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Introduction and state of the
art



Seismic probabilistic risk assessment

Seismic probabilistic risk assessment (SPRA) is dedicated in estimating the safety of a me-

chanical structure subjected to seismic ground motions and consists in three main steps 1:

Seismic hazard probability distribution on a given site: dhpaq “ ppaqdµ

Seismic fragility curve estimation Ψpaq. By definition the conditional probability of

failure of the structure given a seismic intensity of level A “ a.

Our QoI: Final probability of failure:

Υ “

ż

Ψpaqdhpaq

1Robert P. Kennedy. Risk based seismic design criteria.
Nuclear Engineering and Design, 1999
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Seismic fragility curve

Ψpaq “ PpY ą C|A “ aq

Y : mechanical demand of the structure, obtained using time-consuming numerical

simulations.

C: critical level where the structure is considered in a failure state.

A: Intensity Measure of a seismic ground motion. Scalar value representing the

intensity of the temporal seismic signal.
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Generation of seismic ground motions

In pratice there is not enough seismic ground motions for fragility curve estimation.

Example: European Strong-Motion Database2. 97 real seismic signals with magnitude

5.5 ăM ă 6.5 and distance to the epicenter 0 ă D ă 20 km.

Modelization by a filtered and modulated white noise stochastic process (good “space

filling” properties).3

2NN Ambraseys, P Smit, R Berardi, D Rinaldis, F Cotton, and C Berge. Dissemination of european strongmotion data.
cd-rom collection. european commission, directorate-general xii, environmental and climate programme.

Technical report, ENV4-CT97-0397, Brussels, Belgium, 2000

3Sanaz Rezaeian and Armen Der Kiureghian. Simulation of synthetic ground motions for specified earthquake and site
characteristics.

Earthquake Engineering & Structural Dynamics, 2010

6 / 36



Generation of seismic ground motions

In pratice there is not enough seismic ground motions for fragility curve estimation.

Example: European Strong-Motion Database2. 97 real seismic signals with magnitude

5.5 ăM ă 6.5 and distance to the epicenter 0 ă D ă 20 km.

Modelization by a filtered and modulated white noise stochastic process (good “space

filling” properties).3

2NN Ambraseys, P Smit, R Berardi, D Rinaldis, F Cotton, and C Berge. Dissemination of european strongmotion data.
cd-rom collection. european commission, directorate-general xii, environmental and climate programme.

Technical report, ENV4-CT97-0397, Brussels, Belgium, 2000

3Sanaz Rezaeian and Armen Der Kiureghian. Simulation of synthetic ground motions for specified earthquake and site
characteristics.

Earthquake Engineering & Structural Dynamics, 2010

6 / 36



Generation of seismic ground motions

In pratice there is not enough seismic ground motions for fragility curve estimation.

Example: European Strong-Motion Database2. 97 real seismic signals with magnitude

5.5 ăM ă 6.5 and distance to the epicenter 0 ă D ă 20 km.

Modelization by a filtered and modulated white noise stochastic process (good “space

filling” properties).3

2NN Ambraseys, P Smit, R Berardi, D Rinaldis, F Cotton, and C Berge. Dissemination of european strongmotion data.
cd-rom collection. european commission, directorate-general xii, environmental and climate programme.

Technical report, ENV4-CT97-0397, Brussels, Belgium, 2000

3Sanaz Rezaeian and Armen Der Kiureghian. Simulation of synthetic ground motions for specified earthquake and site
characteristics.

Earthquake Engineering & Structural Dynamics, 2010

6 / 36



The choice of the seismic intensity

The seismic intensity is a scalar quantity derived from the temporal seismic accelerogram.

There are criteria in Earthquake Engineering to choose a “good” seismic intensity4:

Efficiency : Y |A « Y |Seismic hazard.

Sufficiency : Y |A has a small variance.

We consider the two most classical intensity measures: the peak ground acceleration

(PGA) and the spectral acceleration.

Spectral acceleration: Maximal acceleration of a linear oscillator at a chosen natural

frequency and damping ratio (often very high sufficiency).

4M. Grigoriu and A. Radu. Are seismic fragility curves fragile?
Probabilistic Engineering Mechanics, 2021
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Challenge of statistical estimation with com-
puter code

The mechanical demand Y is usually obtained from time-consuming numerical

simulations.

This motivates the use of statistical metamodel5 or active learning strategy6.

5Bertrand Iooss and Löıc Le Gratiet. Uncertainty and sensitivity analysis of functional risk curves based on gaussian
processes.

Reliability Engineering & System Safety, 2019

6Rémi Sainct, Cyril Feau, Jean-Marc Martinez, and Josselin Garnier. Efficient methodology for seismic fragility curves
estimation by active learning on support vector machines.

Structural Safety, 2020
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Main objectives of the thesis

Developing active learning strategies to alleviate the computational burden of

SPRA7.

Modeling, propagating and assessing the impact of epistemic uncertainties on

SPRA’s related quantites of interests (QoIs) such as fragility curves, probability of

failures...

7Clement Gauchy, Cyril Feau, and Josselin Garnier. Adaptive importance sampling for seismic fragility curve estimation,
2021.

arXiv: 2109.04323
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Propagation of epistemic uncer-
tainties



Industrial motivations

Uncertainties are divided in two groups:

Aleatory : Natural variability of a physical phenomenon.

Epistemic: Comes from the Greek word επιστηµη (knowledge). Uncertainties resulting from a
lack of knowledge

This division is purely subjective 8.

For SPRA in the nuclear industry, epistemic uncertainties are mostly the mechanical

parameters of the structure (natural frequency, damping ratio,...). Aleatory uncertainties

come from the seismic ground motions’ stochasticity.

8Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter?
Structural Safety, 2009
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Fragility curve with epistemic uncertainties

Our goal is to assess the effect of mechanical model parameters uncertain-

ties (e.g. epistemic uncertainties) on the Quantity of Interest (QoI).

For X a random vector of parameters, Ψpa,Xq “ PpY ą C|A “ a, Xq

The random function Ψp., Xq could be seen as a functional QoI.

Due to computational burden, we replace the costly mechanical simulation by a Gaussian

Process surrogate of the mechanical response Y .
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Framework of Gaussian process regression

Let Zpxq, x P Rd a random process.

A random process is a Gaussian process if for a tuple px1, . . . , xnq, the random vector

pZpx1q, . . . , Zpxnqq is Gaussian.

The probability distribution of a Gaussian process is completely defined by:

Its mean function µpxq “ ErZpxqs.

Its covariance function kpx, x̃q “ ErpZpxq ´ µpxqqpZpx̃q ´ µpx̃qqs

we note Zpxq „ GPpµpxq, kpx, x̃qq
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Prediction with Gaussian process

Thanks to Gaussian conditioning theorem we have that:

pZpx˚q|Zpx1q “ z1, . . . , Zpxnq “ znq „ GPpµcpx˚q, kcpx˚, x̃qq
where:

µcpxq “ µpxq ` rpxqTK´1pz´ µq

kcpx, x̃q “ kpx, x̃q ´ rpxqTK´1rpxq

µ “ pµpx1q, ..., µpxnqq
T the experiment design mean vector.

z “ pz1, ..., znq
T the value of the model output.

rpxq “ pkpx, x1q, ..., kpx, xnqq
T covariance between a point x and the experimental design.

K “ pkpxi, xjqq1ďi,jďn covariance matrix of the experimental design.

We have an analytical expression about the probability distribution of Zpx˚q

given data.
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Fragility curve estimation

Gaussian Process regression for functional risk curves estimation have been previously

studied 9.

We propose the following regression model:

Y “ β0 ` β1 logpAq ` ZpXq ` ε,

where Z a centered Gaussian Process with a tensorized 5{2 Matèrn kernel on the

log-epistemic variables logpXq, ε „ N p0, σ2
ε) and Y a mechanical response (e.g. peak

displacement), submitted to a nonlinear transform (e.g. logarithm or Box Cox

transformation).

β0, β1, the Matèrn covariance hyperparameters and the nugget effect are calibrated by

the posterior mode on a training dataset. The parameters are distributed by weakly

informative priors.

Given a dataset Dn “ pAi, Xi, Yiq1ďiďn, the predictive distribution is

pY |Dnq „ GP
`

µ, Σ` σ2
εId

˘

with µ and Σ respectivly the conditional mean and

covariance matrix of the Gaussian Process.

9Bertrand Iooss and Löıc Le Gratiet. Uncertainty and sensitivity analysis of functional risk curves based on gaussian
processes.

Reliability Engineering & System Safety, 2019
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Propagation of the epistemic uncertainties

The GP surrogate model allow us to compute rapidly the fragility curves

Ψpa,Xq “ PpY ą C|A “ a,Xq.

The fragility curve Ψpa,Xq can be approximated using the predictive distribution of the

GP by qΨpa,Xq:

qΨpa,Xq “ Φ

˜

µpa,Xq ´ C
a

ΣpX,Xq ` σ2
ε

¸

,

It is also possible to propagate the GP surrogate uncertainty in the fragility curve, by

only integrating the Gaussian noise ε:

Ψ̃pa,Xq “ Φ

˜

ỸGP pa,Xq ´ Cq

σε

¸

.

where ỸGP pA,Xq is the Gaussian Process prediction at pA,Xq without the Gaussian noise ε.
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Propagation of the GP uncertainty on the
mean fragility curve.

The mean fragility curve Ψpaq “ PXpY ą C|A “ aq is approximated using our Gaussian

process ΨGP paq “ PXpYGP pa,Xq ą C|A “ aq. Thus, ΨGP paq is tainted with the

uncertainties coming from the Gaussian process regression.

Ψpaq can be approximated by the mean value qΨpaq of ΨGP paq:

qΨpaq “ EX

«

Φ

˜

µpa,Xq ´ Cq
a

ΣpX,Xq ` σ2
ε

¸ff

GP uncertainty is propagated using Monte Carlo on a dataset pXkq1ďkďN and L

Gaussian process samples pyplqpa,Xkqq1ď`ďL:

Ψ
p`q
GP paq “

1

N

N
ÿ

k“1

1
pyp`qpa,XkqąCq

Ψ
p`q
GP paq is thus a Monte Carlo approximation of a realization of the random variable

ΨGP paq.
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Global Sensitivity Analysis on fragility curves

Sobol indices are variance-based importance measures coming from the Hoeffding-Sobol

decomposition of the variance.

Aggregated first order and total order Sobol indices for functional risk curves have been

previously studied 10, raising the following expressions:

Si “
Er‖Ψ̄´ ΨXi‖2

L2s

Er‖Ψ̄´ ΨX‖2
L2s

,

Ti “
Er‖Ψ̄´ ΨX´i‖2

L2s

Er‖Ψ̄´ ΨX‖2
L2s

.

with Ψ̄ “ ErΨp., Xqs, ΨXi “ ErΨp., Xq|X is and X´i “ pX1, ..., X i´1, X i`1, ..., Xpq.

10Bertrand Iooss and Löıc Le Gratiet. Uncertainty and sensitivity analysis of functional risk curves based on gaussian
processes.

Reliability Engineering & System Safety, 2019
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Pick freeze estimation

Lemma: Denote X̃ i the random vector such that pX̃jqi “ X i if i “ j and pX̃jqi “ X̃ i

if i ‰ k where X̃ i is an independent copy of X i. Thus:

Si “
ErxΨX ,ΨX̃iyL2s

Er‖Ψ̄´ ΨX‖2
L2s

,

Ti “ 1´
ErxΨX ,ΨX̃´iyL2s

Er‖Ψ̄´ ΨX‖2
L2s

.

Where xΨX ,ΨX̃iyL2 “
ş

pΨXpaq ´ Ψ̄paqqpΨX̃ipaq ´ Ψ̄paqqda.

We propose a Monte Carlo estimator of the aggregated Sobol indices using the lemma

above.
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GP uncertainty propagation on the aggre-
gated Sobol indices.

The GP uncertainty on the aggregated Sobol indices can be propagated (previously done

for the case of scalar QoI 11).

Principle: replace Ψp., Xq by Ψ̃p., Xq. Thus we have to simulate GP trajectories

pỸGP pa,Xkqq1ďkďN for N large, which is computationally challenging. One can rely on

approximation methods such as spectral methods or Karhunen-Loeve decomposition.

11Loic Le Gratiet, Claire Cannamela, and Bertrand Iooss. A bayesian approach for global sensitivity analysis of (multifi-
delity) computer codes.

SIAM/ASA Journal on Uncertainty Quantification, 2014
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Applications and numerical re-
sults



Numerical application: Nonlinear oscillator

m

(1− a)k

ak

ξ

z(t)

Figure: Elasto-plastic mechanical oscillator with kinematic hardening. The linear parameters are the
mass m, stiffness k, damping ratio ξ. The non linearity is controlled by the yield limit `Y and the
post-yield stiffness a.

:zptq ` 2βωL 9zptq ` fNLptq “ ´sptq ,

Table: Epistemic uncertainties on the elasto-plastic oscillator

parameter distribution mean c.o.v

m Lognormal 1 30%

k Lognormal 900 30%

ξ Lognormal 0.02 50%

`Y Lognormal 5ˆ 10´3 30%

a Lognormal 0.2 30%
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Nonlinear oscillator

The intensity measure chosen is the Spectral acceleration at 5Hz and 2% damping ratio.

For a seismic signal tÑ siptq, the oscillator response tÑ ziptq is computed, then the

failure state is defined by:

max
tPr0,T s

|ziptq| ą 2`Y

.
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Design of experiments and performance of
the metamodel

The metamodel is trained on an optimized LHS with according probability distribution

for each variable using maximin criterion (PyDOE package in Python) of 500 datapoints.

The input variables are standardized (centered and scaled).

Performance of the metamodel on the mechanical demand using the mean Q2

predictivity coefficient computed with 5-fold cross validation on an optimized LHS

dataset of size 500.

Q2
“ 0.86
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Epistemic and GP uncertainty propagation
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Epistemic uncertainties

Epistemic + GP uncertainties

90% and 10% quantiles fragility curves estimated on a Monte Carlo of size N “ 10000 tainted with
epistemic and GP uncertainties for the nonlinear oscillator. The metamodel is trained with 80
observations.
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Mean fragility curve with GP uncertainties
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90% and 10% quantiles for the mean fragility curves estimated on a Monte Carlo of size N “ 5000 and
L “ 3000 GP trajectories drawn. The metamodel is trained with an optimized LHS of 50 observations.
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Aggregated Sobol indices estimation with
posterior mean of a GP metamodel

k m ξ Y a
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First order Sobol indices estimation on B “ 20 bootstrap samples of size N “ 15000. GP metamodel is
trained on an optimized LHS of 50 observations
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Aggregated Sobol indices estimation with
GP uncertainties
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Total order Sobol indices estimation on B “ 20 bootstrap samples of size N “ 15000. GP metamodel is
trained on an optimized LHS of 50 observations.
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Aggregated Sobol indices estimation with a
GP metamodel
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First order Sobol indices estimation on B “ 30 bootstraps samples of size N “ 15000 and M “ 50 draws
of the GP prediction ỸGP pA,Xq. GP metamodel is trained on a optimized LHS of 50 observations.
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Industrial test case: Safety water pipe of a
French PWR

The following test case corresponds to a piping system which is a simplified part of a

secondary line of a French Pressurized Water Reactor (ASG program).

The CAST3M numerical model was validated based on seismic tests performed on the

shaking table Azalee of the EMSI laboratory of CEA Saclay.

The failure state is defined by the out-of-plane rotation of the elbow near the clamped

end of the pipe. Failure is defined by a rotation that exceeds 1˝.

Overview of the ASG mock-up on the shaking table
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Industrial test case: Epistemic uncertainties

Uncertainties on the boundary conditions has been introduced to simulate the interaction

between the simplified piping system and the overall structure. We also suppose the

piping structure is inside a fictious building with unknown mechanical properties (a

natural frequency and a damping ratio).

The 12 uncertain parameters have uniform distribution with a coefficient of variation of

15%.
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Epistemic and GP uncertainty propagation
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Epistemic uncertainties

Epistemic + GP uncertainties

90% and 10% quantiles fragility curves estimated on a Monte Carlo of size N “ 10000 tainted with
epistemic and GP uncertainties for the ASG piping structure simulation (linear analysis). The
metamodel is trained with 200 observations.
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Conclusion & perspectives

Uncertainty propagation framework for seismic risk assessment using Gaussian process

regression, taking into account the metamodel uncertainties.

Global Sensitivity Analysis framework on fragility curves.

What’s next ?:
Multifidelity metamodel for the ASG piping system.

Defining insightful QoIs for SPRA.

Kernel based GSA (e.g. MMD sensitivity indices).
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Thank you for your attention !
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