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Abstract:

Surrogate modeling for computational models is a standard tool in uncertainty quantification:
instead of the complex engineering model, an approximation is constructed that reproduces the
input-output relationship and can be evaluated at a much smaller cost. Much of the research
effort has concentrated on models for which the input-output relationship is deterministic and the
uncertainty in the output is induced only by the input uncertainty.

A different class of computational models is the class of stochastic simulators, which are non-
deterministic models: evaluating the model several times for the same input parameters will
return a different output each time, so that for a fixed input vector, the model output is a random
variable. The stochastic behavior is due to unknown or uncontrollable latent variables inside the
model. Some stochastic simulators, such as agent-based disease propagation models (SIR model),
feature inherent randomness. The individuals or agents have a certain probability of meeting each
other, of getting infected, and of recovering. For the same initial conditions, repeated runs of the
model have different realizations of agent meetings, infections, and recoveries, which results in a
variety of epidemic outcomes.

Another example for stochastic simulators are wind turbine simulations (TurbSim-OpenFAST),
which compute the structural response of a turbine to incoming wind. The time- and space-
dependent wind function is high-dimensional, and it can be challenging to specify its exact dis-
tribution. Furthermore, just as for real-life experiments with wind turbines, the investigators are
typically not interested in the turbine’s structural response to a specific realization of the wind
field; rather, they are interested in its response for a class of wind fields characterized by certain
easily measurable values. The input to a stochastic wind turbine model is therefore a vector of
values characterizing the wind field, such as mean and standard deviation of the wind speed, inflow
angle, etc. For a given vector of characteristic values, a corresponding time series, which will be
different in every run, is generated inside the simulator.

Often, the quantity of interest is the probability density function (PDF) of the model output for a
given input vector. One line of research aims at constructing a model for the output PDF over the
input domain, using a number of independent evaluations of the stochastic simulator across the
input domain [MIDVR12, ZS19b, ZS19a]. These approaches do not require repeated evaluations
of the stochastic simulator at the same point (replications). In this contribution, we take a
different view: We interpret the stochastic simulator as a stochastic process {H(x, ω) : x ∈ D},
indexed over the input domain D. The random vector X ∈ D denotes the (explicitly modeled)
probabilistic input to the simulator, while ω stands for the latent variables responsible for the
stochastic behavior of the simulator. We assume that the trajectories {H(x, ω̂) : x ∈ D} are
continuous for any given ω̂. Our goal is to infer the distribution of the underlying stochastic
process from data, which is given in the form of discrete trajectories, i.e., evaluations

{H(x(j,i), ω(j)) : j = 1, . . . ,M, i = 1, . . . , Nj}
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at a set of experimental design points {x(i,j)} for a number of fixed latent variables ω(j). The
experimental design may be different for each ω(j). Note that conceptually, the latent variables
are uncontrollable or unknown; however in the case of computational models, it is possible to
control them through fixing the seed of the random number generator.

The simulation of non-Gaussian, non-stationary second-order stochastic processes from data is
a topic that has received considerable attention, e.g., [PHQ05, PZ14, AHSW19]. In most of
these simulation approaches, a central ingredient is Karhunen-Loève expansion (KLE). KLE is
a spectral decomposition technique that uses the eigendecomposition of the covariance operator
of the stochastic process to separate the process into spatial and random contributions. If the
given discrete trajectories are interpolated by certain basis functions, the KLE integral eigenvalue
problem can be computed analytically [PZ14]. We propose a similar approach: Instead of inter-
polation, we approximate the discrete trajectories by sparse regression-based polynomial chaos
expansions (PCE). Using extended KLE on the space L2

fX
[IDM06], where fX is the PDF of the

input random vector, the integral eigenvalue problem can be solved analytically in terms of the
PCE coefficients. PCE acts as a dimension reduction technique and is efficient if the model can
be represented sparsely in the PCE basis, which is often the case for engineering models (sparsity-
of-effects heuristic). The joint distribution of the random KLE coefficients, which governs the
non-Gaussianity of the simulated stochastic process, is estimated using state-of-the-art proba-
bilistic methods such as inference of marginal distributions and vine copulas [TMES19, TMS19].
By resampling the estimated joint distribution, new realizations of the stochastic process can be
generated.

We demonstrate the performance of our approach on several benchmark problems and compare
it to other recent developments for stochastic simulators [ZS19b, AHSW19].
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