

Boosted least-squares and principal component analysis for training tree tensor networks

Cécile Haberstich 1,2 , Anthony \mbox{Nouy}^2 , Guillaume \mbox{Perrin}^1

Mascot-Num 2020 | 17-18 September 2020

CEA,DAM,DIF, F-91297, Arpajon, France,
 ² Centrale Nantes, LMJL UMR CNRS 6629, France

Introduction	Boosted least-squares	PCA for TBT formats	Tree adaptation	Conclusions
•O	00000000	0000000	0000000	0000
cea	Approximation of h	igh-dimensional fun	ictions	

Context : Uncertainty quantification for a black-box and costly model represented by a function u(x) of d variables.

Objective : Construct an approximation \boldsymbol{u}^{\star} of \boldsymbol{u} in some model class V

- → with controlled precision (when $u \in L^2_{\mu}$, $||u u^*||_{L^2_{\mu}} \leq \varepsilon$),
- \rightarrow with **only few evaluations** of $u(x^i)$ of u at points x^i chosen adaptively.

Difficulties : For a high dimension d,

- → V is an approximation space that should be adapted to the function u. A typical choice is a tensor product space $V = V_1 \otimes \cdots \otimes V_d$, where each V_i is a suitable space of univariate functions.
- → When d >> 1 (even when each V_i is low-dimensional) → curse of dimensionality.

Introduction OO	Boosted least-squares	PCA for TBT formats 0000000	Tree adaptation 0000000	Conclusions 0000
cea	Approach			

→ Here we propose a strategy to construct a nested sequence of well-chosen tensor product subspaces with decreasing dimensions, associated to a dimension partition tree T,

$$V = V^{(L)} \supset \cdots \supset V^{(2)} \supset V^{(1)} = V^{\star},$$

such that the approximation is defined by $u^* = P_{V^*}u$.

- → The resulting approximation is in tree-based tensor format. It admits a multilinear parametrization with parameters forming a tree network of low-order → also called tree tensor networks.
- → The $V^{(i)}$ are constructed from the leaves of the tree to the root thanks to an extension of **Principal Component Analysis** to multivariate functions and **sample-based projections**.

Introduction	Boosted least-squares	PCA for TBT formats	Tree adaptation	Conclusions
00		0000000	0000000	0000
cea	Outline			

Introduction

- **2** Boosted least-squares projection.
- **3** Approximation with tree-based tensor format.
- **4** Choice of the dimension partition tree.

5 Conclusions

Introduction	Boosted least-squares	PCA for TBT formats	Tree adaptation	Conclusions
00	○●○○○○○○	0000000	0000000	0000
cea	Least-squares metho	ods		

In this part, we consider a linear space $V \subset L^2_{\mu}$ and $\{\varphi_j\}_{j=1}^m$ a given orthonormal basis of V. The best approximation of u by an element of V is given by the orthogonal projection :

$$P_V u = \arg\min_{v \in V} \|u - v\|_{L^2_{\mu}}^2.$$

• Since it is not computable in practice, replaced by a weighted least-squares projection :

$$\hat{P}_{V}u = \arg\min_{v \in V} \frac{1}{n} \sum_{i=1}^{n} w(x^{i})(v(x^{i}) - u(x^{i}))^{2}$$
 where $x^{i} \sim \rho$

- The stability of the projection \hat{P}_V is measured by the properties of the empirical Gram matrix \hat{G} , more precisely by $\|\hat{G} I\|$.
- How to choose ρ to have the $\|\hat{\boldsymbol{G}} \boldsymbol{I}\|$ close to 0 while using a small n?

Introduction 00	Boosted least-squares ○O●○○○○○	Tree adaptation 0000000	

Theorem (Optimal weighted least-squares)

Let $d\rho = w(x)^{-1}d\mu(x)$ with $w(x)^{-1} = \frac{1}{m}\sum_{j=1}^{m}\varphi_j(x)^2$. Let $\eta \in (0,1)$ and $\delta \in (0,1)$, and for x^1, \dots, x^n i.i.d from $d\rho$. For $n \ge \delta^{-2}m\log(2m\eta^{-1})$, it holds

 $\mathbb{P}(\|\hat{\boldsymbol{G}}-\boldsymbol{I}\| > \delta) \leq \eta.$

The approximation $\hat{P}_V^C u$ defined by $\hat{P}_V u$ if $\|\hat{G} - I\| < \delta$ and 0 otherwise satisfies

$$\mathbb{E}(\|u - \hat{P}_{V}u\|^{2}) \leq (1 - \delta)^{-1} \|u - P_{V}u\|^{2} + \eta \|u\|^{2}.$$

 \bigcirc Improving stability (smaller δ) and the chance to have this stability (smaller η) implies higher n.

 \bigcirc n still high compared to an interpolation method (n = m).

Optimal least-squares methods

• Next, we propose a new measure $\tilde{\rho}$ based on ρ to improve the properties of $\|\hat{\boldsymbol{G}} - \boldsymbol{I}\|$.

 $\left[2\right]$ A. Cohen and G. Migliorati. Optimal weighted least-squares methods. SMAI Journal of Computational Mathematics. 2017

1. Resampling : draw M independent n-samples $\{x^{n,i}\}_{i=1}^{M}$, with $x^{n,i} = (x^{1,i}, \dots, x^{n,i})$, for each $1 \le j \le n$, $x^{j,i} \sim \rho$ and choose the one which minimizes $\|\hat{\boldsymbol{G}} - \boldsymbol{I}\|$.

Resampling improves the chance to be stable for a given δ ($\eta \rightarrow \eta^M$).

1. Resampling : draw M independent n-samples $\{x^{n,i}\}_{i=1}^{M}$, with $x^{n,i} = (x^{1,i}, \dots, x^{n,i})$, for each $1 \le j \le n$, $x^{j,i} \sim \rho$ and choose the one which minimizes $\|\hat{\boldsymbol{G}} - \boldsymbol{I}\|$.

FIGURE – Distribution of $\|\hat{\boldsymbol{G}} - \boldsymbol{I}\|$ for $\delta = 0.9$

Resampling improves the chance to be stable for a given δ $(\eta \rightarrow \eta^M)$.

2. Conditioning by rejection : Repeat step 1 while $\|\hat{G} - I\| > \delta$.

3. Greedy removal of samples : Begin with $K = \{1, \dots, n\}$ and while $\|\hat{\boldsymbol{G}} - \boldsymbol{I}\| \le \delta$ successively select a subsample of size #K - 1 which minimizes $\|\hat{\boldsymbol{G}} - \boldsymbol{I}\|$.

Introduction	Boosted least-squares	PCA for TBT formats	Tree adaptation	Conclusions
00	○○○○●○○○	0000000	0000000	0000
cea	Boosted optimal lea	st-squares (BLS)		

Theorem (Stability of the boosted optimal least-squares)

Let $\eta \in (0,1)$ and $\delta \in (0,1)$, and let $\hat{P}_V u$ be the boosted optimal least-squares projection such that the initial sample size verifies $n \ge \delta^{-2} m \log(2m\eta^{-1})$ and the resulting number of samples after the greedy subsampling is constrained to be greater than n_0 . It satisfies the quasi-optimality property

$$\mathbb{E}(\|u - \hat{P}_{V}u\|^{2}) \le C\|u - P_{V}u\|^{2}$$

with $C = (1 + \frac{n}{n_0}(1 - \delta)^{-1}(1 - \eta^M)^{-1}M).$

Also, assuming $||u||_{\infty,w} \leq L$, we can obtain a better bound.

For more details \rightarrow see [3] C. Haberstich, A. Nouy, G. Perrin. Boosted optimal least-squares method. arXiv :1912.07075.

© quasi-optimality property

 $\ensuremath{\textcircled{}^\circ}$ pay the M and $\frac{n}{n_0}$

 $u(x) = \frac{1}{1 - \frac{0.5}{2d} \sum_{i=1}^{d} x_i}$ defined on $\mathcal{X} = [-1, 1]^d$, equipped with the uniform measure

FIGURE – V is defined by a hyperbolic cross d = 2.

FIGURE – Guaranteed stability with probability greater than 0.99, $\delta = 0.9$.

Introduction	Boosted least-squares	PCA for TBT formats	Tree adaptation	Conclusions
00	○○○○○○●○	0000000	0000000	0000
cea	Illustration on a simp	le example : give	1 cost	

 $u(x) = \frac{1}{1 - \frac{0.5}{2d} \sum_{i=1}^{d} x_i}$ defined on $\mathcal{X} = [-1, 1]^d$, equipped with the uniform measure

We have access to u(x) + e with $e \sim \mathcal{N}(0, \sigma^2)$

- Given cost n = m
- Interpolation : u^{*}(xⁱ) = u(xⁱ) + eⁱ for 1 ≤ i ≤ m, xⁱ ∈ X, for example magic points. → interpolation may not be stable !

		Interpolation with magic points	s-BLS (M = 100)
m	σ	$\log(\ u - u^{\star}\ ^2)$	$ u - u^* ^2$
10	0.1	[-1.1; -1.0]	[-1.6; -1.1]
27	0.1	[-0.8; 0.1]	[-1.8; -0.7]
27	0.01	[-2.5; -1.5]	[-3.0; -2.3]

TABLE – Confidence intervals of levels 10% and 90% for the approximation error $\log(||u - u^*||^2)$ for a noisy example with d = 2, n = m

Introduction	Boosted least-squares	PCA for TBT formats	Tree adaptation	Conclusions
00	○○○○○○○	0000000	0000000	0000
201	Conclusions of the f	irst part		

The boosted least-squares projection is

- stable in expectation,
- with a number of samples close to the dimension of the space (almost the cost of an interpolation method),
- 🙁 error bound pessimistic compared to the experiments.
- Sampling from the boosted optimal measure is **time-consuming**. (Remedies are sequential sampling for multivariate distributions, introduce an approximate greedy algo based on results in linear algebra).
- \rightarrow However, when one evaluation of u is costly, this method is relevant.

		PCA for TBT formats ●○○○○○	Tree adaptation 0000000	
cea	Outline			

Introduction

- **2** Boosted least-squares projection.
- **3** Approximation with tree-based tensor format.
- **4** Choice of the dimension partition tree.

5 Conclusions

Introduction	Boosted least-squares	PCA for TBT formats	Tree adaptation	Conclusions
00	00000000	○●○○○○○	0000000	0000
cea	Leaves-to-root stra	tegy		

• We consider the following dimension tree T,

 $\begin{array}{l} \mbox{Figure} - \mbox{Dimension partition tree} \\ T = \{\{1,2,3,4,5,6,7,8\}, \{1,2,3,4\}, \{5,6,7,8\}, \{1,2\}, \{3,4\}, ..., \{7,8\}, \{1\}, \cdots, \{8\}\} \end{array}$

One node α is associated to a space of functions of groups of variables x_α = (x_i)_{i∈α}.

Introduction	Boosted least-squares	PCA for TBT formats	Tree adaptation	Conclusions
00	00000000	○●○○○○○	0000000	0000
cea	Leaves-to-root stra	ntegy		

- Introduce a finite-dimensional approximation space $V = V_1 \otimes V_2 \otimes \cdots \otimes V_8 \subset L^2_{\mu}$.
- Construct a nested sequence of well-chosen subspaces

$$V = V^{(L)} \supset \cdots \supset V^{(2)} \supset V^{(1)} = V^{\star},$$

and compute the approximation by porjecting u in V^{\star} .

Introduction	Boosted least-squares	PCA for TBT formats	Tree adaptation	Conclusions
00		○●○○○○○	0000000	0000
cea	Leaves-to-root stra	itegy		

- Introduce a finite-dimensional approximation space $V = V_1 \otimes V_2 \otimes \cdots \otimes V_8 \subset L^2_{\mu}$.
- Construct a nested sequence of well-chosen subspaces

$$V = V^{(L)} \supset \cdots \supset V^{(2)} \supset V^{(1)} = V^{\star},$$

and compute the approximation by porjecting u in V^* .

Introduction 00	Boosted least-squares	PCA for TBT formats ○●○○○○○	Tree adaptation 0000000	Conclusions 0000
cea	Leaves-to-root stra	tegy		

- Introduce a finite-dimensional approximation space $V = V_1 \otimes V_2 \otimes \cdots \otimes V_8 \subset L^2_{\mu}$.
- Construct a nested sequence of well-chosen subspaces

$$V = V^{(L)} \supset \cdots \supset V^{(2)} \supset V^{(1)} = V^{\star},$$

and compute the approximation by porjecting u in V^* .

Introduction 00	Boosted least-squares	PCA for TBT formats ○●○○○○○	Tree adaptation	Conclusions 0000
cea	Leaves-to-root stra	tegy		
• Introduce a finite-dimensional approximation space $V = V_1 \otimes V_2 \otimes \cdots \otimes V_8 \subset L^2_{\mu}$.				

• Construct a nested sequence of well-chosen subspaces

$$V = V^{(L)} \supset \cdots \supset V^{(2)} \supset V^{(1)} = V^*,$$

and compute the approximation by porjecting u in V^* .

Introduction 00	Boosted least-squares	PCA for TBT formats ○●○○○○○	Tree adaptation 0000000	Conclusions 0000
cea	Leaves-to-root stra	tegy		

- Introduce a finite-dimensional approximation space $V = V_1 \otimes V_2 \otimes \cdots \otimes V_8 \subset L^2_{\mu}$.
- Construct a nested sequence of well-chosen subspaces

$$V = V^{(L)} \supset \cdots \supset V^{(2)} \supset V^{(1)} = V^{\star},$$

and compute the approximation by porjecting u in V^* .

cea	Leaves-to-root stra	tegy		
		PCA for TBT formats ○●○○○○○	Tree adaptation 0000000	

- Introduce a finite-dimensional approximation space $V = V_1 \otimes V_2 \otimes \cdots \otimes V_8 \subset L^2_{\mu}$.
- Construct a nested sequence of well-chosen subspaces

$$V = V^{(L)} \supset \cdots \supset V^{(2)} \supset V^{(1)} = V^{\star},$$

and compute the approximation by porjecting u in V^* .

• More precisely, going from the leaves to the root, construct a hierarchy of low-dimensional subspaces $(U_{\alpha})_{\alpha \in T}$ associated to the tree T which defines the sequence $V^{(i)}$.

For each α , $U_{\alpha} \subset V_{\alpha}$ and $V^{(1)} = V^{*} = U_{1234} \otimes U_{5678}$ • Final approximation is given by $u^{*} = \hat{P}_{V^{*}} u$ with $V^{*} = U_{1234} \otimes U_{5678}$.

Introduction	Boosted least-squares	PCA for TBT formats	Tree adaptation	Conclusions
00		○○●0000	0000000	0000
cea	How to construct n	ear-optimal subspa	ces U_{lpha} ?	

- A multivariate function can be identified with a bivariate function.
- The truncated singular value decomposition $u_{r_{\alpha}}$ of u :

$$u_{r_{\alpha}}(x_{\alpha}, x_{\alpha^{c}}) = \sum_{i=1}^{r_{\alpha}} \sigma_{i} v_{i}^{\alpha}(x_{\alpha}) v_{i}^{\alpha^{c}}(x_{\alpha^{c}})$$

is the solution of the problem of best approximation of u by a function with $\alpha\text{-rank}\;r_\alpha$

$$\min_{\operatorname{rank}_{\alpha}(v) \le r_{\alpha}} \|u - v\|^2$$

• $v_1^{\alpha}, \dots, v_{r_{\alpha}}^{\alpha}$ are the $r_{\alpha} \alpha$ -principal components of u and $U_{\alpha} = \operatorname{span}\{v_1^{\alpha}, \dots, v_{r_{\alpha}}^{\alpha}\}$ is the α -principal subspace of u.

In practice to estimate U_{α} two approximations are made :

- 1. Statistical estimation of the α -principal subspaces with an adaptive strategy based on cross validation.
- 2. Compute the α -principal subspace of a **projection of** u. (using BLS).

Introduction 00	Boosted least-squares	PCA for TBT formats	Tree adaptation 0000000	Conclusions 0000
cea	Error bound			

• The final approximation u^* verifies :

$$\mathbb{E}(\|u-u^{\star}\|^{2}) \leq \sum_{\alpha \in T \smallsetminus \text{root}} (2C)^{l(\alpha)} \varepsilon_{pca}^{2}(\alpha) + \sum_{\alpha \in \text{leaves}} \frac{1}{2} (2C)^{l(\alpha)+1} \varepsilon_{dis}^{2}(\alpha)$$

- C is the quasi-optimality constant from the boosted least-squares projection.
 In theory, if we want a controlled approximation E(||u u^{*}||²) ≤ ε², we have to
- \rightarrow Adapt ranks and control the estimation of U_{α} such that

$$\varepsilon_{pca}^{2}(\alpha) \leq \frac{\varepsilon^{2}}{(2C)^{l(\alpha)}(\#T-1)}$$

 $\rightarrow\,$ and also, control the discretization error,

$$\varepsilon_{dis}^2(\alpha) \le \frac{\varepsilon^2}{\frac{1}{2}(2C)^{l(\alpha)+1}d}.$$

→ But, C is large and $l(\alpha)$ may be high (for high d and deep trees), in practice we assume this bound is not sharp and use heuristics to control the error (cross validation).

- Let $u(x) = \sin(x_1 + \dots + x_{10})$ and $\mathcal{X} = \mathbb{R}^{10}$ equipped with the gaussian measure.
- Polynomial approximation spaces $V_{\nu} = \mathbb{P}_p(\mathcal{X}_{\nu})$, with p chosen such that there is a negligeable discretization error (p = 20).
- T is a balanced binary tree.
- Approximation with prescribed tolerance $\varepsilon = 10^{-9}$.

Interpolati	on	Boosted least-squares	
$\log(\sqrt{\mathbb{E}(\ u-u^{\star}\ ^2)})$	n	$\log(\sqrt{\mathbb{E}(\ u-u^\star\ ^2)})$	n
-8.5	[1110; 4405]	-9.2	[940; 946]

TABLE – $\log(\sqrt{\mathbb{E}(\|u-u^*\|^2)})$ and confidence intervals of levels 10% and 90% for the number of evaluations n.

	PCA for TBT formats	
	0000000	

cea

Illustration of the adaptive strategy for the estimation of the $\alpha\text{-principal components}$

• Let $u(x) = \frac{1}{(10+2x_1+x_3+2x_4-x_5)^2}$ and $\mathcal{X} = [-1,1]^d$ equipped with the uniform measure.

- Polynomial approximation spaces $V_{\nu} = \mathbb{P}_p(\mathcal{X}_{\nu})$, with p chosen adaptively to reach a negligeable discretization error $(p \le 15)$ using adaptive boosted least-squares.
- T is a balanced binary tree.

ε	$\log(\sqrt{\mathbb{E}(\ u-u^{\star}\ ^2)})$	n
-2	-3	[328 ; 403]
-3	-4.1	[455 ; 579]
-4	-4.4	[534 ; 697]
-5	-5.3	[751; 985]
-6	-6.1	[1028; 1503]
-7	-7.0	[1463; 2230]

With adaptive strategy for PCA

TABLE – Heuristic control of the precision. $\log(\sqrt{\mathbb{E}(\|u-u^*\|^2)})$ (in log scale) and confidence intervals of levels 10% and 90% for the number of evaluations n.

Introduction 00	Boosted least-squares	PCA for TBT formats ○○0000●	Tree adaptation	Conclusions 0000

Conclusions of the second part

The tree-based tensor format approximation

- \odot with <code>BLS</code> guarantees <code>stability</code> for the final approximation (compared to interpolation),
- estimation of the α-principal components can be controlled through adaptive strategies (with a near-optimal number of evaluations, only observed, no theory)
- \bigcirc final approximation with a controlled error (if we pay the price ...).
- Computing BLS projectors requires many samples from and multivariate measures (same remedies as before).
- \bigcirc The α -ranks may be large for a given tree T.

		Tree adaptation ●000000	
eel	Outline		

Introduction

- **2** Boosted least-squares projection.
- **3** Approximation with tree-based tensor format.
- **4** Choice of the dimension partition tree.

5 Conclusions

Introduction	Boosted least-squares	PCA for TBT formats	Tree adaptation	Conclusions
00	00000000	0000000	○●○○○○○	0000
cea	A motivating example			

- $\mathcal{X} = [-1, 1]^d$, equipped with the uniform measure and the function u defined as follows, $u(x) = g(x_1, x_2) + g(x_3, x_4) + \ldots + g(x_{d-1}, x_d)$, where $g(x_{\nu}, x_{\nu+1}) = \sum_{i=0}^3 x_{\nu}^i x_{\nu+1}^i$.
- Polynomial approximation spaces V_ν = P_p(X_ν), with p chosen to have a negligeable discretization error (p = 4).

FIGURE – Two balanced trees, ordered variables (left) and permuted variables (right).

Introduction	Boosted least-squares	PCA for TBT formats	Tree adaptation	Conclusions
00	00000000	0000000	○○○○○○○	0000
cea	A motivating example			

- $\mathcal{X} = [-1, 1]^d$, equipped with the uniform measure and the function u defined as follows, $u(x) = g(x_1, x_2) + g(x_3, x_4) + \ldots + g(x_{d-1}, x_d)$, where $g(x_{\nu}, x_{\nu+1}) = \sum_{i=0}^3 x_{\nu}^i x_{\nu+1}^i$.
- Polynomial approximation spaces V_ν = P_p(X_ν), with p chosen to have a negligeable discretization error (p = 4).

FIGURE – Two balanced trees, ordered variables (left) and permuted variables (right), with the $\alpha\text{-ranks}$

Introduction	Boosted least-squares	PCA for TBT formats	Tree adaptation	Conclusions
00	00000000	0000000	○●○○○○○	0000
cea	A motivating example			

- $\mathcal{X} = [-1, 1]^d$, equipped with the uniform measure and the function u defined as follows, $u(x) = g(x_1, x_2) + g(x_3, x_4) + \ldots + g(x_{d-1}, x_d)$, where $g(x_{\nu}, x_{\nu+1}) = \sum_{i=0}^3 x_{\nu}^i x_{\nu+1}^i$.
- Polynomial approximation spaces V_ν = P_p(X_ν), with p chosen to have a negligeable discretization error (p = 4).

	Balanced tree	Permuted balanced tree
d	n	n
8	[460; 460]	[2293; 2438]
16	[940; 957]	[13679; 14682]
24	[1420; 1471]	[45921; 49402]

TABLE – Confidence intervals of levels 10% and 90% for the number of evaluations n with two different dimension partition trees.

Introduction	Boosted least-squares	PCA for TBT formats	Tree adaptation	Conclusions
00		0000000	○○●○○○○	0000
cea	Leaves-to-root opti	mization of the tre	e	

- 1. For each leaf $\alpha = \{\nu\}$, $1 \le \nu \le d$, we determine U_{α} an approximation of the α -principal subspace of u.
- \rightarrow r_1, r_2, r_3, r_4 and r_5 are known.

 $\begin{array}{cccccccc} O & O & O & O \\ \{1\} & \{2\} & \{3\} & \{4\} & \{5\} \end{array}$

2. Choose a random pairing ${\cal P}$ and estimate the associated lpha-ranks

and calculate the corresponding cost function $\mathcal{C} = \sum_{\alpha \in \mathcal{P}} r_{\alpha} r_{S_1(\alpha)} r_{S_2(\alpha)} = r_{12} r_1 r_2 + r_{34} r_3 r_4 + r_5^2$

Introduction	Boosted least-squares	PCA for TBT formats	Tree adaptation	Conclusions
00	00000000	0000000	○○○●○○○	0000
cea	Leaves-to-root opti	mization of the tre	e	

2. Select two nodes β_1 and β_2 (choosing preferentially the ones whose parent has a high α -rank), $\beta \sim \operatorname{rank}_{parent(\beta)}(u)^{\gamma}$ with γ an integer.

2. Select two nodes β_1 and β_2 (choosing preferentially the ones whose parent has a high α -rank), $\beta \sim \operatorname{rank}_{parent(\beta)}(u)^{\gamma}$ with γ an integer.

and permute these two nodes. Estimate the new α -ranks (associated to this new partition), calculate the new cost C^* , if $C^* < C$ accept the permutation.

3. Repeat the operation n_P times.

Introduction	Boosted least-squares	PCA for TBT formats	Tree adaptation	Conclusions
00	00000000	0000000	○○○●○○○○	0000
cea	Leaves-to-root opti	mization of the tree	2	

2. Select two nodes β_1 and β_2 (choosing preferentially the ones whose parent has a high α -rank), $\beta \sim \operatorname{rank}_{parent(\beta)}(u)^{\gamma}$ with γ an integer.

and permute these two nodes. Estimate the new α -ranks (associated to this new partition), calculate the new cost C^* , if $C^* < C$ accept the permutation.

3. Repeat the operation n_P times.

Determine U_{α} for $\alpha = \{1, 5\}, \{2, 3\}. \rightarrow r_{15}, r_{23}$ and r_4 are known.

5. This yields a dimension tree.

6. Compute the final approximation $u^* = \hat{P}_{U_{\{1,4,5\}} \otimes U_{\{2,3\}}} u$

Introduction 00	Boosted least-squares 00000000	PCA for TBT formats 0000000	Tree adaptation	Conclusions 0000
cea	Numerical example	with local optimiza	ation	

- $\mathcal{X} = [-1,1]^d$, with, d = 24, equipped with the uniform measure and the function u, $u(x) = g(x_1, x_2) + g(x_3, x_4) + \ldots + g(x_{d-1}, x_d)$, where $g(x_{\nu}, x_{\nu+1}) = \sum_{i=0}^3 x_{\nu}^i x_{\nu+1}^i$.
- Polynomial approximation spaces V_ν = P_p(X_ν), with p chosen to have a negligeable discretization error (p = 4).
- Approximation with a prescribed tolerance $\varepsilon = 10^{-14}$

	n	n_{total}
	$[q_{10}; q_{50}; q_{90}]$	$[q_{10}; q_{50}; q_{90}]$
Deterministic algo from [1]	[1540; 2075; 3008]	[24221; 27182; 28313]
Stochastic algo presented here	[2955; 6321; 10814]	[9865; 14212; 19089]
Random Balanced Tree	[17867; 24115; 35865]	[17867; 24115; 35865]

TABLE – q_{10}, q_{50}, q_{90} are the $10^{th}, 50^{th}$ and 90^{th} quantiles for a number of evaluations $n, n_P = 10d$.

[1] Grasedyck L. Ballani J. Tree adaptive approximation in the hierarchical tensor format. SIAM J. Sci. Comput. 2014.

Introduction	Boosted least-squares	PCA for TBT formats	Tree adaptation	Conclusions
00	00000000	0000000	○○○○○○	0000
cea	Conclusions of the	third part		

- 😟 Tree optimization is a combinatorial problem.
- Stochastic algorithm → compromise between the number of trees explored (cost for optimization) and the search of the optimum, compared to a deterministic strategy.
- ③ Total cost is better in expectation than a random tree.

Introduction 00	Boosted least-squares	PCA for TBT formats	Tree adaptation	Conclusions
cea	Outline			
<u>uea</u>	Outline			

Introduction

- **2** Boosted least-squares projection.
- **3** Approximation with tree-based tensor format.
- **4** Choice of the dimension partition tree.

5 Conclusions

Introduction	Boosted least-squares	PCA for TBT formats	Tree adaptation	Conclusions
00	00000000	0000000	0000000	O●OO
cea	Conclusions			

The proposed algorithm :

- provides an **approximation of** *u* **in tree-based tensor format** using evaluations of the function at a structured set of points,
- provides a **controlled approximation** (for a sufficiently a high number of evaluations of the function *u*).
- Under some assumptions on the function class and results on empirical PCA, a **bound of the number of evaluations** necessary to reach a certain precision can be obtained (very pessimistic compared to experiments...).

We proposed fully adaptive strategies for :

- the control of the discretization error,
- the tree selection,
- the control of the α -ranks,
- the estimation of the principal components.

Intro 00	duction	Boosted least-squares 00000000	PCA for TBT formats 0000000	Tree adaptation 0000000	Conclusions 00●0
J. Ballani and L. Grasedyck. Tree adaptive approximation in the hierarchical tensor format. <i>SIAM J. Sci. Comput.</i> , 36(4) :A1415–A1431. (17 pages), 2014.					
	Optimal weig	d G. Migliorati. ghted least-squares al of Computationa	methods. / Mathematics, 3 :181–	203, 2017,	

C. Haberstich, A. Nouy, and G. Perrin. Boosted optimal weighted least-squares methods. *arXiv* :1912.07075, 2019.

A. Nouy.

Higher-order principal component analysis for the approximation of tensors in tree-based low rank formats.

Numer. Math., 141(3) :743-789, 2019.

Thank you for your attention. Do you have any questions?