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Abstract:

The aim of my current PhD work is to produce a correlated Bernoulli process using a concept
known as de Bruijn graphs [1, 2]. The motivation for this work came from studying numerical
models which have two distinct regions in output space where a classification method is required.
For example, we may have a computer model that fails to complete for specific input regions, and
we would like to predict where to avoid running the model or incorrectly running an emulator.

A widely used method for classification is logistic regression, which produces a distribution for the
predictive class membership of being in one of the two regions. When sampling from this to make
predictions, the current practice is to draw from an independent Bernoulli distribution. Drawing a
0 would represent one of the regions and drawing a 1 would represent the other. However, drawing
marginally means that any correlation that was being considered between data is lost and this
can result in large numbers of misclassifications. This is especially true near the boundaries of the
regions where we have very high uncertainty.

Although we can take many independent Bernoulli draws and average them to create a smooth
boundary, this is still not a full solution as we would have to assign a threshold to find the two
regions. Therefore, the aim of my work is to produce an equivalence to a Bernoulli process where
correlation is incorporated when making draws or samples. This novel process should have a high
correlation between points that are close together and a low correlation for points that are far
apart. In a one dimensional scenario, this would correspond to being able to produce sequences
of 0s and 1s such that like symbols cluster together instead of appearing fairly random. We will
then hopefully see a clean cut boundary between regions when making classification predictions,
instead of having frequent misclassifications.

We use the structure from de Bruijn Graphs. A de Bruijn graph is a directed graph, where given a
set of ‘letters’, V , and a ‘word’ length, m, the nodes of the graph consist of all possible sequences
of V of length m. Edges are drawn between node pairs in such a way that the connected nodes
have overlaps of m− 1 nodes. An edge is created by removing the first symbol and adding a new
symbol to the end from V . So from each vertex, (v1, ..., vm) ∈ V m, there is an edge to vertex
(v2, ..., vm, v) ∈ V for every v ∈ V . The word length controls the number of states that each
individual state is dependent on, increasing correlation over a wider area. On each directed edge
of the de Bruijn graph, we are able to assign a probability of transitioning from the previous node
to the next. We can thus immediately see that there is a connection to Markov chains. However,
we make a key definition here that de Bruijn graphs have a Markov property on the de Bruijn
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word and not the letter. I.e. the current word is dependent on only the previous word in the
sequence and no other. This means that we can create far more structure than if it were simply
the letters that were Markov.

To link de Bruijn graphs with this idea of a correlated Bernoulli process, we will be dealing with
the set of s = 2 letters, V = {0, 1}, and we can make the following definition:

Definition (de Bruijn Process): The de Bruijn process is a process to produce sequences of ‘letters’
from the set, V = {0, 1}, where correlation is included through a de Bruijn graph structure with
length m ‘words’. There is defined to be a Markov property on the de Bruijn words but not on
the letters such that for time step, t:

P (Xt = it|Xt−1 = it−1, Xt−2 = it−2, ..., X0 = i0) = P (Xt = it|Xt−1 = it−1) = p
it

it−1
, (1)

for random variables, X, and where p
it

it−1
is the probability of transitioning from the word it−1 to

word it.

We can then define several properties for the de Bruijn process. The most interesting of these
is a run length distribution which specifies the probability of observing each length of runs of 1s
(or 0s) in a sequence for a given de Bruijn process. The run length gives an idea of the number
of consecutive 1s (or 0s) in a row, giving a measure of how ‘sticky’ a sequence generated from a
specific de Bruijn process is likely to be. From this we can calculate the run length expectation,
variance and generating functions.

We have also developed a method of inference for the de Bruijn process so that given a sequence
of 0s and 1s, we can estimate the de Bruijn process that was used to create it. This involves esti-
mating both the word length, m, and the transition probabilities, p, that determine the correlated
structure of the corresponding Markov chains.

Following on from the 1d de Bruijn process, we have also looked into ways to expand the method
to higher dimensions, and whether we can remove the unnatural direction that is associated with
de Bruijn graphs.
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