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Löıc Le Gratiet † ‡, Josselin Garnier †

‡ CEA, DAM, DIF, F-91297 Arpajon, France
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1 Presentation

I am a PhD student at the university of Denis-Diderot Paris VII and the CEA (the french atomic
energy authority). I have a master degree at the university of Jean-Monnet of Saint-Etienne and I
am an engineer graduate of the “Ecole Nationale Supérieure des Mines de Saint-Etienne”. My PhD
thesis - started on october 2010 - is in applied mathematics, statistics and probability area. My PhD
advisor is Josselin Garnier, professor at the university of Denis-Diderot Paris VII and my CEA advisor
is Claire Cannaméla, a doctor in applied mathematics from the university of Denis-Diderot Paris VII.

My PhD thesis - entitled “Multifidelity metamodelling and experimental design” - deals with the
approximation of the output of large computer codes or costly real experiments, in order to design
complex physical systems. Indeed, at CEA, some complex computer simulations last weeks or months
and, in this case, building a classical surrogate model requires too many computer experiments to be
reasonable.

2 Abstract

Kriging-based approximation is a useful tool to approximate the output of a Monte-Carlo simulator.
Such simulator has the particularity to have a known relationship between its accuracy and its compu-
tational cost. Our objective is to find a sampling strategy optimizing the tradeoff between the fidelity
and the number of simulations given a limited computational budget when the fidelity of the M-C
simulator depends on the value of the input space parameter. This poster joins within the framework
of the multi-fidelity metamodelling. Actually, at CEA, computer codes can usually be run at different
levels of complexity and a hierarchy of s levels of code can hence be obtained. The aim of multi-
fidelity metamodelling is to study the use of several levels of a code to predict the output of the most
expensive one. The reader is refered to [Le Gratiet (2011)] for further detail about the multi-fidelity
metamodelling.

The output provided by a Monte-Carlo simulator has the following form:

fNj
(x) =

1

Nj

Nj
∑

i=1

Yi(x)

where Yi(x) are independant random variables of variance τ2(x). We therefore have var (fN (x)) =
τ2(x)
N

. The kriging predictive variance is given by :

s2(x) = k(x, x)− kT (x)(K +∆)−1k(x)

with k(x, y) a continuous symmetric positive definite kernel, kT (x) = (k(x, x1), . . . , k(x, xn)), D =
(x1, . . . , xn) the experimental design and (K +∆) is the matrix given by:

K +∆ = [k(xi, xj)]1≤i,j≤n +

[

τ2(xi)

Ni

δi=j

]

1≤i,j≤n

1
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A widely used sampling design strategy consists in minimizing the Integrated Mean Squared Error:

IMSE =

∫

D

s2(x)dµ(x)

where µ(x) is a measure on the input random space. If we consider a constant budget T =
∑n

i=1 Ni and
a given experimental design D, our first objective is to find the best allocation (N1, . . . , Nn). In fact,
we proved that under certain restricted conditions (i.e., when K is diagonal) the optimal allocation is
given by:

Ni =
1

k(x, x)

(

√

τ2(xi)
∑n

i=1

√

τ2(xi)

(

k(x, x)T +

n
∑

i=1

τ2(xi)

)

− τ2(xi)

)

We numerically observe that this allocation remains efficient in more general cases although it is not
anymore optimal.

Our second objective is to determine the model improvement if we increase the budget T . In fact
if we consider the Karhunen-Loève decomposition of k(x, y):

k(x, y) =
∑

p≥0

λpφp(x)φp(y)

and if the eigenvalues λp satisfy the asymptotic behavior λp = O

(

1
pα

)

, when p >> 1 with α > 1. Then

the IMSE decreases as 1

T
1−

1

α

. Therefore, the improvement depends on the kernel function k(x, y). The

presented results are a generalization in the non-degenerate case of the results presented in the thesis
of [V. Picheny (2009)] and in [Rasmussen & Williams (2006)].

Examples

• For a fractional Brownian motion with Hurst coefficient H, we have α = 2H + 1.

• For a 1-D Matèrn kernel of regularity parameter ν, we have α = 2ν.

• For a 1-D Gaussian kernel we have the asymptotic λp = O(exp(−p)) and the IMSE decreases

as log(T )
T

.

We see that the IMSE decay rate depends on the regularity of the kernel function. The asymptotic
behaviour of the eigenvalues for a fractional Brownian motion is presented in [Bronski (2003)], for the
Matèrn class covariance function in [Pusev (2011)] and for the Gaussian kernel function in
[Schwab & Todor (2006)].
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