
Deep Learning

A journey from feature extraction and
engineering to end-to-end pipelines

Part 4: Under the hood

Andrei Bursuc

With slides from A. Karpathy, F. Fleuret, J. Johnson, S. Yeung, G. Louppe, Y. Avrithis ...

1 / 129

Understanding and visualizing
CNNs

2 / 129

Visualize !rst layers

!lters/weights

What happens inside a CNN?

Visualizing and Understanding Convolutional Networks, M. Zeiler & R. Fergus, ECCV 2014
3 / 129

Visualize !rst layers

!lters/weights

What happens inside a CNN?

Visualizing and Understanding Convolutional Networks, M. Zeiler & R. Fergus, ECCV 2014
4 / 129

Visualize behavior in higher

layers

We can visualize !lters at

higher layers, but they are less

intuitive

What happens inside a CNN?

Visualizing and Understanding Convolutional Networks, M. Zeiler & R. Fergus, ECCV 2014
5 / 129

Visualize !rst layers

!lters/weights

What happens inside a CNN?

Visualizing and Understanding Convolutional Networks, M. Zeiler & R. Fergus, ECCV 2014
6 / 129

Visualize !rst layers

!lters/weights

What happens inside a CNN?

Visualizing and Understanding Convolutional Networks, M. Zeiler & R. Fergus, ECCV 2014
7 / 129

Visualize !rst layers

!lters/weights

What happens inside a CNN?

Visualizing and Understanding Convolutional Networks, M. Zeiler & R. Fergus, ECCV 2014
8 / 129

Visualize !rst layers

!lters/weights

What happens inside a CNN?

Visualizing and Understanding Convolutional Networks, M. Zeiler & R. Fergus, ECCV 2014
9 / 129

4096d "signature" for an

image (layer right before the

classi!er)

Visualize with t-SNE: here

What happens inside a CNN?

10 / 129

Feature evolution during training

For a particular neuron (that generates a feature map)

Pick the strongest activation during training

For epochs 1, 2, 5, 10, 20, 30, 40, 64

Visualizing and Understanding Convolutional Networks, M. Zeiler & R. Fergus, ECCV 2014

Visualize layer activations/feature
maps

AlexNet

Figure credit: F. Fleuret

12 / 129

Visualize layer activations/feature
maps

AlexNet

Figure credit: F. Fleuret

13 / 129

Visualize layer activations/feature
maps

AlexNet

Figure credit: F. Fleuret

14 / 129111111111114444444444444 //////////// 111111

Visualize layer activations/feature
maps

AlexNet

Figure credit: F. Fleuret

15 / 1291111111155555555 ///////////// 111111

Visualize layer activations/feature
maps

AlexNet

Figure credit: F. Fleuret

16 / 12916 / 1

Visualize layer activations/feature
maps

ResNet152

Figure credit: F. Fleuret

17 / 129

Visualize layer activations/feature
maps

ResNet152

Figure credit: F. Fleuret

18 / 1291111118888888 //////// 111

Visualize layer activations/feature
maps

ResNet152

Figure credit: F. Fleuret

19 / 1291119 / 1

Occlusion sensitivity

Visualizing and Understanding Convolutional Networks, M. Zeiler & R. Fergus, ECCV 2014
20 / 129

Occlusion sensitivity

An approach to understand the behavior of a network is to look at

the output of the network "around" an image.

We can get a simple estimate of the importance of a part of the

input image by computing the di#erence between:

1. the value of the maximally responding output unit on the image,

and

2. the value of the same unit with that part occluded.

21 / 129

Occlusion sensitivity

An approach to understand the behavior of a network is to look at

the output of the network "around" an image.

We can get a simple estimate of the importance of a part of the

input image by computing the di#erence between:

1. the value of the maximally responding output unit on the image,

and

2. the value of the same unit with that part occluded.

This is computationally intensive since it requires as many forward

passes as there are locations of the occlusion mask, ideally the

number of pixels.

22 / 129

Occlusion sensitivity

Figure credit: F. Fleuret 23 / 129

Occlusion sensitivity

Figure credit: F. Fleuret

24 / 129

Occlusion sensitivity

Figure credit: F. Fleuret

25 / 129

Occlusion sensitivity

Figure credit: F. Fleuret

26 / 129

Visualize arbitrary neurons

DeepVis toolbox https://www.youtube.com/watch?v=AgkfIQ4IGaM

27 / 129

Maximum response samples

What does a convolutional network see?

Convolutional networks can be inspected by looking for input

images that maximize the activation of a chosen

convolutional kernel at layer and index in the layer !lter bank.

Such images can be found by gradient ascent on the input space:

28 / 129

Maximum response samples

29 / 129

Maximum response samples

30 / 129

Maximum response samples

31 / 129

Maximum response samples

32 / 129

Maximum response samples

33 / 129

Maximum response samples

34 / 129

Maximum response samples

35 / 129

Maximum response samples

36 / 129

Many more visualization techniques

37 / 129

Other resources

DrawNet

http://people.csail.mit.edu/torralba/research/drawCNN/drawNet.ht

ml

38 / 129

Other resources

Basic CNNs http://scs.ryerson.ca/~aharley/vis/

39 / 129

Other resources

Keras-JS https://transcranial.github.io/keras-js/

40 / 129

Other resources

TensorFlow playground http://playground.tensor$ow.org

41 / 129

Adversarial attacks

42 / 129

Locality assumption

"The deep stack of non-linear layers are a way for the model to

encode a non-local generalization prior over the input space. In other

words, it is assumed that is possible for the output unit to assign

probabilities to regions of the input space that contain no training

examples in their vicinity.

It is implicit in such arguments that local generalization---in the very

proximity of the training examples---works as expected. And that in

particular, for a small enough radius in the vicinity of a given

training input , an satisfying will get assigned a

high probability of the correct class by the model."

(Szegedy et al, 2013)

43 / 129

Adversarial examples

where

 is some target label, di#erent from the original label

associated to ,

 is a trained neural network.

44 / 129

(Left) Original images . (Middle) Noise . (Right) Modi!ed images

.

All are classi!ed as 'Ostrich'. (Szegedy et al, 2013)

Even simpler, take a step along the direction of the sign of the

gradient at each pixel:

where is the magnitude of the perturbation.

46 / 129

Even simpler, take a step along the direction of the sign of the

gradient at each pixel:

where is the magnitude of the perturbation.

The panda on the right is classi!ed as a 'Gibbon'. (Goodfellow et al,

2014)

47 / 129

Credits: Breaking things easy (Papernot and Goodfellow, 2016) 48 / 129

Not just for neural networks

Many other machine learning models are subject to adversarial

examples, including:

Linear models
Logistic regression

Softmax regression

Support vector machines

Decision trees

Nearest neighbors

49 / 129

Fooling neural networks

(Nguyen et al, 2014)

50 / 129

(Nguyen et al, 2014)

51 / 129

One pixel attacks

(Su et al, 2017)

52 / 129

Universal adversarial perturbations

(Moosavi-Dezfooli et al, 2016)

53 / 129

Fooling deep structured prediction
models

(Cisse et al, 2017)

54 / 129

(Cisse et al, 2017)

55 / 129

(Cisse et al, 2017)

56 / 129

Attacks in the real world

57 / 129

Attacks in the real world

58 / 129

GPUs

59 / 129

CPU

GPU

CPU vs GPU

60 / 129

CPU:
fewer cores; each core is faster

and more powerful

useful for sequential tasks

GPU:
more cores; each core is slower

and weaker

great for parallel tasks

CPU vs GPU

61 / 129

CPU:
fewer cores; each core is faster

and more powerful

useful for sequential tasks

GPU:
more cores; each core is slower

and weaker

great for parallel tasks

CPU vs GPU

Figure credit: J. Johnson 62 / 129

CPU vs GPU

SP = single precision, 32 bits / 4 bytes

DP = double precision, 64 bits / 8 bytes

63 / 129

CPU vs GPU

Benchmarking State-of-the-Art Deep Learning Software Tools, Shi et al., 2016
64 / 129

CPU vs GPU

more benchmarks available at https://github.com/jcjohnson/cnn-

benchmarks

Figure credit: J. Johnson 65 / 129

CPU vs GPU

more benchmarks available at https://github.com/jcjohnson/cnn-

benchmarks

Figure credit: J. Johnson 66 / 129

System

Figure credit: F. Fleuret 67 / 129

System

Figure credit: F. Fleuret 68 / 129

System

Figure credit: F. Fleuret 69 / 129

System

Figure credit: F. Fleuret 70 / 129

System

Figure credit: F. Fleuret 71 / 129

System

Figure credit: F. Fleuret 72 / 129

System

Figure credit: F. Fleuret 73 / 129

GPU

NVIDIA GPUs are programmed through CUDA

(Compute Uni!ed Device Architecture)

The alternative is OpenCL, supported by several

manufacturers but with signi!cant less investments

than Nvidia

Nvidia and CUDA are dominating the !eld by far,

though some alternatives start emerging: Google

TPUs, embedded devices.

74 / 129

Libraries

BLAS (Basic Linear Algebra Subprograms):

vector/matrix products, and the cuBLAS

implementation for NVIDIA GPUs

LAPACK (Linear Algebra Package): linear system

solving, Eigen-decomposition, etc.

cuDNN (NVIDIA CUDA Deep Neural Network library)

computations speci!c to deep-learning on NVIDIA

GPUs.

75 / 129

GPU usage in pytorch

Tensors of torch.cuda types are in the GPU memory.

Operations on them are done by the GPU and

resulting tensors are stored in its memory.

Operations cannot mix di#erent tensor types (CPU vs.

GPU, or di#erent numerical types); except copy_()

Moving data between the CPU and the GPU memories

is far slower than moving it inside the GPU memory.

76 / 129

GPU usage in pytorch

The Tensor method cuda() returns a clone on the GPU

if the tensor is not already there or returns the tensor

itself if it was already there, keeping the bit precision.

The method cpu() makes a clone on the CPU if

needed.

They both keep the original tensor unchanged

77 / 129

Training deep networks

Tricks of the trade

78 / 129

Data pre-processing

Input variables should be as decorrelated as possible
Input variables are "more independent"

Network is forced to !nd non-trivial correlations between inputs

Decorrelated inputs better optimization

Input variables follow a more of less Gaussian distribution

In practice:
compute mean and standard deviation

per pixel:

per color channel:

79 / 129

Data pre-processing

Code from torchvision/transforms/functional.py

def normalize(tensor, mean, std):
...
 for t, m, s in zip(tensor, mean, std):
 t.sub_(m).div_(s)

 return tensor

80 / 129

Data augmentation

Changing the pixels without changing the label

Train on transformed data

Widely used

Figure credit: E. Gavves 81 / 129

Data augmentation

Horizontal $ips

Figure credit: A. Karpathy 82 / 129

Data augmentation

Random crops/scales

Figure credit: A. Karpathy 83 / 129

Data augmentation

Random crops/scales

Training: sample random crops/scales

Testing: average a !xed set of crops

Figure credit: A. Karpathy 84 / 129

Data augmentation

Color jitter

randomly jitter color, brightness, contrast, etc.

other more complex alternatives exist (PCA-jittering)

Figure credit: A. Karpathy 85 / 129

Data augmentation

Various techniques can be mixed

Domain knowledge helps in !nding new data augmentation

techniques

Very useful for small datasets

86 / 129

Data augmentation

no need for data augmentation on validation set

from torchvision import transforms

data_transforms = {
 'train': transforms.Compose([
 transforms.RandomSizedCrop(224),
 transforms.RandomHorizontalFlip(),
 transforms.ColorJitter(brightness=0.2, contrast=0.2, stauration=0.2, hue=0
 transforms.ToTensor(),
 transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
 'val': transforms.Compose([
 transforms.Scale(256),
 transforms.CenterCrop(224),
 transforms.ToTensor(),
 transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}

87 / 129

Weight initialization

There are a few contradictory requirements:

Weights need to be small enough
around origin for symmetric activation functions (tanh, sigmoid) stimulate

activation functions near their linear regime

larger gradients faster training

Weights need to be large enough
otherwise signal is too weak for any serious learning

88 / 129

Weight initialization

Weights should evolve at the same rate across layers

during training, and no layer should reach a saturation

behavior before others.

Weights must be initialized to preserve the variance

of the activations during the forward and backward

computations

neurons will operate in their full capacity

Initialize weights to be asymmetric

if all weights are 0, neurons generate same gradient

Initialization depends on non-linearities and data

normalization 89 / 129

Weight initialization

From torch/nn/modules/linear.py

def reset_parameters(self):
 stdv = 1. / math.sqrt(self.weight.size(1))
 self.weight.data.uniform_(-stdv, stdv)
 if self.bias is not None:
 self.bias.data.uniform_(-stdv, stdv)

90 / 129

Weight initialization

From torch/nn/modules/linear.py

def reset_parameters(self):
 stdv = 1. / math.sqrt(self.weight.size(1))
 self.weight.data.uniform_(-stdv, stdv)
 if self.bias is not None:
 self.bias.data.uniform_(-stdv, stdv)

When used with tanh almost all neurons get completely either -1 and

1. Gradients will be zero

91 / 129

Xavier initialization

We get a better compromise with "Xavier initialization"

From torch/nn/init.py:

def xavier_normal(tensor, gain=1):
 if isinstance(tensor, Variable):
 xavier_normal(tensor.data, gain=gain)
 return tensor

 fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
 std = gain * math.sqrt(2.0 / (fan_in + fan_out))

return tensor.normal_(0, std)

fan_in = num neurons in the input

fan_out = num neurons at the output

Understanding the di%culty of training deep feedforward neural networks, Glorot & Bengio, 2010

Xavier initialization

We get a better compromise with "Xavier initialization"

From torch/nn/init.py:

def xavier_normal(tensor, gain=1):
 if isinstance(tensor, Variable):
 xavier_normal(tensor.data, gain=gain)
 return tensor

 fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
 std = gain * math.sqrt(2.0 / (fan_in + fan_out))

return tensor.normal_(0, std)

Unlike sigmoids, ReLUs ground to 0 the linear activation about half

the time

Understanding the di%culty of training deep feedforward neural networks, Glorot & Bengio, 2010
93 / 129

Kaiming He initialization

Double weight variance (i.e. multiply with) in order to:
compensate for the zero $at area input and output maintain same

variance

very similar to Xavier initialization

From torch/nn/init.py:

def kaiming_normal(tensor, a=0, mode='fan_in'):
 if isinstance(tensor, Variable):
 kaiming_normal(tensor.data, a=a, mode=mode)
 return tensor

 fan = _calculate_correct_fan(tensor, mode)
 gain = calculate_gain('leaky_relu', a)
 std = gain / math.sqrt(fan)
 return tensor.normal_(0, std)

Delving deep into recti!ers: Surpassing human-level performance on ImageNet classi!cation, He et al., 2015

Kaiming He initialization

The same type of reasoning can be applied to other activation

functions

From torch/nn/init.py:

def calculate_gain(nonlinearity, param=None):
 linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_
 if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
 return 1

elif nonlinearity == 'tanh':
 return 5.0 / 3

elif nonlinearity == 'relu':
 return math.sqrt(2.0)

elif nonlinearity == 'leaky_relu':
 if param is None:
 negative_slope = 0.01
 elif not isinstance(param, bool) and isinstance(param, int) or isinstance

True/False are instances of int, hence check above
 negative_slope = param

else:
 raise ValueError("negative_slope {} not a valid number".format(param

return math.sqrt(2.0 / (1 + negative_slope ** 2))
 else:

raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))

95 / 129

Weight initialization

Does it actually matter that much?

96 / 129

Weight initialization

Does it actually matter that much?

97 / 129

Hyper-parameter search

Coarse !ne cross validation stage

First stage: only a few epochs to get rough idea of what params

work

Second stage: longer running time, !ner search

Usually there are some typical values for:

Learning rate: [1e-1,1e-5] (log space steps)

weight-decay: 0.0005

momentum: 0.5, 0.9, 0.99

Learning rate:

For learning rate use log scale when checking values

If loss == NaN , learning rate is too big

If loss stagnates, learning rate is too small

98 / 129

Architecture hyperparamenters

There is no silver bullet.

Re-use something well known that works and start from there

Modulate the capacity until it over!ts a small subset, but does

not over!t / under!t the full set

Capacity increases with more layers, more channels, larger

receptive !elds, or more units

Regularization to reduce the capacity or induce sparsity

Use prior knowledge about the "scale of meaningful context" to

size !lters / combinations of !lters (e.g. knowing the size of

objects in a scene, the max duration of a sound snippet that

matters)

Grid-search all the variations that come to mind (if you can a#ord

to)

Slide credit: F. Fleuret 99 / 129

Architecture hyperparamenters

Number of hidden layers

start small (a few layers) and increase complexity gradually

add more layers check if performance (on validation set) improves

add more neurons check if performance (on validation set) improves

Architecture hyperparamenters

Number of hidden layers

start small (a few layers) and increase complexity gradually

add more layers check if performance (on validation set) improves

add more neurons check if performance (on validation set) improves

Activation function

start with ReLU then check out others: LeakyReLU, PReLU, etc.

101 / 129

Architecture hyperparamenters

Number of hidden layers

start small (a few layers) and increase complexity gradually

add more layers check if performance (on validation set) improves

add more neurons check if performance (on validation set) improves

Activation function

start with ReLU then check out others: LeakyReLU, PReLU, etc.

Type and amount of regularization

use even if network is deep or wide

weight decay =

you can set weight decay to 0 is learning rate is very small.

102 / 129

Learning rate

The most tweaked hyperparameter

Ben Recht
103 / 129

Learning rate

The most tweaked hyperparameter

Very active area of research!
Ben Recht

104 / 129

Learning rate

The appropriate learning rate will lead to faster convergence by:

reducing the loss quickly large learning rate

not be trapped in bad minimum large learning rate

not bounce around in narrow valleys small learning rate

not oscillate around a minimum small learning rate

Slide credit: F. Fleuret 105 / 129

Learning rate

The appropriate learning rate will lead to faster convergence by:

reducing the loss quickly large learning rate

not be trapped in bad minimum large learning rate

not bounce around in narrow valleys small learning rate

not oscillate around a minimum small learning rate

So learning rate should be larger at the beginning and smaller in the

end.

The practical strategy is to look at the losses and error rates across

epochs and pick a learning rate and learning rate adaptation.

Slide credit: F. Fleuret 106 / 129

Learning rate

CIFAR10 dataset

32 x 32 color images, 50k train samples, 10k test samples, 10 classes

107 / 129

Learning rate

Small CNN on CIFAR10, cross-entropy, batch size 100, = 1e-1

Figure credit: F. Fleuret 108 / 129

Learning rate

Small CNN on CIFAR10, cross-entropy, batch size 100

Figure credit: F. Fleuret 109 / 129

Learning rate

Using =1e-1 for 25 epochs, then reducing it.

Figure credit: F. Fleuret 110 / 129

Learning rate

Using =1e-1 for 25 epochs, then reducing reducing it to 1e-2

Figure credit: F. Fleuret 111 / 129

Learning rate

The test loss is a poor performance indicator, as it may increase even

more on misclassi!ed examples, and decrease less on the ones

getting !xed.

Figure credit: F. Fleuret 112 / 129

Learning rate schedules

Decay learning rate over time:

constant: learning rate remains constant for all

epochs (not a good idea)

step decay: decay learning by !xed amount (e.g. half)

every few epochs

exponential decay:

inverse decay:

In many cases, step decay is preferred.

113 / 129

Learning rate schedules

Decay is more common for SGD+momentum and less for Adam.

114 / 129

Learning rate schedules

Cyclic learning rates

Use multiple snapshots of a single model.

Snapshoht ensembles: train 1, get M free, Huang et al., ICLR 2017
115 / 129

Learning rate schedules

Using torch.optim.lr_scheduler:

Vanilla variants: StepLR, MultiStepLR, ExponentialLR

Assuming optimizer uses lr = 0.5 for all groups
lr = 0.05 if epoch < 30
lr = 0.005 if 30 <= epoch < 60
lr = 0.0005 if 60 <= epoch < 90
...
scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
for epoch in range(100):
 scheduler.step()
 train(...)
 validate(...)

Assuming optimizer uses lr = 0.5 for all groups
lr = 0.05 if epoch < 30
lr = 0.005 if 30 <= epoch < 80
lr = 0.0005 if epoch >= 80
scheduler = MultiStepLR(optimizer, milestones=[30,80], gamma=0.1)
for epoch in range(100):
 scheduler.step()
 train(...)
 validate(...)

116 / 129

Learning rate schedules

Using torch.optim.lr_scheduler:

Novel variants: ReduceLROnPlateau

optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
scheduler = ReduceLROnPlateau(optimizer, 'min')
for epoch in range(10):
 train(...)
 val_loss = validate(...)
 # Note that step should be called after validate()
 scheduler.step(val_loss)

117 / 129

Early stopping

To avoid over!tting another popular technique is early stopping

Monitor performance on validation set

Training the network will decrease training error, as well

validation error (although with a slower rate usually)

Stop when validation error starts increasing
most likely the network starts to over!t

use a patience term to let it degrade for a while and then stop

118 / 129

Loss functions

Typically training is easier for classi!cation than for

regression to a scalar

However many Computer Vision papers rely on

regression losses (MSE, L1, Huber,etc.) with good

results

Multiple losses can be considered:

on the same output

by adding multiple heads to the network (e.g. classi!cation + localization)

pytorch has already many loss functions/criterions

readily available

119 / 129

Summary

Preprocess data to be centered on zero

Initialize weights based on activation functions

Always use regularization and dropout

Use batch normalization generously

Start with Adam, but switch to SGD once more

familiar with the data and the problem

120 / 129

Discover more bizarre looking

curves

https://lossfunctions.tumblr.com/

Babysitting your network

Lots of curve monitoring

121 / 129

Babysitting your network

Always check gradients if not computed automatically

Check that in the !rst steps you get a random loss

Check network with few samples

turn o# regularization. You should predictably over!t and have a 0 loss

turn or regularization. The loss should increase

Have a separate validation set

Compare the curve between training and validation sets

There should be a gap, but not too large

122 / 129

Other common pitfalls

inputs in range instead of

di#erent pre-processing between train, valid, test

non-shu<ed dataset

class imbalance

too much data augmentation

too much regularization

123 / 129

Other common pitfalls

too much/too little capacity

bugs in the loss function: wrong input, wrong

gradients

wrong dimensions of the layers

exploding/vanishing gradients

given too little time for training

forgot in-appropriate .train()/.eval() $ag on

124 / 129

Transfer learning

Assume two datasets and

Dataset is fully annotated, plenty of images and we

can train a model on it

Dataset is not as much annotated and/or with fewer

images

annotations of do not necessarily overlap with

We can use the model to learn a better

This is transfer learning

125 / 129

Transfer learning

Even if our dataset is not large, we can train a CNN

for it

Pre-train a CNN on the dataset

The we can do:

!ne-tuning

use CNN as feature extractor

126 / 129

Fine-tuning

Assume the parameters of are already a good

start near our !nal local optimum

Use them as the initial parameters for our new CNN

for the target dataset

This is a good solution when the dataset is relatively

big

e.g. for Imagenet with 1M images, with a few thousands images

127 / 129

Fine-tuning

Depending on the size of decide which layer to freeze and

which to !netune/replace

Use lower learning rate when !ne-tuning: about of original

learning rate
for new layers use agressive learning rate

If and are very similar,!ne-tune only fully-connected layers

128 / 129

Transfer learning

129 / 129

