
Boosted least-squares and principal component analysis
for training tree tensor networks

Cécile Haberstich1,2, Anthony Nouy2, Guillaume Perrin1

Mascot-Num 2020 | 17-18 September 2020

1 CEA,DAM,DIF, F-91297, Arpajon, France,
2 Centrale Nantes, LMJL UMR CNRS 6629, France



Introduction Boosted least-squares PCA for TBT formats Tree adaptation Conclusions

Context : Uncertainty quantification for a black-box and costly model represented by a
function u(x) of d variables.

Objective : Construct an approximation u⋆ of u in some model class V

→ with controlled precision (when u ∈ L2

µ, ∥u − u⋆∥L2
µ
≤ ε),

→ with only few evaluations of u(xi) of u at points xi chosen adaptively.

Difficulties : For a high dimension d,

→ V is an approximation space that should be adapted to the function u.
A typical choice is a tensor product space V = V1 ⊗⋯⊗ Vd, where each Vi is a suitable
space of univariate functions.

→ When d >> 1 (even when each Vi is low-dimensional) → curse of dimensionality.

Approximation of high-dimensional functions
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→ Here we propose a strategy to construct a nested sequence of well-chosen tensor product
subspaces with decreasing dimensions, associated to a dimension partition tree T ,

V = V
(L)
⊃ ⋯ ⊃ V

(2)
⊃ V

(1)
= V

⋆
,

such that the approximation is defined by u⋆ = PV ⋆u.

→ The resulting approximation is in tree-based tensor format.
It admits a multilinear parametrization with parameters forming a tree network of
low-order → also called tree tensor networks.

→ The V (i) are constructed from the leaves of the tree to the root thanks to an extension
of Principal Component Analysis to multivariate functions and sample-based
projections.

V (1)

V (2)

V (3)

Approach
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In this part, we consider a linear space V ⊂ L2

µ and {ϕj}m
j=1 a given orthonormal basis

of V . The best approximation of u by an element of V is given by the orthogonal
projection :

P V u = arg min
v∈V
∥u − v∥2L2

µ
.

● Since it is not computable in practice, replaced by a weighted least-squares projection :

P̂V u = arg min
v∈V

1

n

n

∑
i=1

w(xi)(v(xi) − u(xi))2 where x
i
∼ ρ

● The stability of the projection P̂V is measured by the properties of the empirical Gram
matrix Ĝ, more precisely by ∥Ĝ − I∥.

● How to choose ρ to have the ∥Ĝ − I∥ close to 0 while using a small n ?

Least-squares methods
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→
Theorem (Optimal weighted least-squares)

Let dρ = w(x)−1dµ(x) with w(x)−1
=

1

m ∑m
j=1

ϕj(x)2.

Let η ∈ (0, 1) and δ ∈ (0, 1), and for x1,⋯, xn i.i.d from dρ. For n ≥ δ−2m log(2mη−1), it

holds

P(∥Ĝ − I∥ > δ) ≤ η.

The approximation P̂ C
V u defined by P̂V u if ∥Ĝ − I∥ < δ and 0 otherwise satisfies

E(∥u − P̂V u∥2) ≤ (1 − δ)−1∥u − P V u∥2 + η∥u∥2.

/ Improving stability (smaller δ) and the chance to have this stability (smaller η) implies
higher n.

/ n still high compared to an interpolation method (n =m).

● Next, we propose a new measure ρ̃ based on ρ to improve the properties of ∥Ĝ − I∥.
[2] A. Cohen and G. Migliorati. Optimal weighted least-squares methods. SMAI Journal of Computational
Mathematics. 2017

Optimal least-squares methods
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1. Resampling : draw M independent n-samples {xn,i}M
i=1, with x

n,i
= (x1,i,⋯, xn,i), for

each 1 ≤ j ≤ n, xj,i
∼ ρ and choose the one which minimizes ∥Ĝ − I∥.
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Figure – Distribution of ∥Ĝ − I∥ for δ = 0.9

Resampling improves the chance to be stable for a given δ (η → ηM ).

Boosted optimal least-squares method (BLS)
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Figure – Distribution of ∥Ĝ − I∥ for δ = 0.9

Resampling improves the chance to be stable for a given δ (η → ηM ).

2. Conditioning by rejection : Repeat step 1 while ∥Ĝ − I∥ > δ.

Boosted optimal least-squares method (BLS)
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3. Greedy removal of samples : Begin with K = {1,⋯, n} and while ∥Ĝ − I∥ ≤ δ

successively select a subsample of size #K − 1 which minimizes ∥Ĝ − I∥.
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s-BLS (many points removed)

Figure – Distribution of ∥Ĝ − I∥ for δ = 0.9

Boosted optimal least-squares method (BLS)
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Theorem (Stability of the boosted optimal least-squares)

Let η ∈ (0, 1) and δ ∈ (0, 1), and let P̂V u be the boosted optimal least-squares projection

such that the initial sample size verifies n ≥ δ−2m log(2mη−1) and the resulting number of

samples after the greedy subsampling is constrained to be greater than n0. It satisfies the

quasi-optimality property

E(∥u − P̂V u∥2) ≤ C∥u − P V u∥2
with C = (1 + n

n0
(1 − δ)−1(1 − ηM)−1M).

Also, assuming ∥u∥∞,w ≤ L , we can obtain a better bound.

For more details → see [3] C. Haberstich, A. Nouy, G. Perrin. Boosted optimal least-squares
method. arXiv :1912.07075.

, quasi-optimality property

/ pay the M and n

n0

Boosted optimal least-squares (BLS)
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u(x) = 1

1 − 0.5

2d ∑d
i=1

xi

defined on X = [−1, 1]d, equipped with the uniform measure
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Figure – V is defined by a
hyperbolic cross d = 2.
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Figure – Guaranteed stability with
probability greater than 0.99, δ = 0.9.

Illustration on a simple example : stability guaranteed
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u(x) = 1

1 − 0.5

2d ∑d
i=1

xi

defined on X = [−1, 1]d, equipped with the uniform measure

We have access to u(x) + e with e ∼N(0, σ2)

● Given cost n =m

● Interpolation : u⋆(xi) = u(xi) + ei for 1 ≤ i ≤m, xi
∈ X , for example magic points. →

interpolation may not be stable !

Interpolation with magic points s-BLS (M = 100)
m σ log(∥u − u⋆∥2) ∥u − u⋆∥2

10 0.1 [-1.1 ; -1.0] [-1.6 ; -1.1]
27 0.1 [-0.8 ; 0.1] [-1.8 ; -0.7]
27 0.01 [-2.5 ; -1.5] [-3.0 ; -2.3]

Table – Confidence intervals of levels 10% and 90% for the approximation error log(∥u − u⋆∥2) for
a noisy example with d = 2, n =m

Illustration on a simple example : given cost
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The boosted least-squares projection is

, stable in expectation,

, with a number of samples close to the dimension of the space (almost the cost of an
interpolation method),

/ error bound pessimistic compared to the experiments.

/ Sampling from the boosted optimal measure is time-consuming.
(Remedies are sequential sampling for multivariate distributions, introduce an
approximate greedy algo based on results in linear algebra).

→ However, when one evaluation of u is costly, this method is relevant.

Conclusions of the first part
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● We consider the following dimension tree T ,

{1, 2, 3, 4, 5, 6, 7, 8}

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

{5, 6, 7, 8}

{5, 6}

{5} {6}

{7, 8}

{7} {8}

Figure – Dimension partition tree
T = {{1, 2, 3, 4, 5, 6, 7, 8},{1, 2, 3, 4},{5, 6, 7, 8},{1, 2},{3, 4}, ...,{7, 8},{1},⋯,{8}}

● One node α is associated to a space of functions of groups of variables xα = (xi)i∈α.

Leaves-to-root strategy
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● Introduce a finite-dimensional approximation space V = V1 ⊗ V2 ⊗⋯⊗ V8 ⊂ L2

µ.

● Construct a nested sequence of well-chosen subspaces

V = V
(L)
⊃ ⋯ ⊃ V

(2)
⊃ V

(1)
= V

⋆
,

and compute the approximation by porjecting u in V ⋆.

● More precisely, going from the leaves to the root, construct a hierarchy of
low-dimensional subspaces (Uα)α∈T associated to the tree T which defines the
sequence V (i).

V1 V2 V3 V4 V5 V6 V7 V8

V (4) =⊗8

i=1 Vi

Leaves-to-root strategy
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● More precisely, going from the leaves to the root, construct a hierarchy of
low-dimensional subspaces (Uα)α∈T associated to the tree T which defines the
sequence V (i).

U1 U2 U3 U4 U5 U6 U7 U8

For each α, Uα ⊂ Vα V (3) =⊗8

i=1 Ui

Leaves-to-root strategy
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and compute the approximation by porjecting u in V ⋆.

● More precisely, going from the leaves to the root, construct a hierarchy of
low-dimensional subspaces (Uα)α∈T associated to the tree T which defines the
sequence V (i).

V12 = U1 ⊗U2
V34 V56 V78 = U7 ⊗U8

Leaves-to-root strategy
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● Introduce a finite-dimensional approximation space V = V1 ⊗ V2 ⊗⋯⊗ V8 ⊂ L2

µ.

● Construct a nested sequence of well-chosen subspaces

V = V
(L)
⊃ ⋯ ⊃ V

(2)
⊃ V

(1)
= V

⋆
,
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low-dimensional subspaces (Uα)α∈T associated to the tree T which defines the
sequence V (i).

U12
U34 U56 U78

For each α, Uα ⊂ Vα V (2) = U12 ⊗U34 ⊗U56 ⊗U78

Leaves-to-root strategy
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● Introduce a finite-dimensional approximation space V = V1 ⊗ V2 ⊗⋯⊗ V8 ⊂ L2

µ.

● Construct a nested sequence of well-chosen subspaces

V = V
(L)
⊃ ⋯ ⊃ V

(2)
⊃ V

(1)
= V

⋆
,

and compute the approximation by porjecting u in V ⋆.

● More precisely, going from the leaves to the root, construct a hierarchy of
low-dimensional subspaces (Uα)α∈T associated to the tree T which defines the
sequence V (i).

V1234 = U12 ⊗U34 V5678 = U56 ⊗U78

Leaves-to-root strategy
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● Introduce a finite-dimensional approximation space V = V1 ⊗ V2 ⊗⋯⊗ V8 ⊂ L2

µ.

● Construct a nested sequence of well-chosen subspaces

V = V
(L)
⊃ ⋯ ⊃ V

(2)
⊃ V

(1)
= V

⋆
,

and compute the approximation by porjecting u in V ⋆.

● More precisely, going from the leaves to the root, construct a hierarchy of
low-dimensional subspaces (Uα)α∈T associated to the tree T which defines the
sequence V (i).

U1234 U5678

For each α, Uα ⊂ Vα and V (1) = V ⋆ = U1234 ⊗U5678

● Final approximation is given by u⋆ = P̂ V ⋆u with V ⋆ = U1234 ⊗U5678.

Leaves-to-root strategy
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● A multivariate function can be identified with a bivariate function.

● The truncated singular value decomposition urα
of u :

urα
(xα, xαc) =

rα

∑
i=1

σiv
α
i (xα)vαc

i (xαc)

is the solution of the problem of best approximation of u by a function with α-rank rα

min
rankα(v)≤rα

∥u − v∥2

● vα
1 ,⋯, vα

rα
are the rα α-principal components of u and Uα = span{vα

1 ,⋯, vα
rα
} is the

α-principal subspace of u.

In practice to estimate Uα two approximations are made :

1. Statistical estimation of the α-principal subspaces with an adaptive strategy based on
cross validation.

2. Compute the α-principal subspace of a projection of u. (using BLS).

How to construct near-optimal subspaces Uα ?
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● The final approximation u⋆ verifies :

E(∥u − u
⋆∥2) ≤ ∑

α∈T∖ root

(2C)l(α)ε2

pca(α) + ∑
α∈ leaves

1

2
(2C)l(α)+1

ε
2

dis(α)

● C is the quasi-optimality constant from the boosted least-squares projection.

In theory, if we want a controlled approximation E(∥u − u⋆∥2) ≤ ε2, we have to

→ Adapt ranks and control the estimation of Uα such that

ε
2

pca(α) ≤ ε2

(2C)l(α)(#T − 1)
→ and also, control the discretization error,

ε
2

dis(α) ≤ ε2

1

2
(2C)l(α)+1d

.

→ But, C is large and l(α) may be high (for high d and deep trees), in practice we assume
this bound is not sharp and use heuristics to control the error (cross validation).

Error bound
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● Let u(x) = sin(x1 +⋯ + x10) and X = R10 equipped with the gaussian measure.

● Polynomial approximation spaces Vν = Pp(Xν), with p chosen such that there is a
negligeable discretization error (p = 20).

● T is a balanced binary tree.

● Approximation with prescribed tolerance ε = 10−9.

Interpolation Boosted least-squares

log(√E(∥u − u⋆∥2)) n log(√E(∥u − u⋆∥2)) n

−8.5 [1110; 4405] −9.2 [940; 946]

Table – log(
√
E(∥u − u⋆∥2)) and confidence intervals of levels 10% and 90% for the number of

evaluations n.

Illustration of the choice of the projection
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● Let u(x) = 1

(10+2x1+x3+2x4−x5)2
and X = [−1, 1]d equipped with the uniform measure.

● Polynomial approximation spaces Vν = Pp(Xν), with p chosen adaptively to reach a
negligeable discretization error (p ≤ 15) using adaptive boosted least-squares.

● T is a balanced binary tree.

With adaptive strategy for PCA

ε log(
√
E(∥u − u⋆∥2)) n

-2 -3 [328 ; 403]
-3 -4.1 [455 ; 579]
-4 -4.4 [534 ; 697]
-5 -5.3 [751 ; 985]
-6 -6.1 [1028 ; 1503]
-7 -7.0 [1463 ; 2230]

Table – Heuristic control of the precision. log(
√
E(∥u − u⋆∥2)) (in log scale) and confidence

intervals of levels 10% and 90% for the number of evaluations n.

Illustration of the adaptive strategy for the estimation of the
α-principal components
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The tree-based tensor format approximation

, with BLS guarantees stability for the final approximation (compared to interpolation),

, estimation of the α-principal components can be controlled through adaptive
strategies (with a near-optimal number of evaluations, only observed, no theory)

, final approximation with a controlled error (if we pay the price ...).

/ Computing BLS projectors requires many samples from and multivariate measures
(same remedies as before).

/ The α-ranks may be large for a given tree T .

Conclusions of the second part
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● X = [−1, 1]d, equipped with the uniform measure and the function u defined as follows,

u(x) = g(x1, x2) + g(x3, x4) + . . . + g(xd−1, xd), where g(xν , xν+1) =
3

∑
i=0

x
i
νx

i
ν+1.

● Polynomial approximation spaces Vν = Pp(Xν), with p chosen to have a negligeable
discretization error (p = 4).

{1} {2} {3} {4} {5} {6} {7} {8} {2} {4} {6} {8} {1} {3} {5} {7}
Balanced tree Permuted balanced tree

Figure – Two balanced trees, ordered variables (left) and permuted variables (right).

A motivating example
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● X = [−1, 1]d, equipped with the uniform measure and the function u defined as follows,

u(x) = g(x1, x2) + g(x3, x4) + . . . + g(xd−1, xd), where g(xν , xν+1) =
3

∑
i=0

x
i
νx

i
ν+1.

● Polynomial approximation spaces Vν = Pp(Xν), with p chosen to have a negligeable
discretization error (p = 4).
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Balanced tree Permuted balanced tree

Figure – Two balanced trees, ordered variables (left) and permuted variables (right), with the
α-ranks

A motivating example
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● X = [−1, 1]d, equipped with the uniform measure and the function u defined as follows,

u(x) = g(x1, x2) + g(x3, x4) + . . . + g(xd−1, xd), where g(xν , xν+1) =
3

∑
i=0

x
i
νx

i
ν+1.

● Polynomial approximation spaces Vν = Pp(Xν), with p chosen to have a negligeable
discretization error (p = 4).

Balanced tree Permuted balanced tree
d n n

8 [460; 460] [2293; 2438]
16 [940; 957] [13679; 14682]
24 [1420; 1471] [45921; 49402]

Table – Confidence intervals of levels 10% and 90% for the number of evaluations n with two
different dimension partition trees.

A motivating example
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1. For each leaf α = {ν}, 1 ≤ ν ≤ d, we determine Uα an approximation of the α-principal
subspace of u.

→ r1, r2, r3, r4 and r5 are known.

{1} {2} {3} {4} {5}

2. Choose a random pairing P and estimate the associated α-ranks

r12

{1} {2}

r34

{3} {4}

r5

{5}
and calculate the corresponding cost function
C = ∑α∈P rαrS1(α)rS2(α) = r12r1r2 + r34r3r4 + r2

5

Leaves-to-root optimization of the tree
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2. Select two nodes β1 and β2 (choosing preferentially the ones whose parent has a high
α-rank), β ∼ rankparent(β)(u)γ with γ an integer.

r12

{1} {2}

r34

{3} {4}

r5

{5}

Leaves-to-root optimization of the tree
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2. Select two nodes β1 and β2 (choosing preferentially the ones whose parent has a high
α-rank), β ∼ rankparent(β)(u)γ with γ an integer.

r15

{1} {5}

r34

{3} {4}

r2

{2}
and permute these two nodes. Estimate the new α-ranks (associated to this new
partition), calculate the new cost C⋆, if C⋆ < C accept the permutation.

3. Repeat the operation nP times.

Leaves-to-root optimization of the tree

Cécile Haberstich, Anthony Nouy, Guillaume Perrin 17-18 September 2020 18 / 23



Introduction Boosted least-squares PCA for TBT formats Tree adaptation Conclusions

2. Select two nodes β1 and β2 (choosing preferentially the ones whose parent has a high
α-rank), β ∼ rankparent(β)(u)γ with γ an integer.

r15

{1} {5}

r34

{3} {4}

r2

{2}
and permute these two nodes. Estimate the new α-ranks (associated to this new
partition), calculate the new cost C⋆, if C⋆ < C accept the permutation.

3. Repeat the operation nP times.

r15

{1} {5}

r32

{3} {2}

r4

{4}
Determine Uα for α = {1, 5},{2, 3}. → r15, r23 and r4 are known.

Leaves-to-root optimization of the tree
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4. Proceed similarly with the next level, for pairing {1, 5}, {2, 3} and {4}.
r{1,5,4}

{1, 5} {4}

r23

{2, 3}
5. This yields a dimension tree.

{1, 2, 3, 4, 5}
{1, 5, 4}
{1, 5}

{2} {5}
{4}

{2, 3}

{2} {3}

6. Compute the final approximation u⋆ = P̂ U{1,4,5}⊗U{2,3}
u

Leaves-to-root optimization of the tree
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● X = [−1, 1]d, with, d = 24, equipped with the uniform measure and the function u,

u(x) = g(x1, x2) + g(x3, x4) + . . . + g(xd−1, xd), where g(xν , xν+1) =
3

∑
i=0

x
i
νx

i
ν+1.

● Polynomial approximation spaces Vν = Pp(Xν), with p chosen to have a negligeable
discretization error (p = 4).

● Approximation with a prescribed tolerance ε = 10−14

n ntotal

[q10 ; q50 ; q90] [q10 ; q50 ; q90]
Deterministic algo from [1] [1540 ; 2075 ; 3008] [24221 ; 27182 ; 28313]

Stochastic algo presented here [2955 ; 6321 ; 10814] [9865 ; 14212 ; 19089]
Random Balanced Tree [17867 ; 24115 ; 35865] [17867 ; 24115 ; 35865]

Table – q10, q50, q90 are the 10th, 50th and 90th quantiles for a number of evaluations n, nP = 10d.

[1] Grasedyck L. Ballani J. Tree adaptive approximation in the hierarchical tensor format. SIAM J. Sci. Comput.
2014.

Numerical example with local optimization
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/ Tree optimization is a combinatorial problem.

, Stochastic algorithm → compromise between the number of trees explored (cost for
optimization) and the search of the optimum, compared to a deterministic strategy.

, Total cost is better in expectation than a random tree.

Conclusions of the third part
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The proposed algorithm :

● provides an approximation of u in tree-based tensor format using evaluations of the
function at a structured set of points,

● provides a controlled approximation (for a sufficiently a high number of evaluations of
the function u).

● Under some assumptions on the function class and results on empirical PCA, a bound
of the number of evaluations necessary to reach a certain precision can be obtained
(very pessimistic compared to experiments...).

We proposed fully adaptive strategies for :

● the control of the discretization error,

● the tree selection,

● the control of the α-ranks,

● the estimation of the principal components.

Conclusions
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Thank you for your attention.
Do you have any questions ?
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