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1 DoE objectives & examples A/ Parameter estimation

1 DoE: objectives & examples

A/ Parameter estimation

Ex1: Weighing with a two-pan balance
+ Determine the weights of 8 objets, with massmi , i = 1 ; : : : ; 8
i.i.d. errors" i � N (0; � 2)
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1 DoE objectives & examples A/ Parameter estimation

1 DoE: objectives & examples

A/ Parameter estimation

Ex1: Weighing with a two-pan balance
+ Determine the weights of 8 objets, with massmi , i = 1 ; : : : ; 8
i.i.d. errors" i � N (0; � 2)
Method a: weigh each objet successively
! y(i ) = mi + " i , i = 1 ; : : : ; 8
! estimated weights : ^mi = yi � N (mi ; � 2)
Repeat 8 times, average the results:^̂mi � N (mi ; � 2=8) (with 64 observations. . . )
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1 DoE objectives & examples A/ Parameter estimation

Method b: more sophisticated. . .

y1 = m1 + m2 + m3 + m4 + m5 + m6 + m7 + m8 + "1

y2 = m1 + m2 + m3 � m4 � m5 � m6 � m7 + m8 + "2

y3 = m1 � m2 � m3 + m4 + m5 � m6 � m7 + m8 + "3

y4 = m1 � m2 � m3 � m4 � m5 + m6 + m7 + m8 + "4

y5 = � m1 + m2 � m3 + m4 � m5 + m6 � m7 + m8 + "5

y6 = � m1 + m2 � m3 � m4 + m5 � m6 + m7 + m8 + "6

y7 = � m1 � m2 + m3 + m4 � m5 � m6 + m7 + m8 + "7

y8 = � m1 � m2 + m3 � m4 + m5 + m6 � m7 + m8 + "8

! m̂8 =
1
8

8X

i =1

yi

= m8 +
"1 + "2 + "3 + "4 + "5 + "6 + "7 + "8

8
� N (m8; � 2=8) (idem for all mj , j � 7)
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1 DoE objectives & examples A/ Parameter estimation

Method b: more sophisticated. . .

y1 = m1 + m2 + m3 + m4 + m5 + m6 + m7 + m8 + "1

y2 = m1 + m2 + m3 � m4 � m5 � m6 � m7 + m8 + "2

y3 = m1 � m2 � m3 + m4 + m5 � m6 � m7 + m8 + "3

y4 = m1 � m2 � m3 � m4 � m5 + m6 + m7 + m8 + "4

y5 = � m1 + m2 � m3 + m4 � m5 + m6 � m7 + m8 + "5

y6 = � m1 + m2 � m3 � m4 + m5 � m6 + m7 + m8 + "6

y7 = � m1 � m2 + m3 + m4 � m5 � m6 + m7 + m8 + "7

y8 = � m1 � m2 + m3 � m4 + m5 + m6 � m7 + m8 + "8

! m̂8 =
1
8

8X

i =1

yi

= m8 +
"1 + "2 + "3 + "4 + "5 + "6 + "7 + "8

8
� N (m8; � 2=8) (idem for all mj , j � 7)

à 8 observations only, against 64 with method a!
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1 DoE objectives & examples A/ Parameter estimation

Here, selection of a good design = combinatorial problem

yk =
P 8

i=1 f k i mi + " k = f >
k m + " k ,

(e.g., in Method bf2 = [1 1 1 � 1 � 1 � 1 � 1 1]> )
y = Fm + " with

method a: Fa = I8

method b: Fb = 8 � 8 Hadamard matrix,F>
b Fb = 8 I8

( = fractional factorial design with 2 levels)

LS estimatorm̂ = argmin
m

nX

k=1

[yk � f >
k m]2

=

 
nX

k=1

fk f >
k

! � 1 nX

k=1

yk fk = ( F> F) � 1F> y
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1 DoE objectives & examples A/ Parameter estimation

Here, selection of a good design = combinatorial problem

yk =
P 8

i=1 fk i mi + " k = f >
k m + " k ,

(e.g., in Method bf2 = [1 1 1 � 1 � 1 � 1 � 1 1]> )
y = Fm + " with

method a: Fa = I8

method b: Fb = 8 � 8 Hadamard matrix,F>
b Fb = 8 I8

( = fractional factorial design with 2 levels)

LS estimatorm̂ = argmin
m

nX

k=1

[yk � f >
k m]2

=

 
nX

k=1

fk f >
k

! � 1 nX

k=1

yk fk = ( F> F) � 1F> y

=) Choose thefk 's such thatM n = 1
n

P n
k=1 fk f >

k = 1
n F> F is nonsingular
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Here, selection of a good design = combinatorial problem

yk =
P 8

i=1 fk i mi + " k = f >
k m + " k ,

(e.g., in Method bf2 = [1 1 1 � 1 � 1 � 1 � 1 1]> )
y = Fm + " with

method a: Fa = I8

method b: Fb = 8 � 8 Hadamard matrix,F>
b Fb = 8 I8

( = fractional factorial design with 2 levels)

LS estimatorm̂ = argmin
m

nX

k=1

[yk � f >
k m]2

=

 
nX

k=1

fk f >
k

! � 1 nX

k=1

yk fk = ( F> F) � 1F> y

=) Choose thefk 's such thatM n = 1
n

P n
k=1 fk f >

k = 1
n F> F is nonsingular

Ef m̂g = m (no bias)
Ef (m̂ � m)(m̂ � m)> g = � 2

n M � 1
n

=) minimize a scalar function ofM � 1
n
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1 DoE objectives & examples A/ Parameter estimation

In this particular situation: combinatorial problem (sincefk i 2 f� 1; 0; 1g) [Fisher
1925 . . . ]

More generally, when the design variables (inputs) are real numbers, optimum
design for parameter estimation is obtained byoptimization of a scalar function of
the (asymptotic) covariance matrix of the estimator
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1 DoE objectives & examples A/ Parameter estimation

Ex2: [D'Argenio 1981]: two-compartment model in pharmacokinetics
A product x is injected in blood (! input u(t )),
xC(t ) (product in blood) moves to another tissue! xP (t )
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1 DoE objectives & examples A/ Parameter estimation

Ex2: [D'Argenio 1981]: two-compartment model in pharmacokinetics
A product x is injected in blood (! input u(t )),
xC(t ) (product in blood) moves to another tissue! xP (t )

! Linear di�erential equations:
(

dxC (t )
dt = ( � KEL� KCP)xC(t ) + KPCxP (t ) + u(t )

dxP (t )
dt = KCPxC(t ) � KPCxP (t )

we observe the concentration ofx in blood: y(t ) = xC(t )=V + "(t ),
the errors� (t i )'s are i.i.d. N (0; � 2), � = 0 :2� g/ml
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1 DoE objectives & examples A/ Parameter estimation

Ex2: [D'Argenio 1981]: two-compartment model in pharmacokinetics
A product x is injected in blood (! input u(t )),
xC(t ) (product in blood) moves to another tissue! xP (t )

! Linear di�erential equations:
(

dxC (t )
dt = ( � KEL� KCP)xC(t ) + KPCxP (t ) + u(t )

dxP (t )
dt = KCPxC(t ) � KPCxP (t )

we observe the concentration ofx in blood: y(t ) = xC(t )=V + "(t ),
the errors� (t i )'s are i.i.d. N (0; � 2), � = 0 :2� g/ml

There are 4 unknown parameters� = ( KCP; KPC ; KEL; V )
The pro�le of the input u(t ) is given (fast infusion 75 mg/min for 1 min, then
1.45 mg/min)
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Ex2: [D'Argenio 1981]: two-compartment model in pharmacokinetics
A product x is injected in blood (! input u(t )),
xC(t ) (product in blood) moves to another tissue! xP (t )

! Linear di�erential equations:
(

dxC (t )
dt = ( � KEL� KCP)xC(t ) + KPCxP (t ) + u(t )

dxP (t )
dt = KCPxC(t ) � KPCxP (t )

we observe the concentration ofx in blood: y(t ) = xC(t )=V + "(t ),
the errors� (t i )'s are i.i.d. N (0; � 2), � = 0 :2� g/ml

There are 4 unknown parameters� = ( KCP; KPC ; KEL; V )
The pro�le of the input u(t ) is given (fast infusion 75 mg/min for 1 min, then
1.45 mg/min)
+ simulated experiments with �true� parameter values

�� = (0 :066 min� 1; 0:038 min� 1; 0:0242 min� 1; 30 l)
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1 DoE objectives & examples A/ Parameter estimation

Experimental variables = sampling timest i , 1 � t i � 720 min
� �conventional� design:

t = (5 ; 10; 30; 60; 120; 180; 360; 720) (in min)
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1 DoE objectives & examples A/ Parameter estimation

Experimental variables = sampling timest i , 1 � t i � 720 min
� �conventional� design:

t = (5 ; 10; 30; 60; 120; 180; 360; 720) (in min)

� �optimal� design (for �� ) :

t = (1 ; 1; 10; 10; 74; 74; 720; 720) (in min)

(assumes that independent measurements at the same time arepossible)
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1 DoE objectives & examples A/ Parameter estimation

Experimental variables = sampling timest i , 1 � t i � 720 min
� �conventional� design:

t = (5 ; 10; 30; 60; 120; 180; 360; 720) (in min)

� �optimal� design (for �� ) :

t = (1 ; 1; 10; 10; 74; 74; 720; 720) (in min)

(assumes that independent measurements at the same time arepossible)
! 400 simulations
! 400 sets of 8 observations each, for each design
! 400 parameter estimates (LS) for each design . . .
Ô histograms of�̂ i

(and approximated marginals[Pázman & P 1996])
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1 DoE objectives & examples A/ Parameter estimation

à �optimal� design gives more precise estimation

K̂EL [ �KEL = 0 :0242]
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1 DoE objectives & examples A/ Parameter estimation

à �optimal� design gives more precise estimation

K̂CP [ �KCP = 0 :066]
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1 DoE objectives & examples A/ Parameter estimation

à �optimal� design gives more precise estimation

K̂PC [ �KPC = 0 :038]
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1 DoE objectives & examples A/ Parameter estimation

à �optimal� design gives more precise estimation

V̂ [ �V = 30]
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1 DoE objectives & examples B/ Model discrimination

B/ Model discrimination

Ex3: [Box & Hill 1967] Chemical reactionA ! B
2 design variables:x = (time t ; temperatureT )
reaction of 1st, 2nd, 3rd ou 4th order?
! 4 model structures are candidate:

� (1) (x; � 1) = exp[� � 11t exp(� � 12=T )]

� (2) (x; � 2) =
1

1 + � 21t exp(� � 22=T )

� (3) (x; � 3) =
1

[1 + 2� 31t exp(� � 32=T )]1=2

� (4) (x; � 4) =
1

[1 + 3� 41t exp(� � 42=T )]1=3
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1 DoE objectives & examples B/ Model discrimination

Simulated experiment
Observations with 2nd structure (�true�): y(xj ) = � (2) (xj ; �� 2) + " j , with
ä �� 2 = (400; 5000)> the �true� value (unknown) of parameters in model 2
ä (� j ) i.i.d. N (0; � 2), � = 0 :05
Admissible experimental domain: 0� t � 150, 450� T � 600

Luc Pronzato (CNRS) Design of experiments in nonlinear models École ETICS, Porquerolles, 5 oct. 2017 11 / 74



1 DoE objectives & examples B/ Model discrimination

Simulated experiment
Observations with 2nd structure (�true�): y(xj ) = � (2) (xj ; �� 2) + " j , with
ä �� 2 = (400; 5000)> the �true� value (unknown) of parameters in model 2
ä (� j ) i.i.d. N (0; � 2), � = 0 :05
Admissible experimental domain: 0� t � 150, 450� T � 600

Sequential design: after the observation ofy(xj ), j = 1 ; : : : ; k,
� estimate�̂ k

i (LS) for i = 1 ; 2; 3; 4
� compute posterior probability� i (k) that model i is correct fori = 1 ; 2; 3; 4

Initialization: � i (0) = 1 =4, i = 1 ; : : : ; 4 andx1; : : : ; x4 are given
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1 DoE objectives & examples B/ Model discrimination

probabilities� i (k)
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probabilities� i (k)
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1 DoE objectives & examples B/ Model discrimination

Design for discrimination is not considered in the following

A simple sequential method for discriminating betweentwo structures� (1) (x; � 1),
� (2) (x; � 2) [Atkinson & Fedorov 1975]

After observation ofy(x1); : : : ; y(xk ) estimate �̂ k
1 and �̂ k

2 for both models

place next pointxk+1 where [� (1) (x; �̂ k
1 ) � � (2) (x; �̂ k

2 )]2 is maximum

k ! k + 1, repeat
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Design for discrimination is not considered in the following

A simple sequential method for discriminating betweentwo structures� (1) (x; � 1),
� (2) (x; � 2) [Atkinson & Fedorov 1975]

After observation ofy(x1); : : : ; y(xk ) estimate �̂ k
1 and �̂ k

2 for both models

place next pointxk+1 where [� (1) (x; �̂ k
1 ) � � (2) (x; �̂ k

2 )]2 is maximum

k ! k + 1, repeat

If more than two models: estimate�̂ k
i for all of them, place next point using the

two models with best and second best �tting
(see[Atkinson & Cox 1974; Hill 1978]for surveys)
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2 DoE based on asymptotic normality A/ Regression models

Remarks:

Model(� ) also provides derivatives
@�(x; � )=@�= ( @�(x; � )=@�1; : : : ; @�(x; � )=@�p)>

� plus higher-order derivatives if necessary�
via simulation of sensitivity functions, or automatic di�erentiation (adjoint
code)
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2 DoE based on asymptotic normality A/ Regression models

Remarks:

Model(� ) also provides derivatives
@�(x; � )=@�= ( @�(x; � )=@�1; : : : ; @�(x; � )=@�p)>

� plus higher-order derivatives if necessary�
via simulation of sensitivity functions, or automatic di�erentiation (adjoint
code)

Criterion: other criteria than LS can be used, e.g.,
J(� ) = 1

n

P n
i=1 jyi � � (xi ; � )j (! robust estimation), including

Maximum-Likelihood (ML) estimation in more general settings
(J(� ) = 1

n

P n
i=1 log� (yi j� ) ! max!)
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2 DoE based on asymptotic normality A/ Regression models

Remarks:

Model(� ) also provides derivatives
@�(x; � )=@�= ( @�(x; � )=@�1; : : : ; @�(x; � )=@�p)>

� plus higher-order derivatives if necessary�
via simulation of sensitivity functions, or automatic di�erentiation (adjoint
code)

Criterion: other criteria than LS can be used, e.g.,
J(� ) = 1

n

P n
i=1 jyi � � (xi ; � )j (! robust estimation), including

Maximum-Likelihood (ML) estimation in more general settings
(J(� ) = 1

n

P n
i=1 log� (yi j� ) ! max!)

We always assume independent observationsy(xi ) (independent" i in
regression)� often much more di�cult otherwise!
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2 DoE based on asymptotic normality A/ Regression models

Remarks:

Model(� ) also provides derivatives
@�(x; � )=@�= ( @�(x; � )=@�1; : : : ; @�(x; � )=@�p)>

� plus higher-order derivatives if necessary�
via simulation of sensitivity functions, or automatic di�erentiation (adjoint
code)

Criterion: other criteria than LS can be used, e.g.,
J(� ) = 1

n

P n
i=1 jyi � � (xi ; � )j (! robust estimation), including

Maximum-Likelihood (ML) estimation in more general settings
(J(� ) = 1

n

P n
i=1 log� (yi j� ) ! max!)

We always assume independent observationsy(xi ) (independent" i in
regression)� often much more di�cult otherwise!

Most of the following can be found in[P & Pázman: Design of Experiments in
Nonlinear Models, Springer, 2013]
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2 DoE based on asymptotic normality B/ LS estimation

B/ LS estimation

�̂ n = argmin�
1
n

P n
i=1 [yi � � (xi ; � )]2
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2 DoE based on asymptotic normality B/ LS estimation

B/ LS estimation

�̂ n = argmin�
1
n

P n
i=1 [yi � � (xi ; � )]2

Linear model: � (x; � ) = f > (x)� ! �̂ n = ( F> F) � 1F> y ,

with y = ( y1; : : : ; yn)> and F> = ( f (x1); : : : ; f (xn))>

=) choose thexi such thatM n = 1
n F> F has full rank

(M n = normalized information matrix)
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2 DoE based on asymptotic normality B/ LS estimation

B/ LS estimation

�̂ n = argmin�
1
n

P n
i=1 [yi � � (xi ; � )]2

Linear model: � (x; � ) = f > (x)� ! �̂ n = ( F> F) � 1F> y ,

with y = ( y1; : : : ; yn)> and F> = ( f (x1); : : : ; f (xn))>

=) choose thexi such thatM n = 1
n F> F has full rank

(M n = normalized information matrix)

Sinceyi = f > (xi ) �� + " i for some�� and Ef " i g = 0 for all i , Ef yg = F��
and Ef �̂ ng = ��
Also, Var(�̂ n) = E f (�̂ n � �� )( �̂ n � �� )> g = � 2 (F> F) � 1 = � 2

n M � 1
n when the" i are

i.i.d. with �nite variance � 2

=) choose thexi to minimize a scalar function ofM � 1
n

(see Example 1: weighing with a two-pan balance)
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2 DoE based on asymptotic normality B/ LS estimation

Nonlinear model : � (x; � )
Under �standard� assumptions (� 2 � compact, � (x; � ) continuous in� for all
x. . . ) and for a suitable sequence (xi )

�̂ n a:s:! �� as n ! 1 (strong consistency)
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2 DoE based on asymptotic normality B/ LS estimation

Nonlinear model : � (x; � )
Under �standard� assumptions (� 2 � compact, � (x; � ) continuous in� for all
x. . . ) and for a suitable sequence (xi )

�̂ n a:s:! �� as n ! 1 (strong consistency)

Moreover, under �standard� regularity assumptions (� (x; � ) twice continuously
di�erentiable in � for all x. . . ), for i.i.d. errors" i with �nite variance � 2, for a
suitable sequence (xi )
p

n(�̂ n � �� ) d! N (0; � 2 M � 1) as n ! 1 (asymptotic normality)

with M = lim n!1
1
n

P n
i=1

@�(xi ;� )
@�

�
�

��
@�(xi ;� )

@�>
�
�

�� (information matrix)
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2 DoE based on asymptotic normality B/ LS estimation

Nonlinear model : � (x; � )
Under �standard� assumptions (� 2 � compact, � (x; � ) continuous in� for all
x. . . ) and for a suitable sequence (xi )

�̂ n a:s:! �� as n ! 1 (strong consistency)

Moreover, under �standard� regularity assumptions (� (x; � ) twice continuously
di�erentiable in � for all x. . . ), for i.i.d. errors" i with �nite variance � 2, for a
suitable sequence (xi )
p

n(�̂ n � �� ) d! N (0; � 2 M � 1) as n ! 1 (asymptotic normality)

with M = lim n!1
1
n

P n
i=1

@�(xi ;� )
@�

�
�

��
@�(xi ;� )

@�>
�
�

�� (information matrix)

=) choose thexi (design) to minimize a scalar function ofM � 1,
or maximize a function �(M )

= classical approach for DoE
(see Example 2 with a two-compartment model)
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2 DoE based on asymptotic normality B/ LS estimation

Remarks:

Weighted LS: suppose heteroscedastic errors
varf " i g = Ef "2

i g = Ef "2(xi )g = � 2(xi )
Weighted LS estimator̂� n

WLS minimizesJWLS (� ) = 1
n

P n
i=1 w(xi ) [yi � � (xi ; � )]2
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2 DoE based on asymptotic normality B/ LS estimation

Remarks:

Weighted LS: suppose heteroscedastic errors
varf " i g = Ef "2

i g = Ef "2(xi )g = � 2(xi )
Weighted LS estimator̂� n

WLS minimizesJWLS (� ) = 1
n

P n
i=1 w(xi ) [yi � � (xi ; � )]2

Strong consistency and asymptotic normality
p

n(�̂ n
WLS � �� ) d! N (0; C) as

n ! 1 , where
C = M � 1

a M bM � 1
a and

M a = lim n!1
1
n

P n
i=1 w(xi )

@�(xi ;� )
@�

�
�

��
@�(xi ;� )

@�>
�
�

��

M b = lim n!1
1
n

P n
i=1 w2(xi ) � 2(xi )

@�(xi ;� )
@�

�
�

��
@�(xi ;� )

@�>
�
�

��
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2 DoE based on asymptotic normality B/ LS estimation

Remarks:

Weighted LS: suppose heteroscedastic errors
varf " i g = Ef "2

i g = Ef "2(xi )g = � 2(xi )
Weighted LS estimator̂� n

WLS minimizesJWLS (� ) = 1
n

P n
i=1 w(xi ) [yi � � (xi ; � )]2

Strong consistency and asymptotic normality
p

n(�̂ n
WLS � �� ) d! N (0; C) as

n ! 1 , where
C = M � 1

a M bM � 1
a and

M a = lim n!1
1
n

P n
i=1 w(xi )

@�(xi ;� )
@�

�
�

��
@�(xi ;� )

@�>
�
�

��

M b = lim n!1
1
n

P n
i=1 w2(xi ) � 2(xi )

@�(xi ;� )
@�

�
�

��
@�(xi ;� )

@�>
�
�

��

à C � M � 1

M = lim n!1
1
n

P n
i=1

1
� 2(xi )

@�(xi ;� )
@�

�
�

��
@�(xi ;� )

@�>
�
�

��

à C = M � 1 whenw(x) _ � � 2(x)

=) choose the best estimator, then the best design
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2 DoE based on asymptotic normality B/ LS estimation

Remarks (continued):

One may also consider the case varf " i g = � 2(xi ; � ) (errors with
parameterized variance)
à Use two-stage LS: 1/ usew(x) � 1 ! �̂ n

(1) ; 2/ use w(x) = � � 2(x; �̂ n
(1) )

or use iteratively-reweighted LS (i.e., go on with more stages),or
penalized LS. . .
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2 DoE based on asymptotic normality B/ LS estimation

Remarks (continued):

One may also consider the case varf " i g = � 2(xi ; � ) (errors with
parameterized variance)
à Use two-stage LS: 1/ usew(x) � 1 ! �̂ n

(1) ; 2/ use w(x) = � � 2(x; �̂ n
(1) )

or use iteratively-reweighted LS (i.e., go on with more stages),or
penalized LS. . .

Similar asymptotic results for ML estimation
p

n(�̂ n
ML � �� ) d! N (0; � 2 M � 1

F )
as n ! 1 , with M F = Fisher information matrix
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2 DoE based on asymptotic normality B/ LS estimation

Remarks (continued):

One may also consider the case varf " i g = � 2(xi ; � ) (errors with
parameterized variance)
à Use two-stage LS: 1/ usew(x) � 1 ! �̂ n

(1) ; 2/ use w(x) = � � 2(x; �̂ n
(1) )

or use iteratively-reweighted LS (i.e., go on with more stages),or
penalized LS. . .

Similar asymptotic results for ML estimation
p

n(�̂ n
ML � �� ) d! N (0; � 2 M � 1

F )
as n ! 1 , with M F = Fisher information matrix

Model(� ) = linear ODE, experimental design = system inputu(t )
à (� simple) analytic expression forM
à optimal input design, optimal control problem (frequency domain!
optimal combination of sinusoidal signals)[Goodwin & Payne1977; Zarrop
1979; Ljung1987; Walter & P1994, 1997]

Luc Pronzato (CNRS) Design of experiments in nonlinear models École ETICS, Porquerolles, 5 oct. 2017 19 / 74



2 DoE based on asymptotic normality C/ Design based on the information matrix

C/ Design based on the information matrix

Maximize �( M ), but which �( �)?

à There are many possibilities!
LS estimation in linear regressionwith i.i.d. errorsN (0; � 2)

R(�̂ n; � ) = f � 2 Rp : (� � �̂ n)> M n(� � �̂ n) �
� 2

n
� 2

p(1 � � )g

= con�dence region (ellipsoid) at level� : Probf �� 2 R (�̂ n; � )g = �
(asymptotically true in nonlinear situations� e.g., nonlinear regression)

Luc Pronzato (CNRS) Design of experiments in nonlinear models École ETICS, Porquerolles, 5 oct. 2017 20 / 74



2 DoE based on asymptotic normality C/ Design based on the information matrix

C/ Design based on the information matrix

Maximize �( M ), but which �( �)?

à There are many possibilities!
LS estimation in linear regressionwith i.i.d. errorsN (0; � 2)

R(�̂ n; � ) = f � 2 Rp : (� � �̂ n)> M n(� � �̂ n) �
� 2

n
� 2

p(1 � � )g

= con�dence region (ellipsoid) at level� : Probf �� 2 R (�̂ n; � )g = �
(asymptotically true in nonlinear situations� e.g., nonlinear regression)

à Most criteria can be related to geometrical properties ofR(�̂ n; � )
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2 DoE based on asymptotic normality C/ Design based on the information matrix

C/ Design based on the information matrix

Maximize �( M ), but which �( �)?

à There are many possibilities!
LS estimation in linear regressionwith i.i.d. errorsN (0; � 2)

R(�̂ n; � ) = f � 2 Rp : (� � �̂ n)> M n(� � �̂ n) �
� 2

n
� 2

p(1 � � )g

= con�dence region (ellipsoid) at level� : Probf �� 2 R (�̂ n; � )g = �
(asymptotically true in nonlinear situations� e.g., nonlinear regression)

à Most criteria can be related to geometrical properties ofR(�̂ n; � )

à Nonlinear model=) M = M (� ) depends on the� where� (x; � ) is linearized:
for the moment use anominal value� 0

à locally optimum design
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2 DoE based on asymptotic normality C/ Design based on the information matrix

A few choices for �(�)

A-optimality: maximize� trace[M � 1] , maximize 1=trace[M � 1]
, minimize the sum of lengths2 of axes of (asymptotic) con�dence ellipsoids
R(�̂ n; � )
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A few choices for �(�)

A-optimality: maximize� trace[M � 1] , maximize 1=trace[M � 1]
, minimize the sum of lengths2 of axes of (asymptotic) con�dence ellipsoids
R(�̂ n; � )

E-optimality: maximize� min(M )
, minimize the longest axis ofR(�̂ n; � )
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2 DoE based on asymptotic normality C/ Design based on the information matrix

A few choices for �(�)

A-optimality: maximize� trace[M � 1] , maximize 1=trace[M � 1]
, minimize the sum of lengths2 of axes of (asymptotic) con�dence ellipsoids
R(�̂ n; � )

E-optimality: maximize� min(M )
, minimize the longest axis ofR(�̂ n; � )

D-optimality: maximize log detM
, minimize volume ofR(�̂ n; � ) (proportional to 1=

p
detM )

Very much used:
a D-optimum design is invariant by reparametrization

det M 0(� (� )) = det M (� ) det� 2
� @�

@�>

�

often leads to repeat the same experimental conditions (replications)
(remember Ex2:dim(� ) = 4 ! 4 di�erent sampling times, several
observations at each)
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2 DoE based on asymptotic normality C/ Design based on the information matrix

Ds-optimality: only s < p parameters of interest(and p � s �nuisance�
parameters)! � > = ( � >

1 ; � >
2 ), with � 1 the vector ofs parameters of interest

M (� ) =
�

M 11 M 12

M 21 M 22

�
; M � 1(� ) =

�
A11 A12

A21 A22

�

with
A11 = [M 11 � M 12M

� 1
22 M 21]

� 1

A12 = � [M 11 � M 12M
� 1
22 M 21]

� 1M 12M
� 1
22

A21 = � M � 1
22 M 21[M 11 � M 12M

� 1
22 M 21]

� 1

A22 = M � 1
22 + M � 1

22 M 21[M 11 � M 12M
� 1
22 M 21]

� 1M 12M
� 1
22

! maximize � Ds [M ] = det[ M 11 � M 12M � 1
22 M 21]
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2 DoE based on asymptotic normality C/ Design based on the information matrix

Ds-optimality: only s < p parameters of interest(and p � s �nuisance�
parameters)! � > = ( � >

1 ; � >
2 ), with � 1 the vector ofs parameters of interest

M (� ) =
�

M 11 M 12

M 21 M 22

�
; M � 1(� ) =

�
A11 A12

A21 A22

�

with
A11 = [M 11 � M 12M

� 1
22 M 21]

� 1

A12 = � [M 11 � M 12M
� 1
22 M 21]

� 1M 12M
� 1
22

A21 = � M � 1
22 M 21[M 11 � M 12M

� 1
22 M 21]

� 1

A22 = M � 1
22 + M � 1

22 M 21[M 11 � M 12M
� 1
22 M 21]

� 1M 12M
� 1
22

! maximize � Ds [M ] = det[ M 11 � M 12M � 1
22 M 21]

à Useful formodel discrimination :
if � (2) (x; � 2) = � (1) (x; � 1) + � (x; � 2n1) (nested models),

estimate� 2n1 in � (2) to decide whether� (1) or � (2) is more
appropriate, see[Atkinson & Cox 1974]
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3 Construction of (locally) optimal designs A/ Exact design

3 Construction of (locally) optimal designs

A/ Exact design

n observations atXn = ( x1; : : : ; xn) in a regression model (for simplicity)
Each design pointxi can be anything, e.g. a point in a subsetX of Rd

+ maximize �( M n) w.r.t. Xn with M n = M (Xn; � 0) = 1
n

P n
i=1

@�(xi ;� )
@�

�
�
� 0

@�(xi ;� )
@�>

�
�
� 0
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3 Construction of (locally) optimal designs A/ Exact design

3 Construction of (locally) optimal designs

A/ Exact design

n observations atXn = ( x1; : : : ; xn) in a regression model (for simplicity)
Each design pointxi can be anything, e.g. a point in a subsetX of Rd

+ maximize �( M n) w.r.t. Xn with M n = M (Xn; � 0) = 1
n

P n
i=1

@�(xi ;� )
@�

�
�
� 0

@�(xi ;� )
@�>

�
�
� 0

� If problem dimensionn � d not too large! standard algorithm (but with
constraints, local optimas. . . )
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3 Construction of (locally) optimal designs A/ Exact design

3 Construction of (locally) optimal designs

A/ Exact design

n observations atXn = ( x1; : : : ; xn) in a regression model (for simplicity)
Each design pointxi can be anything, e.g. a point in a subsetX of Rd

+ maximize �( M n) w.r.t. Xn with M n = M (Xn; � 0) = 1
n

P n
i=1

@�(xi ;� )
@�

�
�
� 0

@�(xi ;� )
@�>

�
�
� 0

� If problem dimensionn � d not too large! standard algorithm (but with
constraints, local optimas. . . )
� Otherwise, use an algorithm that takes the particular form of the problem into
account

Exchange methods:at iteration k, exchangeone support pointxj with a better
onex � in X (design space)� better for �( �)

X k
n = ( x1; : : : ; xj

l
x �

; : : : ; xn)
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3 Construction of (locally) optimal designs A/ Exact design

[Fedorov1972]: consider alln possible exchanges successively, each time
starting from X k

n , retain the �best� one among thesen ! X k+1
n

X k
n = ( x1

l
x �

1

; : : : ; xj

l
x �

j

; : : : ; xn

l
x �

n

)
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3 Construction of (locally) optimal designs A/ Exact design

[Fedorov1972]: consider alln possible exchanges successively, each time
starting from X k

n , retain the �best� one among thesen ! X k+1
n

X k
n = ( x1

l
x �

1

; : : : ; xj

l
x �

j

; : : : ; xn

l
x �

n

)

One iteration! n optimizations of dimensiond followed by rankingn
criterion values
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3 Construction of (locally) optimal designs A/ Exact design

[Mitchell, 1974]: DETMAX algorithm
If one additional observation were allowed! optimal choice

X k+
n = ( x1; : : : ; xj ; : : : ; xn; x �

n+1 )

Then, remove one support point to return to an-points design:

Ô consider alln + 1 possible cancellations,
retain the less penalizing in the sense of �(�)
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3 Construction of (locally) optimal designs A/ Exact design

[Mitchell, 1974]: DETMAX algorithm
If one additional observation were allowed! optimal choice

X k+
n = ( x1; : : : ; xj ; : : : ; xn; x �

n+1 )

Then, remove one support point to return to an-points design:

Ô consider alln + 1 possible cancellations,
retain the less penalizing in the sense of �(�)

Ô globally,exchange somexj with x �
n+1

[= excursion of length 1, longer excursions are possible. . . ]
One iteration! 1 optimization of dimensiond followed by rankingn + 1
criterion values
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3 Construction of (locally) optimal designs A/ Exact design

DETMAX has simpler iterations than Fedorov, but usually requires more
iterations
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3 Construction of (locally) optimal designs A/ Exact design

DETMAX has simpler iterations than Fedorov, but usually requires more
iterations

dead ends are possible:
� DETMAX: the point to be removed isxn+1

� Fedorov: no possible improvement when optimizingone xi at a time
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3 Construction of (locally) optimal designs A/ Exact design

DETMAX has simpler iterations than Fedorov, but usually requires more
iterations

dead ends are possible:
� DETMAX: the point to be removed isxn+1

� Fedorov: no possible improvement when optimizingone xi at a time

s both give local optima onlys
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3 Construction of (locally) optimal designs A/ Exact design

DETMAX has simpler iterations than Fedorov, but usually requires more
iterations

dead ends are possible:
� DETMAX: the point to be removed isxn+1

� Fedorov: no possible improvement when optimizingone xi at a time

s both give local optima onlys
Other methods:

Branch and bound: guaranteed convergence, but complicated[Welch 1982]
Rounding an optimal design measure(support points xi and associated
weights w �

i , i = 1 ; : : : ; m, presented next in B/):
choosen integersri (ri = nb. of replications of observations atxi ) such thatP m

i=1 ri = n and ri =n � w �
i

(e.g., maximize mini =1 ;:::; m ri =w �
i = Adams apportionment, see[Pukelsheim &

Reider 1992])
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3 Construction of (locally) optimal designs B/ Design measures: approximate design theory

B/ Design measures: approximate design theory

[Cherno� 1953;Kiefer & Wolfowitz 1960, Fedorov1972; Silvey1980, Pázman
1986, Pukelsheim1993, Fedorov & Leonov2014. . . ]
(nonlinear) regression,n observations atXn = ( x1; : : : ; xn) with i.i.d. errors:

M (Xn; � 0) =
1
n

nX

i =1

@�(xi ; � )
@�

�
�
� 0

@�(xi ; � )
@�>

�
�
� 0

(the additive form is essential� related to the independence of observations)
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3 Construction of (locally) optimal designs B/ Design measures: approximate design theory

B/ Design measures: approximate design theory

[Cherno� 1953;Kiefer & Wolfowitz 1960, Fedorov1972; Silvey1980, Pázman
1986, Pukelsheim1993, Fedorov & Leonov2014. . . ]
(nonlinear) regression,n observations atXn = ( x1; : : : ; xn) with i.i.d. errors:

M (Xn; � 0) =
1
n

nX

i =1

@�(xi ; � )
@�

�
�
� 0

@�(xi ; � )
@�>

�
�
� 0

(the additive form is essential� related to the independence of observations)
Suppose that severalxi 's coincide (replications): onlym < n di�erent xi 's

M (Xn; � 0) =
mX

i =1

ri

n
@�(xi ; � )

@�

�
�
� 0

@�(xi ; � )
@�>

�
�
� 0

ri

n
= proportion of observations collected atxi

= �percentage of experimental e�ort� atxi

= weight wi of support pointxi
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3 Construction of (locally) optimal designs B/ Design measures: approximate design theory

M (Xn; � 0) =
mX

i =1

wi
@�(xi ; � )

@�

�
�
� 0

@�(xi ; � )
@�>

�
�
� 0

Ô designXn ,
�

x1 � � � xm

w1 � � � wm

�
with

P m
i=1 wi = 1

Ô normalized discrete distribution on thexi ,
with constraintsri =n = wi
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3 Construction of (locally) optimal designs B/ Design measures: approximate design theory

M (Xn; � 0) =
mX

i =1

wi
@�(xi ; � )

@�

�
�
� 0

@�(xi ; � )
@�>

�
�
� 0

Ô designXn ,
�

x1 � � � xm

w1 � � � wm

�
with

P m
i=1 wi = 1

Ô normalized discrete distribution on thexi ,
with constraintsri =n = wi

à Release the constraints:only enforcewi � 0 with
P m

i=1 wi = 1
Ô � = discrete probability measure onX (= design space)

support pointsxi and associated weightswi

= �approximate design�
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3 Construction of (locally) optimal designs B/ Design measures: approximate design theory

M (Xn; � 0) =
mX

i =1

wi
@�(xi ; � )

@�

�
�
� 0

@�(xi ; � )
@�>

�
�
� 0

Ô designXn ,
�

x1 � � � xm

w1 � � � wm

�
with

P m
i=1 wi = 1

Ô normalized discrete distribution on thexi ,
with constraintsri =n = wi

à Release the constraints:only enforcewi � 0 with
P m

i=1 wi = 1
Ô � = discrete probability measure onX (= design space)

support pointsxi and associated weightswi

= �approximate design�

More general expression:� = any probability measure onX

M (� ) = M (� ; � 0) =
Z

X

@�(x; � )
@�

�
�
�
�
� 0

@�(x; � )
@�>

�
�
�
�
� 0

� (dx) ;
Z

X
� (dx) = 1
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3 Construction of (locally) optimal designs B/ Design measures: approximate design theory

Caratheodory Theorem :
M (� ) can be written as the linear combination of at mostq + 1 elements ofM :

M (� ) =
mX

i =1

wi
@�(xi ; � )

@�

�
�
� 0

@�(xi ; � )
@�>

�
�
� 0 ; m �

p(p + 1)
2

+ 1

) consider discrete probability measures withp(p+1)
2 + 1 support points at most

(true in particular for the optimum design!)
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3 Construction of (locally) optimal designs B/ Design measures: approximate design theory

Caratheodory Theorem :
M (� ) can be written as the linear combination of at mostq + 1 elements ofM :

M (� ) =
mX

i =1

wi
@�(xi ; � )

@�

�
�
� 0

@�(xi ; � )
@�>

�
�
� 0 ; m �

p(p + 1)
2

+ 1

) consider discrete probability measures withp(p+1)
2 + 1 support points at most

(true in particular for the optimum design!)
[Even better: for many criteria �( �), if � � is optimal (maximizes �[ M (� )]) then M (� � ) is
on the boundary of the convex closure ofM and p(p+1)

2 support points are enough]
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3 Construction of (locally) optimal designs B/ Design measures: approximate design theory

Caratheodory Theorem :
M (� ) can be written as the linear combination of at mostq + 1 elements ofM :

M (� ) =
mX

i =1

wi
@�(xi ; � )

@�

�
�
� 0

@�(xi ; � )
@�>

�
�
� 0 ; m �

p(p + 1)
2

+ 1

) consider discrete probability measures withp(p+1)
2 + 1 support points at most

(true in particular for the optimum design!)
[Even better: for many criteria �( �), if � � is optimal (maximizes �[ M (� )]) then M (� � ) is
on the boundary of the convex closure ofM and p(p+1)

2 support points are enough]

Suppose we found an optimal� � =
P m

i=1 w �
i � xi

+ for a givenn, choose theri so that ri
n ' w �

i optimum
! rounding of an approximate design

Luc Pronzato (CNRS) Design of experiments in nonlinear models École ETICS, Porquerolles, 5 oct. 2017 30 / 74



3 Construction of (locally) optimal designs B/ Design measures: approximate design theory

Caratheodory Theorem :
M (� ) can be written as the linear combination of at mostq + 1 elements ofM :

M (� ) =
mX

i =1

wi
@�(xi ; � )

@�

�
�
� 0

@�(xi ; � )
@�>

�
�
� 0 ; m �

p(p + 1)
2

+ 1

) consider discrete probability measures withp(p+1)
2 + 1 support points at most

(true in particular for the optimum design!)
[Even better: for many criteria �( �), if � � is optimal (maximizes �[ M (� )]) then M (� � ) is
on the boundary of the convex closure ofM and p(p+1)

2 support points are enough]

Suppose we found an optimal� � =
P m

i=1 w �
i � xi

+ for a givenn, choose theri so that ri
n ' w �

i optimum
! rounding of an approximate design

+ Sometimes,� � can be implementedwithout any approximation: � = power
spectral densityof an input signal

! design of optimal input for ODE model in the frequency domain
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3 Construction of (locally) optimal designs B/ Design measures: approximate design theory

Caratheodory Theorem :
M (� ) can be written as the linear combination of at mostq + 1 elements ofM :

M (� ) =
mX

i =1

wi
@�(xi ; � )

@�

�
�
� 0

@�(xi ; � )
@�>

�
�
� 0 ; m �

p(p + 1)
2

+ 1

) consider discrete probability measures withp(p+1)
2 + 1 support points at most

(true in particular for the optimum design!)
[Even better: for many criteria �( �), if � � is optimal (maximizes �[ M (� )]) then M (� � ) is
on the boundary of the convex closure ofM and p(p+1)

2 support points are enough]

Suppose we found an optimal� � =
P m

i=1 w �
i � xi

+ for a givenn, choose theri so that ri
n ' w �

i optimum
! rounding of an approximate design

+ Sometimes,� � can be implementedwithout any approximation: � = power
spectral densityof an input signal

! design of optimal input for ODE model in the frequency domain

Why design measures are interesting?
How does it simplify the optimization problem?
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3 Construction of (locally) optimal designs C/ Optimal design measures

� = set of probability measures onX , �( �) concave,� (� ) = �[ M (� )]
F� (� ; � ) = lim � ! 0+

� [(1� � )� + �� ]� � (� )
�

= directional derivative of� (�) at � in direction �

Equivalence Theorem: � � maximizes� (� ) , max� 2 � F� (� � ; � ) � 0
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3 Construction of (locally) optimal designs C/ Optimal design measures

� = set of probability measures onX , �( �) concave,� (� ) = �[ M (� )]
F� (� ; � ) = lim � ! 0+

� [(1� � )� + �� ]� � (� )
�

= directional derivative of� (�) at � in direction �

Equivalence Theorem: � � maximizes� (� ) , max� 2 � F� (� � ; � ) � 0

Ô Takes a simple form when �(�) is di�erentiable
� � maximizes� (� ) , maxx2 X F� (� � ; � x ) � 0

+ Check optimality of� � by plotting F� (� � ; � x )
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3 Construction of (locally) optimal designs C/ Optimal design measures

� = set of probability measures onX , �( �) concave,� (� ) = �[ M (� )]
F� (� ; � ) = lim � ! 0+

� [(1� � )� + �� ]� � (� )
�

= directional derivative of� (�) at � in direction �

Equivalence Theorem: � � maximizes� (� ) , max� 2 � F� (� � ; � ) � 0

Ô Takes a simple form when �(�) is di�erentiable
� � maximizes� (� ) , maxx2 X F� (� � ; � x ) � 0

+ Check optimality of� � by plotting F� (� � ; � x )

Ex: D-optimal design

� �
D maximizes log det[M (� )] w.r.t. � 2 �

, maxx2 X d(� �
D ; x) � p

, � �
D minimizes maxx2 X d(�; x) w.r.t. � 2 �

whered(�; x) = @�(x;� )
@�>

�
�
� 0M � 1(� ) @�(x;� )

@�

�
�
� 0

Moreover,d(� �
D ; xi ) = p = dim(� ) for any xi = support point of � �

D
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3 Construction of (locally) optimal designs C/ Optimal design measures

Ex: � (x; � ) = � 1 exp(� � 2x) (p = 2) i.i.d. errors, X = R+

[� 0
2 = 2]

! d(�; x) as a function ofx
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3 Construction of (locally) optimal designs C/ Optimal design measures

Ex: � (x; � ) = � 1 exp(� � 2x) (p = 2) i.i.d. errors, X = R+

[� 0
2 = 2]

! d(�; x) as a function ofx

� 2 =
�

0:01 0:75
1=2 1=2

�
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0
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3 Construction of (locally) optimal designs C/ Optimal design measures

Ex: � (x; � ) = � 1 exp(� � 2x) (p = 2) i.i.d. errors, X = R+

[� 0
2 = 2]

! d(�; x) as a function ofx

� 2 =
�

0:01 0:75
1=2 1=2

�

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

� �
D =

�
0 1=� 2 = 0 :5

1=2 1=2

�

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5
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3 Construction of (locally) optimal designs C/ Optimal design measures

KW Eq. Th. relates optimality in� space to optimality iny space(i.i.d. errors)
n var[� (x; �̂ n)] ! � 2 @�(x;� )

@�>
�
�

�� M � 1(�; �� ) @�(x;� )
@�

�
�

�� = � 2 d(�; x)
�
�

�� , n ! 1

D-optimality , G-optimality
à � �

D minimizes the maximum value of prediction variance overX
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3 Construction of (locally) optimal designs C/ Optimal design measures

KW Eq. Th. relates optimality in� space to optimality iny space(i.i.d. errors)
n var[� (x; �̂ n)] ! � 2 @�(x;� )

@�>
�
�

�� M � 1(�; �� ) @�(x;� )
@�

�
�

�� = � 2 d(�; x)
�
�

�� , n ! 1

D-optimality , G-optimality
à � �

D minimizes the maximum value of prediction variance overX

� (x; �� ), � (x; �� )� 2 st.d.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
�0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

! put next observation whered(�; x) is large
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3 Construction of (locally) optimal designs C/ Optimal design measures

Remark:
Eq. Th. = stationarity condition = NS condition for optimality

6= duality property!
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3 Construction of (locally) optimal designs C/ Optimal design measures

Remark:
Eq. Th. = stationarity condition = NS condition for optimality

6= duality property!

Dual problem to D-optimum design:
De�ne S =

n
@�(x;� )

@�

�
�
� 0 ; x 2 X

o
[S [ �S = Elfving's set]

E� = minimum-volume ellipsoid centered at0 that containsS

Lagrangian theory) E � = f z 2 Rp : z> M � 1
F (� �

D )z � pg where� �
D is D-optimum

support points of� �
D = contact betweenE� and S
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3 Construction of (locally) optimal designs C/ Optimal design measures

Remark:
Eq. Th. = stationarity condition = NS condition for optimality

6= duality property!

Dual problem to D-optimum design:
De�ne S =

n
@�(x;� )

@�

�
�
� 0 ; x 2 X

o
[S [ �S = Elfving's set]

E� = minimum-volume ellipsoid centered at0 that containsS

Lagrangian theory) E � = f z 2 Rp : z> M � 1
F (� �

D )z � pg where� �
D is D-optimum

support points of� �
D = contact betweenE� and S

In general, few contact points! repeat observations at the same place(see[Yang
2010, Dette & Melas 2011])

There exist dual problems for other criteria �(�)
(= one of the main topics in [Pukelsheim1993])

Luc Pronzato (CNRS) Design of experiments in nonlinear models École ETICS, Porquerolles, 5 oct. 2017 35 / 74



3 Construction of (locally) optimal designs C/ Optimal design measures

Ex: � (x; � ) = � 1
� 1� � 2

[exp(� � 2x) � exp(� � 1x)]
� = (1 ; 5), X = R+

�0.2 �0.15 �0.1 �0.05 0 0.05 0.1 0.15
�0.2

�0.15

�0.1

�0.05

0

0.05

0.1

0.15

0.2

E� and S

) D optimum design� �
D supported on two points
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3 Construction of (locally) optimal designs D/ Construction of an optimal design measure

D/ Construction of an optimal design measure

� = set of probability measures onX , �( �) concave and di�erentiable,
� (� ) = �[ M (� )]
Concavity =) for any � 2 �, � (� � ) � � (� ) + max x2 X F� (� ; � x )
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3 Construction of (locally) optimal designs D/ Construction of an optimal design measure

D/ Construction of an optimal design measure

� = set of probability measures onX , �( �) concave and di�erentiable,
� (� ) = �[ M (� )]
Concavity =) for any � 2 �, � (� � ) � � (� ) + max x2 X F� (� ; � x )

Fedorov�Wynn Algorithm: sort of steepest ascent

1 : Choose� 1 not degenerate (detM (� 1) > 0)

2 : Computex �
k = argmaxX F� (� k ; � x )

If F� (� k ; � x+
k

) < � , stop: � k is � -optimal

3 : � k+1 = (1 � � k )� k + � k � x �
k

(delta measure atx �
k )

[Vertex Direction]
k ! k + 1, return to Step 2
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3 Construction of (locally) optimal designs D/ Construction of an optimal design measure

D/ Construction of an optimal design measure

� = set of probability measures onX , �( �) concave and di�erentiable,
� (� ) = �[ M (� )]
Concavity =) for any � 2 �, � (� � ) � � (� ) + max x2 X F� (� ; � x )

Fedorov�Wynn Algorithm: sort of steepest ascent

1 : Choose� 1 not degenerate (detM (� 1) > 0)

2 : Computex �
k = argmaxX F� (� k ; � x )

If F� (� k ; � x+
k

) < � , stop: � k is � -optimal

3 : � k+1 = (1 � � k )� k + � k � x �
k

(delta measure atx �
k )

[Vertex Direction]
k ! k + 1, return to Step 2

Step-size� k ?
à � k = argmax� (� k+1 ) [=

d(� k ;x �
k )� p

p[d(� k ;x �
k

)� 1]
for D-optimal design[Fedorov1972]]

Ô monotone convergence
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3 Construction of (locally) optimal designs D/ Construction of an optimal design measure

D/ Construction of an optimal design measure

� = set of probability measures onX , �( �) concave and di�erentiable,
� (� ) = �[ M (� )]
Concavity =) for any � 2 �, � (� � ) � � (� ) + max x2 X F� (� ; � x )

Fedorov�Wynn Algorithm: sort of steepest ascent

1 : Choose� 1 not degenerate (detM (� 1) > 0)

2 : Computex �
k = argmaxX F� (� k ; � x )

If F� (� k ; � x+
k

) < � , stop: � k is � -optimal

3 : � k+1 = (1 � � k )� k + � k � x �
k

(delta measure atx �
k )

[Vertex Direction]
k ! k + 1, return to Step 2

Step-size� k ?
à � k = argmax� (� k+1 ) [=

d(� k ;x �
k )� p

p[d(� k ;x �
k

)� 1]
for D-optimal design[Fedorov1972]]

Ô monotone convergence
à � k > 0; limk!1 � k = 0 ;

P 1
i=1 � k = 1 [[Wynn 1970] for D-optimal design]

Luc Pronzato (CNRS) Design of experiments in nonlinear models École ETICS, Porquerolles, 5 oct. 2017 37 / 74



3 Construction of (locally) optimal designs D/ Construction of an optimal design measure

Remarks:

Consider sequential design, onexi at a time entersM (X)
M (Xk+1 ) = k

k+1 M (Xk )

+ 1
k+1

@�(xk+1 ;� )
@�

�
�
� 0

@�(xk+1 ;� )
@�>

�
�
� 0

with xk+1 = argmaxX F� (� k ; � x )
, Wynn algorithm with� k = 1

k+1

Luc Pronzato (CNRS) Design of experiments in nonlinear models École ETICS, Porquerolles, 5 oct. 2017 38 / 74



3 Construction of (locally) optimal designs D/ Construction of an optimal design measure

Remarks:

Consider sequential design, onexi at a time entersM (X)
M (Xk+1 ) = k

k+1 M (Xk )

+ 1
k+1

@�(xk+1 ;� )
@�

�
�
� 0

@�(xk+1 ;� )
@�>

�
�
� 0

with xk+1 = argmaxX F� (� k ; � x )
, Wynn algorithm with� k = 1

k+1

Guaranteed convergence to the optimum
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3 Construction of (locally) optimal designs D/ Construction of an optimal design measure

Remarks:

Consider sequential design, onexi at a time entersM (X)
M (Xk+1 ) = k

k+1 M (Xk )

+ 1
k+1

@�(xk+1 ;� )
@�

�
�
� 0

@�(xk+1 ;� )
@�>

�
�
� 0

with xk+1 = argmaxX F� (� k ; � x )
, Wynn algorithm with� k = 1

k+1

Guaranteed convergence to the optimum
There exist faster methods:

remove support points from� k (� allow � k to be < 0) [Atwood 1973;
Böhning 1985, 1986]
combine with gradient projection (or a second-order method)[Wu 1978]
use a multiplicative algorithm[Titterington 1976; Torsney 1983�2009; Yu
2010] [for D or A optimal design, far from the optimum]
combine di�erent methods [Yu 2011]
Still an active topic. . .
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3 Construction of (locally) optimal designs D/ Construction of an optimal design measure

Remarks: Usually,X = compact subset ofRd (e.g., the probability simplex for
mixture experiments)
! discretized intoX ` with ` elements (a grid� or better, a low-discrepancy
sequence, see[Niederreiter1992])
Ô the algorithms above may be slow when` is large
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3 Construction of (locally) optimal designs D/ Construction of an optimal design measure

Remarks: Usually,X = compact subset ofRd (e.g., the probability simplex for
mixture experiments)
! discretized intoX ` with ` elements (a grid� or better, a low-discrepancy
sequence, see[Niederreiter1992])
Ô the algorithms above may be slow when` is large

à Combine continuous search for support points inX with optimization of a
design measure with few support points, saym � `
à Exploit guaranteed (and fast) convergence of algorithms form small

+ use Eq. Th. to check optimality[Yang et al., 2013, P & Zhigljavsky, 2014]
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3 Construction of (locally) optimal designs D/ Construction of an optimal design measure

Ex: D-optimal design for

� (x; � ) = � 0 + � 1 exp(� � 2x1) +
� 3

� 3 � � 4
[exp(� � 4x2) � exp(� � 3x2)]

with x = ( x1; x2) 2 X = [0 ; 2] � [0; 10] (andp = 5, � 0
2 = 2, � 0

3 = 0 :7, � 0
4 = 0 :2)
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3 Construction of (locally) optimal designs D/ Construction of an optimal design measure

Ex: D-optimal design for

� (x; � ) = � 0 + � 1 exp(� � 2x1) +
� 3

� 3 � � 4
[exp(� � 4x2) � exp(� � 3x2)]

with x = ( x1; x2) 2 X = [0 ; 2] � [0; 10] (andp = 5, � 0
2 = 2, � 0

3 = 0 :7, � 0
4 = 0 :2)

Additive model[Schwabe1995]: � �
D = tensor product of optimal designs for

� (1)
0 + � (1)

1 exp(� � (1)
2 x1)

and
� (2)

0 + � (2)
1 [exp(� � (2)

2 x2) � exp(� � (2)
1 x2)]=(� (2)

1 � � (2)
2 )
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3 Construction of (locally) optimal designs D/ Construction of an optimal design measure

Ex: D-optimal design for

� (x; � ) = � 0 + � 1 exp(� � 2x1) +
� 3

� 3 � � 4
[exp(� � 4x2) � exp(� � 3x2)]

with x = ( x1; x2) 2 X = [0 ; 2] � [0; 10] (andp = 5, � 0
2 = 2, � 0

3 = 0 :7, � 0
4 = 0 :2)

Additive model[Schwabe1995]: � �
D = tensor product of optimal designs for

� (1)
0 + � (1)

1 exp(� � (1)
2 x1)

and
� (2)

0 + � (2)
1 [exp(� � (2)

2 x2) � exp(� � (2)
1 x2)]=(� (2)

1 � � (2)
2 )

Use the Equivalence Th. to construct� �
D (with arbitrary precision� Maple)

[weight 1/9 at (0, 0 :46268527927, 2)
 (0, 1:22947139883, 6:85768905493)]

à 7 iterations of the algorithm in[P & Zhigljavsky, 2014]yield � such that
maxx2 X F� (� ; � x ) < 10� 5
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3 Construction of (locally) optimal designs D/ Construction of an optimal design measure

What if �( �) not di�erentiable? (e.g., maximize �(M ) = � min(M ))
�( �) concave,X discretized intoX ` , ` not too large
Ô optimal design() optimal vector of weightsw 2 R`

wi � 0,
P `

i=1 wi = 1

Luc Pronzato (CNRS) Design of experiments in nonlinear models École ETICS, Porquerolles, 5 oct. 2017 41 / 74



3 Construction of (locally) optimal designs D/ Construction of an optimal design measure

What if �( �) not di�erentiable? (e.g., maximize �(M ) = � min(M ))
�( �) concave,X discretized intoX ` , ` not too large
Ô optimal design() optimal vector of weightsw 2 R`

wi � 0,
P `

i=1 wi = 1

subgradients ($ directional derivatives)
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3 Construction of (locally) optimal designs D/ Construction of an optimal design measure

What if �( �) not di�erentiable? (e.g., maximize �(M ) = � min(M ))
�( �) concave,X discretized intoX ` , ` not too large
Ô optimal design() optimal vector of weightsw 2 R`

wi � 0,
P `

i=1 wi = 1

subgradients ($ directional derivatives)

general method for non-di�erentiable optimization(cutting plane method
[Kelley 1960], level method[Nesterov2004]), see Chap. 9 of[P & Pázman
2013]
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4 Problems with nonlinear models

Ex: � (x; � ) = � 1f xg1 + � 3
1(1 � f xg1) + � 2f xg2 + � 2

2(1 � f xg2)
X = ( x1; x2; x3), x1 = (0 1), x2 = (1 0), x3 = (1 1), � 2 [� 3; 4] � [� 2; 2]
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4 Problems with nonlinear models

Two important di�culties :
¶ Asymptotically (n ! 1 ) � or if � 2 small enough � all seems �ne

(use linear approximations),
but the distribution of �̂ n may be far from normal for smalln (or for � 2 large)

à small-sample properties
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4 Problems with nonlinear models

Two important di�culties :
¶ Asymptotically (n ! 1 ) � or if � 2 small enough � all seems �ne

(use linear approximations),
but the distribution of �̂ n may be far from normal for smalln (or for � 2 large)

à small-sample properties

· Everything is local (depends on� ): if we linearize,where do we linearize?
(choice of a nominal value� 0)

à nonlocal optimum design
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5 Small-sample properties A/ A classi�cation of regression models

5 Small-sample properties

A/ A classi�cation of regression models

Suppose that

yi = y(xi ) = � (xi ; �� ) + " i with Ef " i g = 0 and Ef "2
i g = � 2(xi ) for all i

Divide yi and � (xi ; �� ) by � (xi ) Ô one may suppose that� 2(x) = � 2 for all x
Denote

y = ( y1; : : : ; yn)> and � (� ) = ( � (xi ; � ); : : : ; � (xn; � ))>

" = ( "1; : : : ; "n)> so that Ef "g = 0 and Var(" ) = � 2 In

We suppose� (x; � ) twice continuously di�erentiable w.r.t.� for any x
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A/ A classi�cation of regression models

Suppose that

yi = y(xi ) = � (xi ; �� ) + " i with Ef " i g = 0 and Ef "2
i g = � 2(xi ) for all i

Divide yi and � (xi ; �� ) by � (xi ) Ô one may suppose that� 2(x) = � 2 for all x
Denote

y = ( y1; : : : ; yn)> and � (� ) = ( � (xi ; � ); : : : ; � (xn; � ))>

" = ( "1; : : : ; "n)> so that Ef "g = 0 and Var(" ) = � 2 In

We suppose� (x; � ) twice continuously di�erentiable w.r.t.� for any x

ä Expectation surface:S� = f � (� ) : � 2 Rpg
ä Orthogonal projector onto the tangent space toS� at � (� ):

P� =
1
n

@�(� )
@�>

M � 1(X ; � )
@�(� )

@�
(a n � n matrix)

(both depend onX)
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5 Small-sample properties A/ A classi�cation of regression models

Intrinsically linear models

ä The expectation surfaceS� = f � (� ) : � 2 Rpg is �at (plane) � intrinsic
curvature� 0
ä A reparameterization (continuously di�erentiable) exists that makes the model
linear
ä P� H �

ij (� ) = H �
ij (� ), whereH �

ij (� ) = @2� (� )
@�i @�j
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5 Small-sample properties A/ A classi�cation of regression models

Intrinsically linear models

ä The expectation surfaceS� = f � (� ) : � 2 Rpg is �at (plane) � intrinsic
curvature� 0
ä A reparameterization (continuously di�erentiable) exists that makes the model
linear
ä P� H �

ij (� ) = H �
ij (� ), whereH �

ij (� ) = @2� (� )
@�i @�j

Observing atp di�erent xi only (replications)makes the model intrinsically linear
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5 Small-sample properties A/ A classi�cation of regression models

Parametrically linear models

ä M (X; � ) = constant
ä P� H �

ij (� ) = 0 � parametric curvature � 0
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5 Small-sample properties A/ A classi�cation of regression models

Parametrically linear models

ä M (X; � ) = constant
ä P� H �

ij (� ) = 0 � parametric curvature � 0

Linear models

ä � (x; � ) = f > (x)� + c(x)
ä the model is intrinsically and parametrically linear
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5 Small-sample properties A/ A classi�cation of regression models

Parametrically linear models

ä M (X; � ) = constant
ä P� H �

ij (� ) = 0 � parametric curvature � 0

Linear models

ä � (x; � ) = f > (x)� + c(x)
ä the model is intrinsically and parametrically linear

Flat models

ä A reparameterization exists that makes the information matrix constant
ä Riemannian curvature tensor� 0 Rhijk (� ) = Thjik (� ) � Thkij (� ) � 0 where
Thjik (� ) = [ H �

hj (� )]> [In � P� ]H �
ik (� )

If all parameters but one appear linearly, then the model is �at
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5 Small-sample properties B/ Density of the LS estimator

B/ Density of the LS estimator

Suppose" � N (0; � 2In)
Intrinsically linear models (in particular, repetitions atp points):

! exact distribution �̂ n � q(� j �� ) = np= 2 det1= 2 M (X ;� )
(2� )p= 2 � p exp

�
� 1

2� 2 k� (� ) � � ( �� )k2
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5 Small-sample properties B/ Density of the LS estimator

B/ Density of the LS estimator

Suppose" � N (0; � 2In)
Intrinsically linear models (in particular, repetitions atp points):

! exact distribution �̂ n � q(� j �� ) = np= 2 det1= 2 M (X ;� )
(2� )p= 2 � p exp

�
� 1

2� 2 k� (� ) � � ( �� )k2
	

Ex: � (x; � ) = exp( � � x), �� = 2, 15 observations at the samex = 1=2 (� 2 = 1)
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5 Small-sample properties B/ Density of the LS estimator

B/ Density of the LS estimator

Suppose" � N (0; � 2In)
Intrinsically linear models (in particular, repetitions atp points):

! exact distribution �̂ n � q(� j �� ) = np= 2 det1= 2 M (X ;� )
(2� )p= 2 � p exp

�
� 1

2� 2 k� (� ) � � ( �� )k2
	

Ex: � (x; � ) = x � 3, �� = 0, all observations at the samex 6= 0

�2 �1.5 �1 �0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
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5 Small-sample properties B/ Density of the LS estimator

Flat models: approximate density of̂� n

q(� j �� ) = det[Q(�; �� )]
(2� )p= 2 � p np= 2 det1= 2 M (X ;� )

exp
�

� 1
2� 2 kP� [� (� ) � � ( �� )]k2

	

wheref Q(�; �� )gij = f n M (X; � )gij + [ � (� ) � � ( �� )]> [In � P� ]H �
ij (� )
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5 Small-sample properties B/ Density of the LS estimator

Flat models: approximate density of̂� n

q(� j �� ) = det[Q(�; �� )]
(2� )p= 2 � p np= 2 det1= 2 M (X ;� )

exp
�

� 1
2� 2 kP� [� (� ) � � ( �� )]k2

	

wheref Q(�; �� )gij = f n M (X; � )gij + [ � (� ) � � ( �� )]> [In � P� ]H �
ij (� )

Remarks:

This approximation coincides with the saddle-point approximation of
Hougaard (1985)

Other approximations (more complicated) for models withRhijk (� ) 6� 0
(non-�at)

An approximation of the density of the penalized LS estimator
argmin� 2 �

�
ky � � (� )k2 + 2w(� )

	
(which includes the case of Bayesian

estimation) is also available

We also know the (approximate) marginal densities of the LS estimator �̂ n

[Pázman & P 1996]
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5 Small-sample properties C/ Con�dence regions

C/ Con�dence regions

Suppose" � N (0; � 2In), de�ne e(� ) = y � � (� )
Ô e> ( �� ) P �� e( �� )=� 2 � � 2

p

Ô e> ( �� ) [In � P �� ] e( �� )=� 2 � � 2
n� p

and they are independent
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5 Small-sample properties C/ Con�dence regions

C/ Con�dence regions

Suppose" � N (0; � 2In), de�ne e(� ) = y � � (� )
Ô e> ( �� ) P �� e( �� )=� 2 � � 2

p

Ô e> ( �� ) [In � P �� ] e( �� )=� 2 � � 2
n� p

and they are independent

à exact con�dence regions at level��
� 2 Rp : e> (� ) P� e(� )=� 2 < � 2

p[1 � � ]
	

(if � 2 known)n
� 2 Rp : n� p

p
e> (� ) P� e(� )

e> (� ) [ In � P� ] e(� ) < Fp;n� p[1 � � ]
o

(if � 2 unknown)

(but they are not of minimum volume, maybe composed of disconnected
subsets. . . )
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5 Small-sample properties C/ Con�dence regions

C/ Con�dence regions

Suppose" � N (0; � 2In), de�ne e(� ) = y � � (� )
Ô e> ( �� ) P �� e( �� )=� 2 � � 2

p

Ô e> ( �� ) [In � P �� ] e( �� )=� 2 � � 2
n� p

and they are independent

à exact con�dence regions at level��
� 2 Rp : e> (� ) P� e(� )=� 2 < � 2

p[1 � � ]
	

(if � 2 known)n
� 2 Rp : n� p

p
e> (� ) P� e(� )

e> (� ) [ In � P� ] e(� ) < Fp;n� p[1 � � ]
o

(if � 2 unknown)

(but they are not of minimum volume, maybe composed of disconnected
subsets. . . )

à approximatecon�dence regions based on likelihood ratio (usually connected):n
� 2 Rp : ke(� )k2 � k e(�̂ )k2 < � 2� 2

p[1 � � ]
o

(if � 2 known)
n

� 2 Rp : ke(� )k2=ke(�̂ )k2 < 1 + p
n� p Fp;n� p[1 � � ]

o
(if � 2 unknown)
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5 Small-sample properties D/ Design based on small-sample properties

D/ Design based on small-sample properties

3 main ideas (exact design only) based on:

a) (approximate) volume of (approximate) con�dence regions (not necessarily of
minimum volume)[Hamilton & Watts 1985; Vila 1990; Vila & Gauchi 2007]

(ellipsoidal approximation! D-optimality)
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5 Small-sample properties D/ Design based on small-sample properties

D/ Design based on small-sample properties

3 main ideas (exact design only) based on:

a) (approximate) volume of (approximate) con�dence regions (not necessarily of
minimum volume)[Hamilton & Watts 1985; Vila 1990; Vila & Gauchi 2007]

(ellipsoidal approximation! D-optimality)

b) (approximate or exact) density of̂� n

e.g., minimize
R

k� � �� k2q(� j �� ) d� w.r.t. X (using stochastic approximation,
[Pázman & P 1992, Gauchi & Pázman 2006])

Luc Pronzato (CNRS) Design of experiments in nonlinear models École ETICS, Porquerolles, 5 oct. 2017 54 / 74



5 Small-sample properties D/ Design based on small-sample properties

D/ Design based on small-sample properties

3 main ideas (exact design only) based on:

a) (approximate) volume of (approximate) con�dence regions (not necessarily of
minimum volume)[Hamilton & Watts 1985; Vila 1990; Vila & Gauchi 2007]

(ellipsoidal approximation! D-optimality)

b) (approximate or exact) density of̂� n

e.g., minimize
R

k� � �� k2q(� j �� ) d� w.r.t. X (using stochastic approximation,
[Pázman & P 1992, Gauchi & Pázman 2006])

c) higher-order approximation of optimality criteria,
using' (yjX ; �� ) = N (� ( �� ); � 2In)

minimize MSE
R

k�̂ n(y) � �� k2' (yjX ; �� ) dy [Clarke 1980]
minimize entropy�

R
log[q(�̂ n(y)j �� )]' (yjX ; �� ) dy [P & Pázman 1994]

(usual normal approximation forq(�j �� ) ! D-optimality)
! explicit (but rather complicated) expressions (depend on 3rd-order
derivatives of� (x; � ) w.r.t. � )
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5 Small-sample properties E/ One additional di�culty

E/ One additional di�culty

Overlapping ofS� , local minimizers. . .

�2 �1.5 �1 �0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

+

+

+
B

C

A

s Important and di�cult problem, often neglected!
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5 Small-sample properties E/ One additional di�culty

What can we do at the design stage?
à extensions of usual optimality criteria, e.g.

maximize� eE(X) = min
�

k� (� ) � � (� 0)k2

k� � � 0k2

or

maximize� eE(� ) = min
�

R
[� (x; � ) � � (x; � 0)]2 � (dx)

k� � � 0k2

Ô corresponds toE-optimal design if the model is linear (maximize� minM (� )),
see Chap. 7 of[P & Pázman2013]and [Pázman & P, 2014]
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5 Small-sample properties E/ One additional di�culty

What can we do at the design stage?
à extensions of usual optimality criteria, e.g.

maximize� eE(X) = min
�

k� (� ) � � (� 0)k2

k� � � 0k2

or

maximize� eE(� ) = min
�

R
[� (x; � ) � � (x; � 0)]2 � (dx)

k� � � 0k2

Ô corresponds toE-optimal design if the model is linear (maximize� minM (� )),
see Chap. 7 of[P & Pázman2013]and [Pázman & P, 2014]

s All approaches presented so far are local
(the optimal design depends on�� unknown � 0)
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6 Nonlocal optimum design

6 Nonlocal optimum design

Ex: � (x; � ) = exp( � � x), yi = � (xi ; �� ) + " i , � > 0, x 2 X = [0 ; 1 )
Ô M(�; � 0) =

R
X x2 exp(� 2� 0x) � (dx)

à � �
D = � �

A = : : : = � 1=� 0

Objective : remove the dependence in nominal value � 0

3 main classes of methods (related)
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6 Nonlocal optimum design

6 Nonlocal optimum design

Ex: � (x; � ) = exp( � � x), yi = � (xi ; �� ) + " i , � > 0, x 2 X = [0 ; 1 )
Ô M(�; � 0) =

R
X x2 exp(� 2� 0x) � (dx)

à � �
D = � �

A = : : : = � 1=� 0

Objective : remove the dependence in nominal value � 0

3 main classes of methods (related)
¶ Average optimum design: maximize E� f � (X ; � )g (or E� f � (�; � )g)
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6 Nonlocal optimum design

6 Nonlocal optimum design

Ex: � (x; � ) = exp( � � x), yi = � (xi ; �� ) + " i , � > 0, x 2 X = [0 ; 1 )
Ô M(�; � 0) =

R
X x2 exp(� 2� 0x) � (dx)

à � �
D = � �

A = : : : = � 1=� 0

Objective : remove the dependence in nominal value � 0

3 main classes of methods (related)
¶ Average optimum design: maximize E� f � (X ; � )g (or E� f � (�; � )g)
· Maximin optimum design: maximize min� f � (X ; � )g (or min� f � (�; � )g)
à Between¶ and · : regularized maximin criteria, quantiles and probability level
criteria
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6 Nonlocal optimum design

6 Nonlocal optimum design

Ex: � (x; � ) = exp( � � x), yi = � (xi ; �� ) + " i , � > 0, x 2 X = [0 ; 1 )
Ô M(�; � 0) =

R
X x2 exp(� 2� 0x) � (dx)

à � �
D = � �

A = : : : = � 1=� 0

Objective : remove the dependence in nominal value � 0

3 main classes of methods (related)
¶ Average optimum design: maximize E� f � (X ; � )g (or E� f � (�; � )g)
· Maximin optimum design: maximize min� f � (X ; � )g (or min� f � (�; � )g)
à Between¶ and · : regularized maximin criteria, quantiles and probability level
criteria
¸ Sequential design
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6 Nonlocal optimum design A/ Average Optimum design

A/ Average Optimum design

Nothing special: probability measure� (d� ) on � � Rp

� (�; � 0) ! � AO (�) =
R

� � (�; � ) � (d� )

No di�culty if � = f � (1) ; : : : � (M )g �nite and � =
P M

i=1 � i �
(i )
� (integral ! �nite

sum)
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6 Nonlocal optimum design A/ Average Optimum design

A/ Average Optimum design

Nothing special: probability measure� (d� ) on � � Rp

� (�; � 0) ! � AO (�) =
R

� � (�; � ) � (d� )

No di�culty if � = f � (1) ; : : : � (M )g �nite and � =
P M

i=1 � i �
(i )
� (integral ! �nite

sum)

* Approximate design theory:
� AO (�) is concave when each� (�; � ) is concave
à same properties and same algorithms as in Section 3 for
design measures
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6 Nonlocal optimum design A/ Average Optimum design

A/ Average Optimum design

Nothing special: probability measure� (d� ) on � � Rp

� (�; � 0) ! � AO (�) =
R

� � (�; � ) � (d� )

No di�culty if � = f � (1) ; : : : � (M )g �nite and � =
P M

i=1 � i �
(i )
� (integral ! �nite

sum)

* Approximate design theory:
� AO (�) is concave when each� (�; � ) is concave
à same properties and same algorithms as in Section 3 for
design measures

* Exact design: same algorithms as in Section 3
(for continuous distributions� use stochastic approximation to avoid
evaluations of integrals[P & Walter 1985])
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6 Nonlocal optimum design A/ Average Optimum design

A Bayesian interpretation :
Suppose� =prior distribution has a density� (� )

! entropy �
R

� � (� ) log[� (� )] d�

Posterior distribution of� : � (� jX ; y) = ' (yjX ;� )� (� )
' (yjX )

Gain in information = decrease of entropy
Entropy may increase, but expected gain in informationI (X) is always positive
[Lindley 1956]

à I (X) = E yf
R

� (� (� jX ; y) log[� (� jX ; y)] � � (� ) log[� (� )]) d� g
where the expectation Eyf�g is for the marginal' (yjX)
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6 Nonlocal optimum design A/ Average Optimum design

A Bayesian interpretation :
Suppose� =prior distribution has a density� (� )

! entropy �
R

� � (� ) log[� (� )] d�

Posterior distribution of� : � (� jX ; y) = ' (yjX ;� )� (� )
' (yjX )

Gain in information = decrease of entropy
Entropy may increase, but expected gain in informationI (X) is always positive
[Lindley 1956]

à I (X) = E yf
R

� (� (� jX ; y) log[� (� jX ; y)] � � (� ) log[� (� )]) d� g
where the expectation Eyf�g is for the marginal' (yjX)

If the experiment informative enough (� 2 small, n large enough):

maximizingI (X) �, maximizing
R

log detM (X; � ) � (� ) d�
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6 Nonlocal optimum design A/ Average Optimum design

Which prior � (� )? Expected gain in information maximum when� (�) =
noninformative prior (Je�rey)� which depends on �

� � (� ) = det1= 2 M (�;� )R
�

det1= 2 M (�;� ) d�
à maximize

R
det1=2 M (�; � ) d�
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6 Nonlocal optimum design A/ Average Optimum design

Which prior � (� )? Expected gain in information maximum when� (�) =
noninformative prior (Je�rey)� which depends on �

� � (� ) = det1= 2 M (�;� )R
�

det1= 2 M (�;� ) d�
à maximize

R
det1=2 M (�; � ) d�

� � (� ) = det1= 2 M (�;� )R
�

det1= 2 M (�;� ) d�
! uniform distribution of responses� (�; � ) (for the

metric de�ned by� ) [Bornkamp 2011]
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6 Nonlocal optimum design A/ Average Optimum design

Which prior � (� )? Expected gain in information maximum when� (�) =
noninformative prior (Je�rey)� which depends on �

� � (� ) = det1= 2 M (�;� )R
�

det1= 2 M (�;� ) d�
à maximize

R
det1=2 M (�; � ) d�

� � (� ) = det1= 2 M (�;� )R
�

det1= 2 M (�;� ) d�
! uniform distribution of responses� (�; � ) (for the

metric de�ned by� ) [Bornkamp 2011]
Ex: � (x; � ) = exp( � � x), � -quantiles of� (x; � ) for di�erent �

� uniform on� = [ 1; 10]
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6 Nonlocal optimum design A/ Average Optimum design

Which prior � (� )? Expected gain in information maximum when� (�) =
noninformative prior (Je�rey)� which depends on �

� � (� ) = det1= 2 M (�;� )R
�

det1= 2 M (�;� ) d�
à maximize

R
det1=2 M (�; � ) d�

� � (� ) = det1= 2 M (�;� )R
�

det1= 2 M (�;� ) d�
! uniform distribution of responses� (�; � ) (for the

metric de�ned by� ) [Bornkamp 2011]
Ex: � (x; � ) = exp( � � x), � -quantiles of� (x; � ) for di�erent �

� uniform on� = [ 1; 10]
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� � , � uniform onX = [ 0; 2]
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6 Nonlocal optimum design B/ Maximin Optimum design

B/ Maximin Optimum design

� (�; � 0) ! � MmO (�) = min � 2 � � (�; � )
* Exact design:

� �nite ! same algorithms as in Section 3
� compact subset of Rp ! relaxation method to solve a sequence
of maximin problems with �nite (and growing) sets� (k) [P & Walter 1988]
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B/ Maximin Optimum design

� (�; � 0) ! � MmO (�) = min � 2 � � (�; � )
* Exact design:

� �nite ! same algorithms as in Section 3
� compact subset of Rp ! relaxation method to solve a sequence
of maximin problems with �nite (and growing) sets� (k) [P & Walter 1988]

* Approximate design:
� MmO (�) concave when each� (�; � ) is concave
s but � MmO (�) is non-di�erentiable!
à maximize� MmO (� ) using a speci�c algorithm for
concave non-di�erentiable maximization(cutting plane, level method. . .
see Section 3)
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6 Nonlocal optimum design B/ Maximin Optimum design

How to check optimality of � � ?
� (�; � 0) di�erentiable: maxx2 X F� (� � ; � x ; � 0) � 0 ?

! plot F� (� � ; � x ; � 0) as a function ofx

� MmO (�) not di�erentiable: max� 2 � F� MmO (� � ; � ) � 0 cannot be exploited directly
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6 Nonlocal optimum design B/ Maximin Optimum design

How to check optimality of � � ?
� (�; � 0) di�erentiable: maxx2 X F� (� � ; � x ; � 0) � 0 ?

! plot F� (� � ; � x ; � 0) as a function ofx

� MmO (�) not di�erentiable: max� 2 � F� MmO (� � ; � ) � 0 cannot be exploited directly

Equivalence Theorem:
� � maximizes� MmO (� ) , max� 2 � F� MmO (� � ; � ) � 0

, max� 2 � min� 2 �( � � ) F� (� � ; �; � ) � 0
with �( � ) = f � : � (�; � ) = � MmO (� )g

, maxx2 X
R

�( � � ) F� (� � ; � x ; � )� � (d� ) � 0
for some probability measure� � on �( � � )
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6 Nonlocal optimum design B/ Maximin Optimum design

How to check optimality of � � ?
� (�; � 0) di�erentiable: maxx2 X F� (� � ; � x ; � 0) � 0 ?

! plot F� (� � ; � x ; � 0) as a function ofx

� MmO (�) not di�erentiable: max� 2 � F� MmO (� � ; � ) � 0 cannot be exploited directly

Equivalence Theorem:
� � maximizes� MmO (� ) , max� 2 � F� MmO (� � ; � ) � 0

, max� 2 � min� 2 �( � � ) F� (� � ; �; � ) � 0
with �( � ) = f � : � (�; � ) = � MmO (� )g

, maxx2 X
R

�( � � ) F� (� � ; � x ; � )� � (d� ) � 0
for some probability measure� � on �( � � )

Once� � is determined, solve a LP problem:
� � on �( � � ) minimizes maxx2 X

R
�( � � ) F� (� � ; � x ; � )� (d� )

à plot
R

�( � � ) F� (� � ; � x ; � )� � (d� ) (should be� 0)
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6 Nonlocal optimum design B/ Maximin Optimum design

Ex: � (x; � ) = � 1 exp(� � 2x), p = 2, X = [0 ; 2], � 2 2 [0; � 2max ]

� (�; � ) = det1= p M (�;� )
det1= p M (� �

D ;� )
(D e�ciency, 2 [0; 1])
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6 Nonlocal optimum design B/ Maximin Optimum design

Ex: � (x; � ) = � 1 exp(� � 2x), p = 2, X = [0 ; 2], � 2 2 [0; � 2max ]

� (�; � ) = det1= p M (�;� )
det1= p M (� �

D ;� )
(D e�ciency, 2 [0; 1])

R
�( � � ) F� (� � ; � x ; � )� � (d� ) for

� 2max = 2 (solid line, 2 support points) and
� 2max = 20 (dashed line, 4 support points)
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6 Nonlocal optimum design C/ Regularized Maximin Optimum design

C/ Regularized Maximin Optimum design

Suppose� (�; � ) > 0 for all � ; � a probability measure on �� Rp compact

� MmO (� ) = min � 2 � � (�; � ) � � q(� ) =
� R

� � � q(�; � )� (d� )
� � 1

q (di�erentiable)
with � � 1(� ) = � AO (� ), � 0(� ) = exp

� R
� log[� (�; � )]� (d� )

	
and

� q(� ) ! � MmO (� ) as q ! 1 (and � q(�) concave forq � � 1)

Moreover, � = f � (1) ; : : : ; � (M )g, � =
P

i
�

� ( i )

M =)
� MmO (� �

q )
� �

MmO
� M � 1=q
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6 Nonlocal optimum design C/ Regularized Maximin Optimum design

C/ Regularized Maximin Optimum design

Suppose� (�; � ) > 0 for all � ; � a probability measure on �� Rp compact

� MmO (� ) = min � 2 � � (�; � ) � � q(� ) =
� R

� � � q(�; � )� (d� )
� � 1

q (di�erentiable)
with � � 1(� ) = � AO (� ), � 0(� ) = exp

� R
� log[� (�; � )]� (d� )

	
and

� q(� ) ! � MmO (� ) as q ! 1 (and � q(�) concave forq � � 1)

Moreover, � = f � (1) ; : : : ; � (M )g, � =
P

i
�

� ( i )

M =)
� MmO (� �

q )
� �

MmO
� M � 1=q

Ex: � = exp(� � x)
� (�; � ) = M (�;� )

M (� � ;� ) (= e�ciency)

Plot of � q(� x ) function of x
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6 Nonlocal optimum design D/ Quantiles and probability level criteria

D/ Quantiles and probability level criteria

A/ � �
AO good for � (d� ) on �, may be bad for some�
s for  (�) %, maximizing 

� R
� � (�; � ) � (d� )

�
(AO-opt.)

is di�erent from maximizing
R

�  [� (�; � )] � (d� )
B/ � �

MmO often depends on the boundary of �
(Ô we often simply replace the dependence on� 0 by a dependence on� max)
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D/ Quantiles and probability level criteria

A/ � �
AO good for � (d� ) on �, may be bad for some�
s for  (�) %, maximizing 

� R
� � (�; � ) � (d� )

�
(AO-opt.)

is di�erent from maximizing
R

�  [� (�; � )] � (d� )
B/ � �

MmO often depends on the boundary of �
(Ô we often simply replace the dependence on� 0 by a dependence on� max)

u given!
Pu(� ) = � f � (�; � ) � ug

� 2 (0; 1) given!
Q� (� ) = maxf u : Pu(� ) � 1� � g
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0.05
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P
u
(� )=1� �

�

u=Q
�
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f. 
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 �
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;�
)
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6 Nonlocal optimum design D/ Quantiles and probability level criteria

ä maximizingPu(� ) = � f � (�; � ) � ug is well adapted to
� (�; � ) = e�ciency 2 (0; 1)

ä Q� (� ) ! � MMO as � ! 0
ä for  (�) %, using [� (�; � )] does not changePu(� ) and Q� (� )
s Pu(� ) and Q� (� ) generally not concave!

(but we can compute directional derivatives and maximize)

Luc Pronzato (CNRS) Design of experiments in nonlinear models École ETICS, Porquerolles, 5 oct. 2017 66 / 74



6 Nonlocal optimum design D/ Quantiles and probability level criteria

ä maximizingPu(� ) = � f � (�; � ) � ug is well adapted to
� (�; � ) = e�ciency 2 (0; 1)

ä Q� (� ) ! � MMO as � ! 0
ä for  (�) %, using [� (�; � )] does not changePu(� ) and Q� (� )
s Pu(� ) and Q� (� ) generally not concave!

(but we can compute directional derivatives and maximize)

Ex: � = exp(� � x)
� (�; � ) = M(�; � )
Plot of Q� (� x ) function of x
(with � AO (� x ) and � MmO (� x ))
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6 Nonlocal optimum design D/ Quantiles and probability level criteria

Ongoing work: conditional value at risk (also called superquantile)

� � (� ) =
1
�

Z

f � :� (�;� )� Q� (� )g
� (�; � ) � (d� )

which is concave in� when� (�; � ) is concave for all� , see(Valenzuela et al.,
2015; Guerra, 2016)
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6 Nonlocal optimum design E/ Sequential design

E/ Sequential design

� 0 ! design:X 1 = argmaxX � (X ; � 0)
! observe:y1 = y1(X 1)

! estimate: �̂ 1 = argmin� J(� ; y1; X 1)
! design:X 2 = argmaxX � (f X 1; Xg; �̂ 1)

! observe:y2 = y2(X 2)
! estimate: �̂ 2 = argmin� J(� ; f y1; y2

| {z }
growing

g; f X 1; X 2

| {z }
growing

g)

! design:X 3 = argmaxX � (f X 1; X 2; Xg; �̂ 2)
. . . etc.
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6 Nonlocal optimum design E/ Sequential design

E/ Sequential design

� 0 ! design:X 1 = argmaxX � (X ; � 0)
! observe:y1 = y1(X 1)

! estimate: �̂ 1 = argmin� J(� ; y1; X 1)
! design:X 2 = argmaxX � (f X 1; Xg; �̂ 1)

! observe:y2 = y2(X 2)
! estimate: �̂ 2 = argmin� J(� ; f y1; y2

| {z }
growing

g; f X 1; X 2

| {z }
growing

g)

! design:X 3 = argmaxX � (f X 1; X 2; Xg; �̂ 2)
. . . etc.

+ Replace unknown� by best current guesŝ� k

(there exist variants with Bayesian estimation and average optimality)
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6 Nonlocal optimum design E/ Sequential design

E/ Sequential design

� 0 ! design:X 1 = argmaxX � (X ; � 0)
! observe:y1 = y1(X 1)

! estimate: �̂ 1 = argmin� J(� ; y1; X 1)
! design:X 2 = argmaxX � (f X 1; Xg; �̂ 1)

! observe:y2 = y2(X 2)
! estimate: �̂ 2 = argmin� J(� ; f y1; y2

| {z }
growing

g; f X 1; X 2

| {z }
growing

g)

! design:X 3 = argmaxX � (f X 1; X 2; Xg; �̂ 2)
. . . etc.

+ Replace unknown� by best current guesŝ� k

(there exist variants with Bayesian estimation and average optimality)

s Consistency of̂� n?
Asymptotic normality (for design based onM )?

(X k depends ony1; : : : ; yk� 1 =) independence is lost)
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6 Nonlocal optimum design E/ Sequential design

à No problem if eachX i has size� p = dim(� ) (batch sequential design)

Luc Pronzato (CNRS) Design of experiments in nonlinear models École ETICS, Porquerolles, 5 oct. 2017 69 / 74



6 Nonlocal optimum design E/ Sequential design

à No problem if eachX i has size� p = dim(� ) (batch sequential design)
If n observation in total, two stages only: size of �rst batch?

! should be proportional to
p

n (but it does not say much . . . )
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6 Nonlocal optimum design E/ Sequential design

à No problem if eachX i has size� p = dim(� ) (batch sequential design)
If n observation in total, two stages only: size of �rst batch?

! should be proportional to
p

n (but it does not say much . . . )

à Full sequential design:X k = f xk g (batches of size 1)
! convergence properties di�cult to investigate

M (Xk+1 ; �̂ k ) =
k

k + 1
M (Xk ; �̂ k ) +

1
k + 1

@�(xk+1 ; � )
@�

�
�
�̂ k

@�(xk+1 ; � )
@�>

�
�
�̂ k

with xk+1 = argmaxX F� (� k ; � x j �̂ k ) , Wynn's algorithm [1970] with� k = 1
k+1
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6 Nonlocal optimum design E/ Sequential design

à No problem if eachX i has size� p = dim(� ) (batch sequential design)
If n observation in total, two stages only: size of �rst batch?

! should be proportional to
p

n (but it does not say much . . . )

à Full sequential design:X k = f xk g (batches of size 1)
! convergence properties di�cult to investigate

M (Xk+1 ; �̂ k ) =
k

k + 1
M (Xk ; �̂ k ) +

1
k + 1

@�(xk+1 ; � )
@�

�
�
�̂ k

@�(xk+1 ; � )
@�>

�
�
�̂ k

with xk+1 = argmaxX F� (� k ; � x j �̂ k ) , Wynn's algorithm [1970] with� k = 1
k+1

ä some CV results for Bayesian estimation[Hu 1998]
ä no general CV results for LS and ML estimation

some results whenX is �nite ( X = f x(1) ; : : : ; x(` )g) [P 2009, 2010]

Luc Pronzato (CNRS) Design of experiments in nonlinear models École ETICS, Porquerolles, 5 oct. 2017 69 / 74



References

References I

Atkinson, A., Cox, D., 1974. Planning experiments for discriminating between models (with discussion).
Journal of Royal Statistical Society B36, 321�348.

Atkinson, A., Fedorov, V., 1975. The design of experiments for discriminating between two rival models.
Biometrika 62 (1), 57�70.

Atwood, C., 1973. Sequences converging toD-optimal designs of experiments. Annals of Statistics 1 (2),
342�352.

Bates, D., Watts, D., 1980. Relative curvature measures of nonlinearity. Journal of Royal Statistical Society
B42, 1�25.

Böhning, D., 1985. Numerical estimation of a probability measure. Journal of Statistical Planning and
Inference 11, 57�69.

Böhning, D., 1986. A vertex-exchange-method inD-optimal design theory. Metrika 33, 337�347.

Box, G., Hill, W., 1967. Discrimination among mechanistic models. Technometrics 9 (1), 57�71.

Cherno�, H., 1953. Locally optimal designs for estimating parameters. Annals of Math. Stat. 24, 586�602.

Clarke, G., 1980. Moments of the least-squares estimators in a non-linear regression model. Journal of Royal
Statistical Society B42, 227�237.

D'Argenio, D., 1981. Optimal sampling times for pharmacokinetic experiments. Journal of Pharmacokinetics
and Biopharmaceutics 9 (6), 739�756.

Dette, H., Melas, V., 2011. A note on de la Garza phenomenon forlocally optimal designs. Annals of Statistics
39 (2), 1266�1281.

Fedorov, V., 1972. Theory of Optimal Experiments. Academic Press, New York.

Fedorov, V., Leonov, S., 2014. Optimal Design for Nonlinear Response Models. CRC Press, Boca Raton.

Luc Pronzato (CNRS) Design of experiments in nonlinear models École ETICS, Porquerolles, 5 oct. 2017 70 / 74



References

References II

Fisher, R., 1925. Statistical Methods for Research Workers. Oliver & Boyd, Edimbourgh.

Gauchi, J.-P., Pázman, A., 2006. Designs in nonlinear regression by stochastic minimization of functionnals of
the mean square error matrix. Journal of Statistical Planning and Inference 136, 1135�1152.

Goodwin, G., Payne, R., 1977. Dynamic System Identi�cation: Experiment Design and Data Analysis.
Academic Press, New York.

Guerra, J., 2016. Optimisation multi-objectif sous incerti tude de phénomènes de thermique transitoire. Ph.D.
Thesis, Université de Toulouse.

Hamilton, D., Watts, D., 1985. A quadratic design criterion f or precise estimation in nonlinear regression
models. Technometrics 27, 241�250.

Hill, P., 1978. A review of experimental design procedures for regression model discrimination. Technometrics
20, 15�21.

Hougaard, P., 1985. Saddlepoint approximations for curved exponential families. Statistics & Probability
Letters 3, 161�166.

Hu, I., 1998. On sequential designs in nonlinear problems. Biometrika 85 (2), 496�503.

Kelley, J., 1960. The cutting plane method for solving convex programs. SIAM Journal 8, 703�712.

Kiefer, J., Wolfowitz, J., 1960. The equivalence of two extremum problems. Canadian Journal of Mathematics
12, 363�366.

Ljung, L., 1987. System Identi�cation, Theory for the User. P rentice-Hall, Englewood Cli�s.

Mitchell, T., 1974. An algorithm for the construction of � D-optimal� experimental designs. Technometrics 16,
203�210.

Nesterov, Y., 2004. Introductory Lectures to Convex Optimization: A Basic Course. Kluwer, Dordrecht.

Luc Pronzato (CNRS) Design of experiments in nonlinear models École ETICS, Porquerolles, 5 oct. 2017 71 / 74



References

References III

Niederreiter, H., 1992. Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia.

Pázman, A., 1986. Foundations of Optimum Experimental Design. Reidel (Kluwer group), Dordrecht (co-pub.
VEDA, Bratislava).

Pázman, A., 1993. Nonlinear Statistical Models. Kluwer, Dordrecht.

Pázman, A., Pronzato, L., 1992. Nonlinear experimental design based on the distribution of estimators.
Journal of Statistical Planning and Inference 33, 385�402.

Pázman, A., Pronzato, L., 1996. A Dirac function method for d ensities of nonlinear statistics and for marginal
densities in nonlinear regression. Statistics & Probability Letters 26, 159�167.

Pázman, A., Pronzato, L., 2014. Optimum design accounting for the global nonlinear behavior of the model.
Annals of Statistics 42 (4), 1426�1451.

Pronzato, L., 2009. Asymptotic properties of nonlinear estimates in stochastic models with �nite design space.
Statistics & Probability Letters 79, 2307�2313.

Pronzato, L., 2010. One-step ahead adaptiveD-optimal design on a �nite design space is asymptotically
optimal. Metrika 71 (2), 219�238, ( DOI: 10.1007/s00184-00 8-0227-y).

Pronzato, L., Pázman, A., 1994. Second-order approximation of the entropy in nonlinear least-squares
estimation. Kybernetika 30 (2), 187�198, Erratum 32(1):104, 1996.

Pronzato, L., Pázman, A., 2013. Design of Experiments in Nonlinear Models. Asymptotic Normality,
Optimality Criteria and Small-Sample Properties. Springer, LNS 212, New York.

Pronzato, L., Walter, E., 1985. Robust experiment design via stochastic approximation. Mathematical
Biosciences 75, 103�120.

Luc Pronzato (CNRS) Design of experiments in nonlinear models École ETICS, Porquerolles, 5 oct. 2017 72 / 74



References

References IV

Pronzato, L., Walter, E., 1988. Robust experiment design via maximin optimization. Mathematical Biosciences
89, 161�176.

Pronzato, L., Zhigljavsky, A., 2014. Algorithmic construct ion of optimal designs on compact sets for concave
and di�erentiable criteria. Journal of Statistical Planni ng and Inference 154, 141�155.

Pukelsheim, F., 1993. Optimal Experimental Design. Wiley, New York.

Pukelsheim, F., Reider, S., 1992. E�cient rounding of appro ximate designs. Biometrika 79 (4), 763�770.

Schwabe, R., 1995. Designing experiments for additive nonlinear models. In: Kitsos, C., Müller, W. (Eds.),
MODA4 � Advances in Model-Oriented Data Analysis, Spetses (Greece), june 1995. Physica Verlag,
Heidelberg, pp. 77�85.

Silvey, S., 1980. Optimal Design. Chapman & Hall, London.

Titterington, D., 1976. Algorithms for computing D-optimal designs on a �nite design space. In: Proc. of the
1976 Conference on Information Science and Systems. Dept. of Electronic Engineering, John Hopkins
University, Baltimore, pp. 213�216.

Torsney, B., 1983. A moment inequality and monotonicity of an algorithm. In: Kortanek, K., Fiacco, A. (Eds.),
Proc. Int. Symp. on Semi-in�nite Programming and Applicati ons. Springer, Heidelberg, pp. 249�260.

Torsney, B., 2009. W-iterations and ripples therefrom. In: Pronzato, L., Zhigljavsky, A. (Eds.), Optimal Design
and Related Areas in Optimization and Statistics. Springer, Ch. 1, pp. 1�12.

Valenzuela, P., ROjas, C., Hjalmarsson, H., 2015. Uncertainty in system identi�cation: learning from the
theory of risk. IFAC-PapersOnLine 48 (28), 1053�1058.

Vila, J.-P., 1990. Exact experimental designs via stochastic optimization for nonlinear regression models. In:
Proc. Compstat, Int. Assoc. for Statistical Computing. Phy sica Verlag, Heidelberg, pp. 291�296.

Luc Pronzato (CNRS) Design of experiments in nonlinear models École ETICS, Porquerolles, 5 oct. 2017 73 / 74



References

References V

Vila, J.-P., Gauchi, J.-P., 2007. Optimal designs based on exact con�dence regions for parameter estimation of
a nonlinear regression model. Journal of Statistical Planning and Inference 137, 2935�2953.

Walter, E., Pronzato, L., 1994. Identi�cation de Modèles Pa ramétriques à Partir de Données Expérimentales.
Masson, Paris, 371 pages.

Walter, E., Pronzato, L., 1997. Identi�cation of Parametri c Models from Experimental Data. Springer,
Heidelberg.

Welch, W., 1982. Branch-and-bound search for experimentaldesigns based onD-optimality and other criteria.
Technometrics 24 (1), 41�28.

Wu, C., 1978. Some algorithmic aspects of the theory of optimal designs. Annals of Statistics 6 (6),
1286�1301.

Wynn, H., 1970. The sequential generation of D-optimum experimental designs. Annals of Math. Stat. 41,
1655�1664.

Yang, M., 2010. On de la Garza phenomenon. Annals of Statistics 38 (4), 2499�2524.

Yang, M., Biedermann, S., Tang, E., 2013. On optimal designsfor nonlinear models: a general and e�cient
algorithm. Journal of the American Statistical Association 108 (504), 1411�1420.

Yu, Y., 2010. Strict monotonicity and convergence rate of Ti tterington's algorithm for computing D-optimal
designs. Comput. Statist. Data Anal. 54, 1419�1425.

Yu, Y., 2011. D-optimal designs via a cocktail algorithm. Stat. Comput. 21, 475�481.

Zarrop, M., 1979. Optimal Experiment Design for Dynamic System Identi�cation. Springer, Heidelberg.

Luc Pronzato (CNRS) Design of experiments in nonlinear models École ETICS, Porquerolles, 5 oct. 2017 74 / 74


	DoE: objectives & examples
	Parameter estimation
	Model discrimination

	DoE based on asymptotic normality
	Regression models
	LS estimation
	Design based on the information matrix

	Construction of (locally) optimal designs
	Exact design
	Design measures: approximate design theory
	Optimal design measures
	Construction of an optimal design measure

	Problems with nonlinear models
	Small-sample properties
	A classification of regression models
	Density of the LS estimator
	Confidence regions
	Design based on small-sample properties
	One additional difficulty


