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Abstract:

Generative Neural Networks (GNN) are being increasingly used in the context of inverse problem
solving (e.g., in imaging [5][3] and in geoscience [4][6]). Probabilistic inversion in such a framework
was recently proposed by [4] where a Generative Adversarial Network is trained to map from a low-
dimensional latent space, endowed with a simple prior, into the targeted input space, allowing to
sample unconditionally from this space using a low-dimensional parametrization. Samples from the
posterior on the latent vectors are then generated using Markov Chain Monte Carlo. We leverage
recent advances in set estimation with the aim to uncover the whole range of possible inverse
solutions associated with a data response while keeping a moderate computational budget and
complying with likelihood-free approaches. We denote by x the targeted input, by y the response
of interest, and by F the deterministic mapping linking y to x (possibly up to some measurement
error, or “noise”). The vector x is typically of very large dimension and y of smaller dimension.
We further assume that both x and y can be expressed as a function of some latent vector z
(of moderate dimension compared to x), say (x,y) = g(z) = (g1(z), g2(z)). In GNN modelling,
it is customary to postulate a probability distribution for z. We denote this distribution by µz

and use the notation Z to speak of a random vector possessing this distribution. We similarly
denote by (X,Y) = g(Z) = (g1(Z), g2(Z)) and by µ(X,Y) the induced “push-forward” probability
distribution of (X,Y). A consequence of the underlying latent space assumption is that, under
this formalism, uncovering the conditional distribution of X knowing Y amounts to uncovering
the distribution of g1(Z) knowing g2(Z), which follows in turn from the conditional distribution
of Z knowing g2(Z). Yet the latter is not straightforward to derive for several reasons:

• g2 is not known a priori and must me estimated from data;

• g2(Z) = Y is generally observed in noise, and the noise distribution is not necessarily known;

• Deriving conditional distributions typically requires heavy computational procedures.

Our approach starts with a sample from the joint distribution µ(X,Y) and we rely on existing
approaches for fitting a GNN model based on it, resulting in some estimated ĝ = (ĝ1, ĝ2). In the
example of the figures below we used couples (X,Y ) such that Y = X2 and X ∼ U(−3, 3). We
want to retrieve the set of values of X that correspond to the condition y ≈ 7. We used vectors
Z = (Z1, Z2) with each Zi ∼ U(−5, 5). Our approach then consists in using statistical techniques
to estimate the set of values of the latent vector Z, ΓZ , such that ĝ2(Z) is close to the observed y.
Particularly, we rely on recent algorithms in Bayesian set estimation based on Gaussian Process
models [2][1] and demonstrate their potential to gain insights on regions of the latent space that
are compatible with observed data (cf. top line of Figure 1). This leads to new approaches for
inverse problem solving and related uncertainty quantification tasks (cf. bottom line of Figure 1).
We will evaluate our methodology on linear, non-linear, toy and real inverse problems.
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Figure 1: Top left: ΓZ (in green) with Y contours; Top right: ΓZ (in green) with X contours;
Bottom left: posterior P (Z2/y ≈ 7); Bottom right: posterior P (X/y ≈ 7)
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