIINEES I D/ Construction of an optimal design measure

What if () not di erentiable? (e.g., maximize (M)=yin(M))
( ) concave,X discretized intoX -, ~ not too large
O optimal design)  optimal vector of weightsv 2 R

W, 0, =1 Wi = 1
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RS NI NI WYRCIIINEES I D/ Construction of an optimal design measure

What if () not di erentiable? (e.g., maximize (M)=yin(M))
( ) concave,X discretized intoX -, ~ not too large
O optimal design)  optimal vector of weightsv 2 R

W, 0, =1 Wi = 1

m subgradients $ directional derivatives)
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RS NI NI WYRCIIINEES I D/ Construction of an optimal design measure

What if () not di erentiable? (e.g., maximize (M) = in(M))
() concave,X discretized intoX -, * not too large
O optimal design)  optimal vector of weightsv 2 R
W, 0, =1 Wi = 1
m subgradients $ directional derivatives)

general method for non-di erentiable optimizatiofcutting plane method
[Kelley 1960] level methodNesterov2004), see Chap. 9 ofP & Pazman
2013]
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4 Problems with nonlinear models

Ex: (X )= 1fxgi+ 31 f xg1)+ ofxgza+ 3(1 f xg2)
X =(Xg;X2;%X3), X1=(01), xo=(10), x3=(11), 2[ 34 [ 22]
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4 Problems with nonlinear models

Two important di culties

1 Asymptotically @!'1 ) orif 2 small enough all seems ne
(use linear approximations),

but the distribution of ™ may be far from normal for smat (or for 2 large)
a small-sample properties
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4 Problems with nonlinear models

Two important di culties

1 Asymptotically @!'1 ) orif 2 small enough all seems ne
(use linear approximations),

but the distribution of ™ may be far from normal for smat (or for 2 large)
a small-sample properties

Everything is local (depends on): if we linearize,where do we linearize?
(choice of a nominal value®)

a nonlocal optimum design
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ERSINETRETN NG A/ A classi cation of regression models

5 Small-sample properties

A/ A classi cation of regression models I

Suppose that

yi = y(%)= (x; )+ " with Ef";g=0 and Ef"2g=2(x;) for all i

Dividey; and (xi; ) by (x) O one may suppose that?(x) = 2 for all x
Denote

We suppose (x; ) twice continuously di erentiable w.r.t. for anyx
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A/ A classi cation of regression models
5 Small-sample properties

A/ A classi cation of regression models I

Suppose that
yi = y(x)= (x; )+ "iwith Ef";,g=0and Ef"?g=?(x) for all i

Dividey; and (xi; ) by (x) O one may suppose that?(x) = 2 for all x
Denote

We suppose (x; ) twice continuously di erentiable w.r.t. for anyx

a4 Expectation surfaceS =f (): 2 RPg
a Orthogonal projector onto the tangent space ® at ( ):

_1@() @()
n @ @
(both depend onX)
Design of experiments in nonlinear models  Ecole ETICS, Porquerolles, 5 oct. 2017 46/ 74

M 1(X; ) (an n matrix)






ERSINETRETN NG A/ A classi cation of regression models

Intrinsically linear models

a4 The expectation surfac& =f (): 2 RPgis at (plane) intrinsic
curvature 0

a A reparameterization (continuously di erentiable) existsahmakes the model
linear

a P Hy( )= Hy( ), whereH;( )= Z-0)
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ERSINETRETN NG A/ A classi cation of regression models

Intrinsically linear models

a4 The expectation surfac& =f (): 2 RPgis at (plane) intrinsic
curvature 0

a A reparameterization (continuously di erentiable) existsahmakes the model
linear

a P Hy( )= Hy( ), whereH;( )= Z-0)

Observing atp di erent x; only (replications)makes the model intrinsically linear
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ERSINETRETN NG A/ A classi cation of regression models

Parametrically linear models

a M(X; )= constant
a P H;( )= 0 parametric curvature 0

Luc Pronzato (CNRS) Design of experiments in nonlinear models Ecole ETICS, Porquerolles, 5 oct. 2017 49174



ERSTMEIEEETN R CHOIGLIEIEE A/ A classi cation of regression models

Parametrically linear models

a M(X; )= constant
a P H;( )= 0 parametric curvature 0

Linear models

a (x5 )=1(x) +c(x)
a the model is intrinsically and parametrically linear
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ERSTMEIEEETN R CHOIGLIEIEE A/ A classi cation of regression models

Parametrically linear models

a M(X; )= constant
a P H;( )= 0 parametric curvature 0

Linear models

a (x5 )=1(x) +c(x)
a the model is intrinsically and parametrically linear

Flat models

a A reparameterization exists that makes the information matdonstant
a Riemannian curvature tensor O Ry ( ) = Thjk( )  Theij( ) O where
Thik () =[HyOI7 [l P IH ()

If all parameters but one appear linearly, then the model i$ a
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ERSINEURET N B/ Density of the LS estimator

B/ Density of the LS estimator I

Suppose¢' N (0; 2I,)
Intrinsically linear models (in particular, repetitions atp points):

nP=2 det*"2 M (X; )

I exact distribution ™ q(j )= Gy exp Sk () (K
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ERSINEURET N B/ Density of the LS estimator

B/ Density of the LS estimator I

Suppose' N (0; 2I,)
Intrinsically linear models (in particular, repetitions atp points):

| exact distribution ™ q( j )= "M exp Lk () (K

Ex: (x; )=exp( Xx), =2, 15 observations at the same=1=2( 2=1)
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ERSINEURET N B/ Density of the LS estimator

B/ Density of the LS estimator I

Suppose¢' N (0; 2I,)
Intrinsically linear models (in particular, repetitions atp points):

nP=2 det*"2 M (X; )

I exact distribution ™ q(j )= Gy exp 2k () (K

Ex: (x; )= x 3, =0, all observations at the samg 6 0

2 15 1 05 0 05 1 15 2
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ERSINEURET N B/ Density of the LS estimator

Flat models: approximate density of"
A0 § )= Gy P 22kP [ () (IK
wherefQ(; )gj = fnM(X; )gy+[ () ()7 [ln P H;()
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ERSINEURET N B/ Density of the LS estimator

Flat models: approximate density of"

A0 § )= Gy P 22kP [ () (IK

2
wherefQ(; )gj = fnM(X; )gi +[ () (I)I7[la P IH;()

Remarks:
This approximation coincides with the saddle-point approxtioa of
Hougaard (1985)

m Other approximations (more complicated) for models witjx ( ) 6 O

(non- at)
An approximation of the density of the penalized LS estimator
argmin, ky ()k*+2w( ) (which includes the case of Bayesian
estimation) is also available
We also know the (approximate) marginal densities of the LSreator ™
[Pazman & P 1996]
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ERSINEUREN RGN C/ Con dence regions

C/ Con dence regions I

Suppose’ N (0; 21,),denee( )=y ()
Oe()Pe()=2 3
Oe ()l Ple()=2%2 2,

and they are independent
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ERSINEUREN RGN C/ Con dence regions

C/ Con dence regions I
()

Supposeé’ N (0; 2l,),denee( )=y
2

Oe()Pe()=2 3
Oe ()l Ple()=2%2 2,
and they are independent

a exactcon dence regions at level
q 2RPIEe ()P e()=2< 31 ] (if gknown)
np_e(Pe) <p. 1 ] (f 2unknown)

p.-npP_= tJ)JF =)
2RP: pe ()l PJle()
(but they are not of minimum volume, maybe composed of disconnected

subsets. . .)

Ecole ETICS, Porquerolles, 5 oct. 2017 53/ 74

Design of experiments in nonlinear models
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ERSINEUREN RGN C/ Con dence regions

C/ Con dence regions I
()

Supposeé’ N (0; 2l,),denee( )=y
2

Oe()Pe()=2 3
Oe ()l Ple()=2%2 2,
and they are independent

a exactcon dence regions at level
q 2RPIEe ()P e()=2< 31 ] (if cfknown)
2RP;DP % < Fpn p[1 ] (if 2 unknown)

p
(but they are not of minimum volume, maybe composed of disconnected

subsets. . .)
a apprgximatecon dence regions based on IikeliBood ratio (usually connected)
2 RP:ke( )k k e(Mk2< 2 a1 (f 2 known)
o}
(if 2 unknown)

2 RP 1 ke( )k?=ke(")k? < 1+ EoFpn pll ]

Luc Pronzato (CNRS)

Ecole ETICS, Porquerolles, 5 oct. 2017 53/ 74
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ERSTNEIEEETNTRI CHOIGLIRIEEN D/ Design based on small-sample properties

D/ Design based on small-sample properties I

3 main ideas (exact design only) based on:

a) (approximate) volume of (approximate) con dence regions (not eesarily of
minimum volume)[Hamilton & Watts 1985; Vila 1990; Vila & Gauchi 2007]
(ellipsoidal approximation D-optimality)
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ERSTNEIEEETNTRI CHOIGLIRIEEN D/ Design based on small-sample properties

D/ Design based on small-sample properties I

3 main ideas (exact design only) based on:

a) (approximate) volume of (approximate) con dence regions (not eesarily of
minimum volume)[Hamilton & Watts 1985; Vila 1990; Vila & Gauchi 2007]
(ellipsoidal approximation D-optimality)

b) (approximate gy exact) density of?
e.g., minimize k k?q( j )d w.r.t. X (using stochastic approximation,
[Pazman & P 1992, Gauchi & Pazman 2006]
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ERSTNEIEEETNTRI CHOIGLIRIEEN D/ Design based on small-sample properties

D/ Design based on small-sample properties I

3 main ideas (exact design only) based on:

a) (approximate) volume of (approximate) con dence regions (not eesarily of
minimum volume)[Hamilton & Watts 1985; Vila 1990; Vila & Gauchi 2007]
(ellipsoidal approximation D-optimality)
b) (approximate gy exact) density of?
e.g., minimize k k?q( j )d w.r.t. X (using stochastic approximation,
[Pazman & P 1992, Gauchi & Pazman 2006]

¢) higher-order approximation of optimality criterja
using’ @jX; )= N( () 2ln)
minimize MSE k“any) k2 (yjX; )dy [Clarke 1980]
minimize entropy  loga("™(y)j )I' (yjiX; )dy [P & Pazman 1994]
(usual normal approximation fog(j ) ! D-optimality)
I explicit (but rather complicated) expressions (depend on 3rdes
derivatives of (x; ) w.rt. )
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CRSTNEEEER RIS £/ One additional di culty

E/ One additional di culty I

Overlapping ofS , local minimizers.. .

s Important and di cult problem, often neglected!
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ERSINEUREN NG E/ One additional di culty

What can we do at the design sta@e
a extensions of usual optimality criteria, e.g.

k() (9«
k 0k?

maximize ¢g(X) =min

or R -
[ () (x5 )] (dx)
k 0K2
O corresponds tcE-optimal design if the model is linear (maximizeninM ( )),
see Chap. 7 ofP_& Pazman2013]and [Pazman & P, 2014]

maximize ¢g( ) = min
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ERSINEUREN NG E/ One additional di culty

What can we do at the design sta@e
a extensions of usual optimality criteria, e.g.

k() (9«
k 0k?

maximize ¢g(X) =min

or R -
[ () (x5 )] (dx)
k 0K2
O corresponds tcE-optimal design if the model is linear (maximizeninM ( )),
see Chap. 7 ofP_& Pazman2013]and [Pazman & P, 2014]

maximize ¢g( ) = min

s All approaches presented so far are local
(the optimal design depends onunknown )
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6 Nonlocal optimum design

Ex: (x; )=exp( R, ¥i= (X;)+", >0,x2X =[0;1)
OM(; 9=, xZexp( 2 %) (dx)
b= A== 1z0

Q.

Objective: remove the dependence in nominal value °
3 main classes of methods (related)
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6 Nonlocal optimum design

Ex: (x; )=exp( R, ¥i= (X;)+", >0,x2X =[0;1)
OM(; 9=, xZexp( 2 %) (dx)

A p= AT IIIT g=0

Objective: remove the dependence in nominal value °

3 main classes of methods (related)
1 Average optimum design: maximizefe (X; )g(orEf (; )g)
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6 Nonlocal optimum design

Ext (x; )=exp( R, Yi= (6 )+", >0,x2X =[0;1)
OM(; 9=, xZexp( 2 %) (dx)

A p= AT IIIT g=0
Objective: remove the dependence in nominal value °
3 main classes of methods (related)
1 Average optimum design: maximizefe (X; )g(orEf (; )g)

Maximin optimum design: maximize mifi (X; )g (or min f (; )0g)
a Between{ and- : regularized maximin criteria, quantiles and probabilityéd
criteria
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6 Nonlocal optimum design

Ext (x; )=exp( R, Yi= (6 )+", >0,x2X =[0;1)
OM(; 9=, xZexp( 2 %) (dx)

A p= AT IIIT g=0
Objective: remove the dependence in nominal value °
3 main classes of methods (related)
1 Average optimum design: maximizefe (X; )g(orEf (; )g)

Maximin optimum design: maximize mifi (X; )g (or min f (; )0g)
a Between{ and- : regularized maximin criteria, quantiles and probabilityéd
criteria

Sequential design

Luc Pronzato (CNRS) Design of experiments in nonlinear models Ecole ETICS, Porquerolles, 5 oct. 2017 57 /74



CRNCHICTEINCTIn I ESi A/ Average Optimum design

A/ Average Optimum design
Nothing special: probability measure(d ) on RP
G9! ()= (5) (d)

. . - P N .
Nodicultyif = f @;::: Mg niteand = M, ; @ (integral! nite
sum)
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CRNCHICTEINCTIn I ESi A/ Average Optimum design

A/ Average Optimum design
Nothing special: probability measure(d ) on RP
GO 0= () (@)

P .
Nodicultyif = f @;::: Mg niteand = M, ; @ (integral! nite
sum)

*  Approximate design theory
ao( ) is concave when each( ; ) is concave
a same properties and same algorithms as in Section 3 for
design measures
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CRNCHICTEINCTIn I ESi A/ Average Optimum design

A/ Average Optimum design
Nothing special: probability measure(d ) on RP
G9! ()= (5) (d)

P .
Nodicultyif = f @;::: Mg niteand = M, ; @ (integral! nite
sum)

*  Approximate design theory
ao( ) is concave when each( ; ) is concave
a same properties and same algorithms as in Section 3 for
design measures

* Exact design: same algorithms as in Section 3
(for continuous distributions use stochastic approximation to avoid
evaluations of integral§P & Walter 1985)
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CRNCHICTEINCTIn I ESi A/ Average Optimum design

A Bayesian interpretation :
Suppose =prior distgipution has a density ( )
! entropy () log[ ()ld

Posterior distribution of :  ( jX;y) = ML)
Gain in information = decrease of entropy
Entropy may increase, but expected gain in informatib(X) is always positive

[Lindley 1956]

R
a l(X)=gyf ( (X5y)logl (jX;y)]  ()logl ())d g
where the expectation g is for the marginal' (yjX)
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CRNCHICTEINCTIn I ESi A/ Average Optimum design

A Bayesian interpretation :
Suppose =prior distgipution has a density ( )

I entropy ()logl ()]d

Posterior distribution of :  ( jX;y) = ML)
Gain in information = decrease of entropy
Entropy may increase, but expected gain in informatib(X) is always positive

[Lindley 1956]

R
a l(X)=gyf ( (X5y)logl (jX;y)]  ()logl ())d g
where the expectation g is for the marginal' (yjX)

If the experiment informative enough Egmall, n large enough):

maximizingl (X) , maximizingﬁlog detM(X; ) ()d
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CRNCHICTEINCTIn I ESi A/ Average Optimum design

Which prior ( )? Expected gain in information maximum wher( ) =
noninformative prior (Je rey) which %epends on

()= REMC) 5 maximize defM(; )d
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Which prior ( )? Expected gain in information maximum wher( ) =
noninformative prior (Je rey) which gepends on
1=2 . —
()= REL_ME) 3 maximize det™?M(; )d

det™*2M(; )d
()= RUMG )y yniform distribution of responses( ; ) (for the
det=2M(; )d !

metric de ned by ) [Bornkamp 2011]
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CRNCHICTEINCTIn I ESi A/ Average Optimum design

Which prior ( )? Expected gain in information maximum wher( ) =
noninformative prior (Je rey) which gepends on

()= REMC) 5 maximize defM(; )d

()= % I uniform distribution of responses( ; ) (for the

metric de ned by ) [Bornkamp 2011]
Ex: (x; )=exp( x), -quantiles of (x; ) for dierent
uniform on =[ 1;10]

1 T T T T T
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CRNCHICTEINCTIn I ESi A/ Average Optimum design

Which prior ( )? Expected gain in information maximum wher( ) =
noninformative prior (Je rey) which Ezepends on
_ det=2M(; ) 5 . =2 .
()= RidetlzzM(' va a maximize det“M(; )d
()= % I uniform distribution of responses( ; ) (for the
metric de ned by ) [Bornkamp 2011]
Ex: (x; )=exp( x), -quantiles of (x; ) for dierent

uniform on =[ 1;10] , uniform onX =]0;2]

1 T T T T T T

1 T T T T T T

0 02 0.4 0.6 0.8 1 12 14 16 18
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CRNCHUCTEINC RIS i B/ Maximin Optimum design

B/ Maximin Optimum design

G9! wmo()=min 2 ()
* Exact design:
nite ! same algorithms as in Section 3

compact subset of RP ! relaxation method to solve a sequence
of maximin problems with nite (and growing) sets (X) [P & Walter 1988]
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CRNCHUCTEINC RIS i B/ Maximin Optimum design

B/ Maximin Optimum design

G9! wmo()=min 2 ()
* Exact design:
nite ! same algorithms as in Section 3

compact subset of RP ! relaxation method to solve a sequence
of maximin problems with nite (and growing) sets (X) [P & Walter 1988]
*  Approximate design:
mmo () concave when each( ; ) is concave
s but umo() is non-di erentiable!
a maximize ymo ( ) using a speci c algorithm for
concave non-di erentiable maximizatiofcutting plane, level method. ..
see Section 3)
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CRNCHUCTEINC RIS i B/ Maximin Optimum design

How to check optimality of ?
(; 9 dierentiable: maxox F (5 x; 9 072
I plotF ( ; «; 9) as a function ofx

mmo () not di erentiable: max, F , .( ; ) 0 cannot be exploited directly

Luc Pronzato (CNRS) Design of experiments in nonlinear models Ecole ETICS, Porquerolles, 5 oct. 2017 62 /74



CRNCHUCTEINC RIS i B/ Maximin Optimum design

How to check optimality of ?
(; 9 dierentiable: maxox F (5 x; 9 072
I plotF ( ; «; 9) as a function ofx

mmo () not di erentiable: max, F , .( ; ) 0 cannot be exploited directly

Equivalence Theorem:
maximizes ymo( ), max, F, . ( ;) O
, max min, yF( ;; ) O
with ( g=f @ (5 )= wmo()9
, Mmaxex  yF( ix ) (d) 0
for some probability measure on ()
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CRNCHUCTEINC RIS i B/ Maximin Optimum design

How to check optimality of ?
(; 9 dierentiable: maxox F (5 x; 9 072
I plotF ( ; «; 9) as a function ofx

mmo () not di erentiable: max, F , .( ; ) 0 cannot be exploited directly

Equivalence Theorem:
maximizes ymo( ), max, F, . ( ;) O
, max min, yF( ;; ) O
with ( g=f @ (5 )= wmo()9
, Mmaxex  yF( ix ) (d) 0
for some probability measure on ()

Once s determined, solve a LP prolglem:
on % ) minimizes max, x « HF (5 x) ()

a plot ( )F( i x; ) (d) (should be 0)
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B/ Maximin Optimum design
Ex: (x; )= 1exp( 2x),p=2, X =[0;2], 22[0; 2,,]

1=p . .
(: )= % (D e ciency, 2 [0;1])
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CRNCHUCTEINC RIS i B/ Maximin Optimum design

Ex: (x; )= 1exp( 2x), p=2, X =[0;2], 22][0; ,,]

1=p . .
(: )= % (D e ciency, 2 [0;1])

yF (i) (d)for
= 2 (solid line, 2 support points) and
= 20 (dashed line, 4 support points)

(

zmax

Zmax
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[SRNGHITEINCTRli NS )l C/ Regularized Maximin Optimum design

C/ Regularized Maximin Optimum design

Suppose (; )> Oforall ; a probability measure on RP compact
vmo( )=min 2 (;) 7q( )= ng; ) (d) @ (dierentiable)
with ()= ao(), o()=exp  log[ (; )] (d) and
7q( ) ! wmo()asq!l d (and 7q() concave forq 1)
Moreover, = f ®;:::; Mg, = 0 =) vmo(a) — \ 1=q
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C/ Regularized Maximin Optimum design
Suppose (; )> Oforall ; a probability measure on RP compact
Mmo ( ):rrlin 2 () 7q7( )= ng; ) (d) C (di erentiable)
with ()= ao(), ol )=exp  log[ (; )] (d) and
q() ' mmo()asql!l o (and () concave forq 1)

Moreover, = f ®;:::; Mg, = 0 =) vmo(a) — \ 1=q

1

09F
q=0.8

0.8

=X ) exp( X) 07: /" \'\, 4=0.4 ‘\ ]
( ; ) = I\’/\I/I(( : ; )) (: e Ciency) ,/" "\\ a=40 ‘:

05k , A

Plot of ,( x) function of x '

03 ’ N
0.2 a B

0.1-

L L L L L L L L L
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9

1
Luc Pronzato (CNRS) Design of experiments in nonlinear models Ecole ETICS, Porquerolles, 5 oct. 2017 64 /74



CRNGHIEINCIn Iy ES)l D/ Quantiles and probability level criteria

D/ Quantiles and probability level criteria

Al 5o good for (d ) on , may ge bad for some
s for () %, maximizing (;) (d) (AO-gpt)
is di erent from maximizing [ (;)] (d)
B/ wmo often depends on the boundary of
(O we often simply replace the dependence dnby a dependence 0Onpax)
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CRNGHIEINCIn Iy ES)l D/ Quantiles and probability level criteria

D/ Quantiles and probability level criteria

Al 5 good for (d ) on

s for

, may ke bad for some
() %, maximizing (;

B/ wmo often depends on the boundary of

(O we often simply replace the dependence dnby a dependence 0Onpax)

u given!

Po()= f (5 ) ug

2 (0;1) given!
Q ()=maxfu:Py()

Luc Pronzato (CNRS)

) (d) (AO-gpt.)

is di erent from maximizing

[ ()] (d)

p.d.f.of (;)

g

Design of experiments in nonlinear models

u=Q ()
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CRNGHIEINCIn Iy ES)l D/ Quantiles and probability level criteria

4 maximizingP,( )= f (; ) ugis well adapted to
(; )=eciency 2 (0;1)
aQ()! mwas ! 0
a for () %,using [ (; )]does notchangd,( )andQ ()
s Py()andQ () generally not concave!
(but we can compute directional derivatives and maximize)
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CRNGHIEINCIn Iy ES)l D/ Quantiles and probability level criteria

4 maximizingP,( )= f (
(; )=eciency 2

aQ()! mwas ! 0

a for () %,using [ (;

)

©; 1)

s Py()andQ () generally not concave!
(but we can compute directional derivatives and maximize)

Ex: =exp( Xx)

(; )=M(; )

Plot of Q ( x) function of x
(with  ao( x) and mmo ( x))

Luc Pronzato (CNRS)

0.045

ug is well adapted to

)] does not changé®,( ) and Q ()

Design of experiments in nonlinear models
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‘ =0.5
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CRNGHIEINCIn Iy ES)l D/ Quantiles and probability level criteria

Ongoing work: conditional value at risk (also called superquiat

4
1

()= - (; ) (d)
f:() Q)

which is concave in when (; ) is concave for all , see(Valenzuela et al.,
2015; Guerra, 2016)
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CRNGCHIEINCT LTSI E/ Sequential design

E/ Sequential design

01 design:X! = argmaxx (X; ©°)
I observe:y! = y1(X1)
| estimate: " = argmin J( ;y*; X%)
I design: X2 = argmaxx (fX*;Xg; ")
! observe:yzf y2(X?) , ,
I ; - ; cfyloy2 o f L
I estimate: argmin J( ;f }/{,Zy} g,ff(_{.z)i}g)
growing growing
I design:X3 = argmaxx (f X% X2; Xg; "?)
.. etc.
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CRNGCHIEINCT LTSI E/ Sequential design

E/ Sequential design

01 design:X! = argmaxx (X; ©°)
I observe:y! = y1(X1)
| estimate: " = argmin J( ;y*; X%)
I design: X2 = argmaxx (fX*;Xg; ")
! observe:yzf y2(X?) , ,
I ; - ; cfyloy2 o f L
I estimate: argmin J( ;f }/{,Zy} g,ff(_{.z)i}g)
growing growing
I design:X3 = argmaxx (f X% X2; Xg; "?)
.. etc.
+ Replace unknown by best current guessk

(there exist variants with Bayesian estimation and averageiroplity)
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CRNGCHIEINCT LTSI E/ Sequential design

E/ Sequential design

01 design:X! = argmaxx (X; ©°)
I observe:y! = y1(X1)
| estimate: " = argmin J( ;y*; X%)
I design: X2 = argmaxx (fX*;Xg; ")
! observe:yzf y2(X?) , ,
I ; - ; cfyloy2 o f L
I estimate: argmin J( ;f }/{,Zy} g,ff(_{.z)i}g)
growing growing
I design:X3 = argmaxx (f X% X2; Xg; "?)
.. etc.

+ Replace unknown by best current guessk

(there exist variants with Bayesian estimation and averageiroplity)

s Consistency of"?
Asymptotic normality (for design based av)?
(X depends ory!;:::;y¢ 1 =) independence is lost)
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CRNGCHIEINCT LTSI E/ Sequential design

a No problem if eachX' has size p = dim( ) (batch sequential design)
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CRNGCHIEINCT LTSI E/ Sequential design

a No problem if eachX' has size p = dim( ) (batch sequential design)
If n observation in total, two stages.only: size of rst batch?
! should be proportional to n (but it does not say much ...)
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CRNGCHIEINCT LTSI E/ Sequential design

a No problem if eachX' has size p = dim( ) (batch sequential design)
If n observation in total, two stages.only: size of rst batch?
! should be proportional to n (but it does not say much ...)

a Full sequential designX® = fx.g (batches of size 1)
I convergence properties di cult to investigate

k
k+1

1 @(Xk+1: ) @(%+1; )
K+1 @ "k @> "k

with X1 = argmaxc F (% «j"™), Wynn's algorithm [1970] with = L

M (Xks1; %) = M (X; ™) +
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CRNGCHIEINCT LTSI E/ Sequential design

a No problem if eachX' has size p = dim( ) (batch sequential design)
If n observation in total, two stages.only: size of rst batch?
! should be proportional to n (but it does not say much ...)

a Full sequential designX® = fx.g (batches of size 1)
I convergence properties di cult to investigate

k
k+1

1 @(Xk+1: ) @(%+1; )
K+1 @ "k @> "k

with X1 = argmaxc F (% «j"™), Wynn's algorithm [1970] with = L
a4 some CV results for Bayesian estimati@iu 1998]
a4 no general CV results for LS and ML estimation

M (Xks1; %) = M (X; ™) +
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