cea

Boosted least-squares and principal component analysis for training tree tensor networks

Cécile Haberstich ${ }^{1,2}$, Anthony Nouy ${ }^{2}$, Guillaume Perrin ${ }^{1}$
Mascot-Num 2020 | 17-18 September 2020

[^0]
Approximation of high-dimensional functions

Context : Uncertainty quantification for a black-box and costly model represented by a function $u(x)$ of d variables.

Objective : Construct an approximation u^{\star} of u in some model class V
\rightarrow with controlled precision (when $u \in L_{\mu}^{2},\left\|u-u^{\star}\right\|_{L_{\mu}^{2}} \leq \varepsilon$),
\rightarrow with only few evaluations of $u\left(x^{i}\right)$ of u at points x^{i} chosen adaptively.

Difficulties: For a high dimension d,
$\rightarrow V$ is an approximation space that should be adapted to the function u.
A typical choice is a tensor product space $V=V_{1} \otimes \cdots \otimes V_{d}$, where each V_{i} is a suitable space of univariate functions.
\rightarrow When $d \gg 1$ (even when each V_{i} is low-dimensional) \rightarrow curse of dimensionality.

cea
 Approach

\rightarrow Here we propose a strategy to construct a nested sequence of well-chosen tensor product subspaces with decreasing dimensions, associated to a dimension partition tree T,

$$
V=V^{(L)} \supset \cdots \supset V^{(2)} \supset V^{(1)}=V^{\star},
$$

such that the approximation is defined by $u^{\star}=P_{V^{\star}} u$.
\rightarrow The resulting approximation is in tree-based tensor format. It admits a multilinear parametrization with parameters forming a tree network of low-order \rightarrow also called tree tensor networks.
\rightarrow The $V^{(i)}$ are constructed from the leaves of the tree to the root thanks to an extension of Principal Component Analysis to multivariate functions and sample-based projections.

cea
 Outline

11 Introduction

2 Boosted least-squares projection.

3 Approximation with tree-based tensor format.

4 Choice of the dimension partition tree.

5 Conclusions

CeZ Least-squares methods

In this part, we consider a linear space $V \subset L_{\mu}^{2}$ and $\left\{\varphi_{j}\right\}_{j=1}^{m}$ a given orthonormal basis of V. The best approximation of u by an element of V is given by the orthogonal projection :

$$
P_{V} u=\arg \min _{v \in V}\|u-v\|_{L_{\mu}^{2}}^{2} .
$$

- Since it is not computable in practice, replaced by a weighted least-squares projection :

$$
\hat{P}_{V} u=\arg \min _{v \in V} \frac{1}{n} \sum_{i=1}^{n} w\left(x^{i}\right)\left(v\left(x^{i}\right)-u\left(x^{i}\right)\right)^{2} \text { where } x^{i} \sim \rho
$$

- The stability of the projection \hat{P}_{V} is measured by the properties of the empirical Gram matrix $\hat{\boldsymbol{G}}$, more precisely by $\|\hat{\boldsymbol{G}}-\boldsymbol{I}\|$.
- How to choose ρ to have the $\|\hat{\boldsymbol{G}}-\boldsymbol{I}\|$ close to 0 while using a small n ?

Optimal least-squares methods

Theorem (Optimal weighted least-squares)

Let $d \rho=w(x)^{-1} d \mu(x)$ with $w(x)^{-1}=\frac{1}{m} \sum_{j=1}^{m} \varphi_{j}(x)^{2}$.
Let $\eta \in(0,1)$ and $\delta \in(0,1)$, and for x^{1}, \cdots, x^{n} i.i.d from $d \rho$. For $n \geq \delta^{-2} m \log \left(2 m \eta^{-1}\right)$, it holds

$$
\mathbb{P}(\|\hat{\boldsymbol{G}}-\boldsymbol{I}\|>\delta) \leq \eta
$$

The approximation $\hat{P}_{V}^{C} u$ defined by $\hat{P}_{V} u$ if $\|\hat{\boldsymbol{G}}-\boldsymbol{I}\|<\delta$ and 0 otherwise satisfies

$$
\mathbb{E}\left(\left\|u-\hat{P}_{V} u\right\|^{2}\right) \leq(1-\delta)^{-1}\left\|u-P_{V} u\right\|^{2}+\eta\|u\|^{2} .
$$

\odot Improving stability (smaller δ) and the chance to have this stability (smaller η) implies higher n.
© n still high compared to an interpolation method $(n=m)$.

- Next, we propose a new measure $\tilde{\rho}$ based on ρ to improve the properties of $\|\hat{\boldsymbol{G}}-\boldsymbol{I}\|$.
[2] A. Cohen and G. Migliorati. Optimal weighted least-squares methods. SMAI Journal of Computational Mathematics. 2017

Boosted optimal least-squares method (BLS)

1. Resampling : draw M independent n-samples $\left\{\boldsymbol{x}^{n, i}\right\}_{i=1}^{M}$, with $\boldsymbol{x}^{n, i}=\left(x^{1, i}, \cdots, x^{n, i}\right)$, for each $1 \leq j \leq n, x^{j, i} \sim \rho$ and choose the one which minimizes $\|\hat{\boldsymbol{G}}-\boldsymbol{I}\|$.

Figure - Distribution of $\| \hat{\boldsymbol{G}}$ - $\boldsymbol{I} \|$ for $\delta=0.9$
Resampling improves the chance to be stable for a given $\delta\left(\eta \rightarrow \eta^{M}\right)$.

Boosted optimal least-squares method (BLS)

1. Resampling: draw M independent n-samples $\left\{\boldsymbol{x}^{n, i}\right\}_{i=1}^{M}$, with $\boldsymbol{x}^{n, i}=\left(x^{1, i}, \cdots, x^{n, i}\right)$, for each $1 \leq j \leq n, x^{j, i} \sim \rho$ and choose the one which minimizes $\|\hat{\boldsymbol{G}}-\boldsymbol{I}\|$.

Figure - Distribution of $\|\hat{\boldsymbol{G}}-\boldsymbol{I}\|$ for $\delta=0.9$
Resampling improves the chance to be stable for a given $\delta\left(\eta \rightarrow \eta^{M}\right)$.
2. Conditioning by rejection : Repeat step 1 while $\|\hat{\boldsymbol{G}}-\boldsymbol{I}\|>\delta$.

Boosted optimal least-squares method (BLS)

3. Greedy removal of samples: Begin with $K=\{1, \cdots, n\}$ and while $\|\hat{\boldsymbol{G}}-\boldsymbol{I}\| \leq \delta$ successively select a subsample of size $\# K-1$ which minimizes $\|\hat{\boldsymbol{G}}-\boldsymbol{I}\|$.

Figure - Distribution of $\|\hat{\boldsymbol{G}}-\boldsymbol{I}\|$ for $\delta=0.9$

cea

Boosted optimal least-squares (BLS)

Theorem (Stability of the boosted optimal least-squares)

Let $\eta \in(0,1)$ and $\delta \in(0,1)$, and let $\hat{P}_{V} u$ be the boosted optimal least-squares projection such that the initial sample size verifies $n \geq \delta^{-2} m \log \left(2 m \eta^{-1}\right)$ and the resulting number of samples after the greedy subsampling is constrained to be greater than n_{0}. It satisfies the quasi-optimality property

$$
\mathbb{E}\left(\left\|u-\hat{P}_{V} u\right\|^{2}\right) \leq C\left\|u-P_{V} u\right\|^{2}
$$

with $C=\left(1+\frac{n}{n_{0}}(1-\delta)^{-1}\left(1-\eta^{M}\right)^{-1} M\right)$.

Also, assuming $\|u\|_{\infty, w} \leq L$, we can obtain a better bound.
For more details \rightarrow see [3] C. Haberstich, A. Nouy, G. Perrin. Boosted optimal least-squares method. arXiv :1912.07075.
(). quasi-optimality property
© pay the M and $\frac{n}{n_{0}}$

Illustration on a simple example : stability guaranteed

$u(x)=\frac{1}{1-\frac{0.5}{2 d} \sum_{i=1}^{d} x_{i}}$ defined on $\mathcal{X}=[-1,1]^{d}$, equipped with the uniform measure

Figure - V is defined by a hyperbolic cross $d=2$.

Figure - Guaranteed stability with probability greater than $0.99, \delta=0.9$.

cea
 Illustration on a simple example : given cost

$$
u(x)=\frac{1}{1-\frac{0.5}{2 d} \sum_{i=1}^{d} x_{i}} \text { defined on } \mathcal{X}=[-1,1]^{d} \text {, equipped with the uniform measure }
$$

We have access to $u(x)+e$ with $e \sim \mathcal{N}\left(0, \sigma^{2}\right)$

- Given cost $n=m$
- Interpolation : $u^{\star}\left(x^{i}\right)=u\left(x^{i}\right)+e^{i}$ for $1 \leq i \leq m, x^{i} \in \mathcal{X}$, for example magic points. \rightarrow interpolation may not be stable!

		Interpolation with magic points	s-BLS $(M=100)$				
m	σ	$\log \left(\left\\|u-u^{\star}\right\\|^{2}\right)$	$\left\\|u-u^{\star}\right\\|^{2}$				
10	0.1	$[-1.1 ;-1.0]$	$[-1.6 ;-1.1]$				
27	0.1	$[-0.8 ; 0.1]$	$[-1.8 ;-0.7]$				
27	0.01	$[-2.5 ;-1.5]$	$[-3.0 ;-2.3]$				

TABLE - Confidence intervals of levels 10% and 90% for the approximation error $\log \left(\left\|u-u^{\star}\right\|^{2}\right)$ for a noisy example with $d=2, n=m$

Conclusions of the first part

The boosted least-squares projection is

stable in expectation,
(). with a number of samples close to the dimension of the space (almost the cost of an interpolation method),
(:) error bound pessimistic compared to the experiments.
© Sampling from the boosted optimal measure is time-consuming. (Remedies are sequential sampling for multivariate distributions, introduce an approximate greedy algo based on results in linear algebra).
\rightarrow However, when one evaluation of u is costly, this method is relevant.

CeZ Outline

11 Introduction

2 Boosted least-squares projection.

3 Approximation with tree-based tensor format.

4 Choice of the dimension partition tree.

5 Conclusions

cea

Leaves-to-root strategy

- We consider the following dimension tree T,

Figure - Dimension partition tree
$T=\{\{1,2,3,4,5,6,7,8\},\{1,2,3,4\},\{5,6,7,8\},\{1,2\},\{3,4\}, \ldots,\{7,8\},\{1\}, \cdots,\{8\}\}$

- One node α is associated to a space of functions of groups of variables $x_{\alpha}=\left(x_{i}\right)_{i \in \alpha}$.

Leaves-to-root strategy

- Introduce a finite-dimensional approximation space $V=V_{1} \otimes V_{2} \otimes \cdots \otimes V_{8} \subset L_{\mu}^{2}$.
- Construct a nested sequence of well-chosen subspaces

$$
V=V^{(L)} \supset \cdots \supset V^{(2)} \supset V^{(1)}=V^{\star},
$$

and compute the approximation by porjecting u in V^{\star}.

- More precisely, going from the leaves to the root, construct a hierarchy of low-dimensional subspaces $\left(U_{\alpha}\right)_{\alpha \in T}$ associated to the tree T which defines the sequence $V^{(i)}$.

$$
V^{(4)}=\otimes_{i=1}^{8} V_{i}
$$

Leaves-to-root strategy

- Introduce a finite-dimensional approximation space $V=V_{1} \otimes V_{2} \otimes \cdots \otimes V_{8} \subset L_{\mu}^{2}$.
- Construct a nested sequence of well-chosen subspaces

$$
V=V^{(L)} \supset \cdots \supset V^{(2)} \supset V^{(1)}=V^{\star}
$$

and compute the approximation by porjecting u in V^{\star}.

- More precisely, going from the leaves to the root, construct a hierarchy of low-dimensional subspaces $\left(U_{\alpha}\right)_{\alpha \in T}$ associated to the tree T which defines the sequence $V^{(i)}$.

For each $\alpha, U_{\alpha} \subset V_{\alpha} V^{(3)}=\otimes_{i=1}^{8} U_{i}$

Leaves-to-root strategy

- Introduce a finite-dimensional approximation space $V=V_{1} \otimes V_{2} \otimes \cdots \otimes V_{8} \subset L_{\mu}^{2}$.
- Construct a nested sequence of well-chosen subspaces

$$
V=V^{(L)} \supset \cdots \supset V^{(2)} \supset V^{(1)}=V^{\star}
$$

and compute the approximation by porjecting u in V^{\star}.

- More precisely, going from the leaves to the root, construct a hierarchy of low-dimensional subspaces $\left(U_{\alpha}\right)_{\alpha \in T}$ associated to the tree T which defines the sequence $V^{(i)}$.

Leaves-to-root strategy

- Introduce a finite-dimensional approximation space $V=V_{1} \otimes V_{2} \otimes \cdots \otimes V_{8} \subset L_{\mu}^{2}$.
- Construct a nested sequence of well-chosen subspaces

$$
V=V^{(L)} \supset \cdots \supset V^{(2)} \supset V^{(1)}=V^{\star},
$$

and compute the approximation by porjecting u in V^{\star}.

- More precisely, going from the leaves to the root, construct a hierarchy of low-dimensional subspaces $\left(U_{\alpha}\right)_{\alpha \in T}$ associated to the tree T which defines the sequence $V^{(i)}$.

For each $\alpha, U_{\alpha} \subset V_{\alpha} V^{(2)}=U_{12} \otimes U_{34} \otimes U_{56} \otimes U_{78}$

Leaves-to-root strategy

- Introduce a finite-dimensional approximation space $V=V_{1} \otimes V_{2} \otimes \cdots \otimes V_{8} \subset L_{\mu}^{2}$.
- Construct a nested sequence of well-chosen subspaces

$$
V=V^{(L)} \supset \cdots \supset V^{(2)} \supset V^{(1)}=V^{\star}
$$

and compute the approximation by porjecting u in V^{\star}.

- More precisely, going from the leaves to the root, construct a hierarchy of low-dimensional subspaces $\left(U_{\alpha}\right)_{\alpha \in T}$ associated to the tree T which defines the sequence $V^{(i)}$.

cea
 Leaves-to-root strategy

- Introduce a finite-dimensional approximation space $V=V_{1} \otimes V_{2} \otimes \cdots \otimes V_{8} \subset L_{\mu}^{2}$.
- Construct a nested sequence of well-chosen subspaces

$$
V=V^{(L)} \supset \cdots \supset V^{(2)} \supset V^{(1)}=V^{\star}
$$

and compute the approximation by porjecting u in V^{\star}.

- More precisely, going from the leaves to the root, construct a hierarchy of low-dimensional subspaces $\left(U_{\alpha}\right)_{\alpha \in T}$ associated to the tree T which defines the sequence $V^{(i)}$.

For each $\alpha, U_{\alpha} \subset V_{\alpha}$ and $V^{(1)}=V^{\star}=U_{1234} \otimes U_{5678}$

- Final approximation is given by $u^{\star}=\hat{P}_{V^{\star}} u$ with $V^{\star}=U_{1234} \otimes U_{5678}$.

How to construct near-optimal subspaces U_{α} ?

- A multivariate function can be identified with a bivariate function.
- The truncated singular value decomposition $u_{r_{\alpha}}$ of u :

$$
u_{r_{\alpha}}\left(x_{\alpha}, x_{\alpha^{c}}\right)=\sum_{i=1}^{r_{\alpha}} \sigma_{i} v_{i}^{\alpha}\left(x_{\alpha}\right) v_{i}^{\alpha^{c}}\left(x_{\alpha^{c}}\right)
$$

is the solution of the problem of best approximation of u by a function with α-rank r_{α}

$$
\min _{\operatorname{rank}_{\alpha}(v) \leq r_{\alpha}}\|u-v\|^{2}
$$

- $v_{1}^{\alpha}, \cdots, v_{r_{\alpha}}^{\alpha}$ are the $r_{\alpha} \alpha$-principal components of u and $U_{\alpha}=\operatorname{span}\left\{v_{1}^{\alpha}, \cdots, v_{r_{\alpha}}^{\alpha}\right\}$ is the α-principal subspace of u.

In practice to estimate U_{α} two approximations are made :

1. Statistical estimation of the α-principal subspaces with an adaptive strategy based on cross validation.
2. Compute the α-principal subspace of a projection of u. (using BLS).

Error bound

- The final approximation u^{\star} verifies :

$$
\mathbb{E}\left(\left\|u-u^{\star}\right\|^{2}\right) \leq \sum_{\alpha \in T \backslash \text { root }}(2 C)^{l(\alpha)} \varepsilon_{p c a}^{2}(\alpha)+\sum_{\alpha \in \text { leaves }} \frac{1}{2}(2 C)^{l(\alpha)+1} \varepsilon_{d i s}^{2}(\alpha)
$$

- C is the quasi-optimality constant from the boosted least-squares projection. In theory, if we want a controlled approximation $\mathbb{E}\left(\left\|u-u^{\star}\right\|^{2}\right) \leq \varepsilon^{2}$, we have to
\rightarrow Adapt ranks and control the estimation of U_{α} such that

$$
\varepsilon_{p c a}^{2}(\alpha) \leq \frac{\varepsilon^{2}}{(2 C)^{l(\alpha)}(\# T-1)}
$$

\rightarrow and also, control the discretization error,

$$
\varepsilon_{d i s}^{2}(\alpha) \leq \frac{\varepsilon^{2}}{\frac{1}{2}(2 C)^{l(\alpha)+1} d}
$$

\rightarrow But, C is large and $l(\alpha)$ may be high (for high d and deep trees), in practice we assume this bound is not sharp and use heuristics to control the error (cross validation).

Illustration of the choice of the projection

- Let $u(x)=\sin \left(x_{1}+\cdots+x_{10}\right)$ and $\mathcal{X}=\mathbb{R}^{10}$ equipped with the gaussian measure.
- Polynomial approximation spaces $V_{\nu}=\mathbb{P}_{p}\left(\mathcal{X}_{\nu}\right)$, with p chosen such that there is a negligeable discretization error $(p=20)$.
- T is a balanced binary tree.
- Approximation with prescribed tolerance $\varepsilon=10^{-9}$.

\[

\]

TABLE $-\log \left(\sqrt{\mathbb{E}\left(\left\|u-u^{\star}\right\|^{2}\right)}\right)$ and confidence intervals of levels 10% and 90% for the number of evaluations n.

Illustration of the adaptive strategy for the estimation of the α-principal components

- Let $u(x)=\frac{1}{\left(10+2 x_{1}+x_{3}+2 x_{4}-x_{5}\right)^{2}}$ and $\mathcal{X}=[-1,1]^{d}$ equipped with the uniform measure.
- Polynomial approximation spaces $V_{\nu}=\mathbb{P}_{p}\left(\mathcal{X}_{\nu}\right)$, with p chosen adaptively to reach a negligeable discretization error $(p \leq 15)$ using adaptive boosted least-squares.
- T is a balanced binary tree.

With adaptive strategy for PCA

ε	$\log \left(\sqrt{\mathbb{E}\left(\left\\|u-u^{\star}\right\\|^{2}\right)}\right)$	n
-2	-3	$[328 ; 403]$
-3	-4.1	$[455 ; 579]$
-4	-4.4	$[534 ; 697]$
-5	-5.3	$[751 ; 985]$
-6	-6.1	$[1028 ; 1503]$
-7	-7.0	$[1463 ; 2230]$

TABLE - Heuristic control of the precision. $\log \left(\sqrt{\mathbb{E}\left(\left\|u-u^{\star}\right\|^{2}\right)}\right)$ (in log scale) and confidence intervals of levels 10% and 90% for the number of evaluations n.

cea
 Conclusions of the second part

The tree-based tensor format approximation
with BLS guarantees stability for the final approximation (compared to interpolation),estimation of the α-principal components can be controlled through adaptive strategies (with a near-optimal number of evaluations, only observed, no theory)
-) final approximation with a controlled error (if we pay the price ...).
© Computing BLS projectors requires many samples from and multivariate measures (same remedies as before).
\odot The α-ranks may be large for a given tree T.

CeZ Outline

II Introduction

2 Boosted least-squares projection.

3 Approximation with tree-based tensor format.

4 Choice of the dimension partition tree.

5 Conclusions

A motivating example

- $\mathcal{X}=[-1,1]^{d}$, equipped with the uniform measure and the function u defined as follows, $u(x)=g\left(x_{1}, x_{2}\right)+g\left(x_{3}, x_{4}\right)+\ldots+g\left(x_{d-1}, x_{d}\right)$, where $g\left(x_{\nu}, x_{\nu+1}\right)=\sum_{i=0}^{3} x_{\nu}^{i} x_{\nu+1}^{i}$.
- Polynomial approximation spaces $V_{\nu}=\mathbb{P}_{p}\left(\mathcal{X}_{\nu}\right)$, with p chosen to have a negligeable discretization error $(p=4)$.

Balanced tree

Permuted balanced tree

Figure - Two balanced trees, ordered variables (left) and permuted variables (right).

A motivating example

- $\mathcal{X}=[-1,1]^{d}$, equipped with the uniform measure and the function u defined as follows,

$$
u(x)=g\left(x_{1}, x_{2}\right)+g\left(x_{3}, x_{4}\right)+\ldots+g\left(x_{d-1}, x_{d}\right), \text { where } g\left(x_{\nu}, x_{\nu+1}\right)=\sum_{i=0}^{3} x_{\nu}^{i} x_{\nu+1}^{i}
$$

- Polynomial approximation spaces $V_{\nu}=\mathbb{P}_{p}\left(\mathcal{X}_{\nu}\right)$, with p chosen to have a negligeable discretization error $(p=4)$.

Balanced tree

Permuted balanced tree

Figure - Two balanced trees, ordered variables (left) and permuted variables (right), with the α-ranks

A motivating example

- $\mathcal{X}=[-1,1]^{d}$, equipped with the uniform measure and the function u defined as follows,

$$
u(x)=g\left(x_{1}, x_{2}\right)+g\left(x_{3}, x_{4}\right)+\ldots+g\left(x_{d-1}, x_{d}\right), \text { where } g\left(x_{\nu}, x_{\nu+1}\right)=\sum_{i=0}^{3} x_{\nu}^{i} x_{\nu+1}^{i} .
$$

- Polynomial approximation spaces $V_{\nu}=\mathbb{P}_{p}\left(\mathcal{X}_{\nu}\right)$, with p chosen to have a negligeable discretization error $(p=4)$.

	Balanced tree	Permuted balanced tree
d	n	n
8	$[460 ; 460]$	$[2293 ; 2438]$
16	$[940 ; 957]$	$[13679 ; 14682]$
24	$[1420 ; 1471]$	$[45921 ; 49402]$

TABLE - Confidence intervals of levels 10% and 90% for the number of evaluations n with two different dimension partition trees.

cea

Leaves-to-root optimization of the tree

1. For each leaf $\alpha=\{\nu\}, 1 \leq \nu \leq d$, we determine U_{α} an approximation of the α-principal subspace of u.
$\rightarrow r_{1}, r_{2}, r_{3}, r_{4}$ and r_{5} are known.

2. Choose a random pairing \mathcal{P} and estimate the associated α-ranks
\{1\}
and calculate the corresponding cost function $\mathcal{C}=\sum_{\alpha \in \mathcal{P}} r_{\alpha} r_{S_{1}(\alpha)} r_{S_{2}(\alpha)}=r_{12} r_{1} r_{2}+r_{34} r_{3} r_{4}+r_{5}^{2}$

cea
 Leaves-to-root optimization of the tree

2. Select two nodes β_{1} and β_{2} (choosing preferentially the ones whose parent has a high α-rank), $\beta \sim \operatorname{rank}_{\text {parent }(\beta)}(u)^{\gamma}$ with γ an integer.

$\{1\} \quad\{2\}$

cea
 Leaves-to-root optimization of the tree

2. Select two nodes β_{1} and β_{2} (choosing preferentially the ones whose parent has a high α-rank), $\beta \sim \operatorname{rank}_{\text {parent }(\beta)}(u)^{\gamma}$ with γ an integer.

$\{1\} \quad\{5\}$

$\{3\} \quad\{4\}$

\{2\}
and permute these two nodes. Estimate the new α-ranks (associated to this new partition), calculate the new $\operatorname{cost} \mathcal{C}^{\star}$, if $\mathcal{C}^{\star}<\mathcal{C}$ accept the permutation.
3. Repeat the operation n_{P} times.

cea

Leaves-to-root optimization of the tree

2. Select two nodes β_{1} and β_{2} (choosing preferentially the ones whose parent has a high α-rank), $\beta \sim \operatorname{rank}_{\text {parent }(\beta)}(u)^{\gamma}$ with γ an integer.

and permute these two nodes. Estimate the new α-ranks (associated to this new partition), calculate the new $\operatorname{cost} \mathcal{C}^{\star}$, if $\mathcal{C}^{\star}<\mathcal{C}$ accept the permutation.
3. Repeat the operation n_{P} times.

Determine U_{α} for $\alpha=\{1,5\},\{2,3\} . \rightarrow r_{15}, r_{23}$ and r_{4} are known.

CQ2 Leaves-to-root optimization of the tree

4. Proceed similarly with the next level, for pairing $\{1,5\},\{2,3\}$ and $\{4\}$.

$\{2,3\}$
5. This yields a dimension tree.

6. Compute the final approximation $u^{\star}=\hat{P}_{U_{\{1,4,5\}} \otimes U_{\{2,3\}}} u$

Numerical example with local optimization

- $\mathcal{X}=[-1,1]^{d}$, with, $d=24$, equipped with the uniform measure and the function u,

$$
u(x)=g\left(x_{1}, x_{2}\right)+g\left(x_{3}, x_{4}\right)+\ldots+g\left(x_{d-1}, x_{d}\right), \text { where } g\left(x_{\nu}, x_{\nu+1}\right)=\sum_{i=0}^{3} x_{\nu}^{i} x_{\nu+1}^{i} .
$$

- Polynomial approximation spaces $V_{\nu}=\mathbb{P}_{p}\left(\mathcal{X}_{\nu}\right)$, with p chosen to have a negligeable discretization error $(p=4)$.
- Approximation with a prescribed tolerance $\varepsilon=10^{-14}$

	n	$n_{\text {total }}$
Deterministic algo from [1]	$\left[q_{10} ; q_{50} ; q_{90}\right]$	$\left[q_{10} ; q_{50} ; q_{90}\right]$
Stochastic algo presented here	$[1540 ; 2075 ; 3008]$	$[24221 ; 27182 ; 28313]$
Random Balanced Tree	$[17867 ; 24115 ; 35865]$	$[9865 ; 14212 ; 19089]$
$[17867 ; 24115 ; 35865]$		

TABLE $-q_{10}, q_{50}, q_{90}$ are the $10^{t h}, 50^{t h}$ and $90^{t h}$ quantiles for a number of evaluations $n, n_{P}=10 \mathrm{~d}$.
[1] Grasedyck L. Ballani J. Tree adaptive approximation in the hierarchical tensor format. SIAM J. Sci. Comput. 2014.

cea
 Conclusions of the third part

) Tree optimization is a combinatorial problem.
() Stochastic algorithm \rightarrow compromise between the number of trees explored (cost for optimization) and the search of the optimum, compared to a deterministic strategy.
(;) Total cost is better in expectation than a random tree.

Cea Outline

II Introduction

2 Boosted least-squares projection.

3 Approximation with tree-based tensor format.

4 Choice of the dimension partition tree.

5 Conclusions

Conclusions

The proposed algorithm :

- provides an approximation of u in tree-based tensor format using evaluations of the function at a structured set of points,
- provides a controlled approximation (for a sufficiently a high number of evaluations of the function u).
- Under some assumptions on the function class and results on empirical PCA, a bound of the number of evaluations necessary to reach a certain precision can be obtained (very pessimistic compared to experiments...).

We proposed fully adaptive strategies for :

- the control of the discretization error,
- the tree selection,
- the control of the α-ranks,
- the estimation of the principal components.
J. Ballani and L. Grasedyck.

Tree adaptive approximation in the hierarchical tensor format. SIAM J. Sci. Comput., 36(4) :A1415-A1431. (17 pages), 2014.
A. Cohen and G. Migliorati.

Optimal weighted least-squares methods.

```
SMAI Journal of Computational Mathematics, 3 :181-203, }2017
```

C. Haberstich, A. Nouy, and G. Perrin.

Boosted optimal weighted least-squares methods.
arXiv :1912.07075, 2019.
A. Nouy.

Higher-order principal component analysis for the approximation of tensors in tree-based low rank formats.
Numer. Math., 141(3) :743-789, 2019.

Thank you for your attention. Do you have any questions?

[^0]: ${ }_{2}^{1}$ CEA,DAM,DIF, F-91297, Arpajon, France,
 ${ }^{2}$ Centrale Nantes, LMJL UMR CNRS 6629, France

