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Background




Industrial context

|1 Time-consuming computer codes

car crash-test simulator, thermal hydraulic code in nuclear
plantsoil production simulator, etc.
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xiOsinput variables D yjOs : theput variables

Many possible configurations for the variables: often uncertain,
quantitative/ qualitative, sometimes spatio-temporal, nested...



Mathematical background

1 The idea Is taouild a metamodecomputationally efficient
from a few dataobtained with the costly simulator
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Mathematical background

' Metamodel building: thprobabilistic framework
Interpolation is done by conditioning a Gaussian Process (GP)
Keywords: GP regreskiogingnodel
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Mathematical background

' Main advantages of probabilistic metamaodels
Uncertaintyquantification
Flexibilityw.r.t. the addition of new points
Customizablethanks to thetrend and the covarianckernel
k(x,xO) = c\Z(x), Z(xO) )
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Mathematical background

' Metamodel building: thinctional framework

Interpolation and approximation problems are solved in the setting
of Reproducindernel Hilbert Space$RKHS), by regularization

1 The probabilistic and functional frameworks are not fully
equivalent, butranslationsare possible via the Loeve
representation theorem

? K@) — 7,

(K(x?')’ K(ya )> — K(J;,y) — <Za:a Zy>

' In both frameworkskernels play a key role
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Part 2
Selected contributions
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Contributions B Metamodels



Additive kernels

' Additive Kriging [at least: Plate, 1999]
Adapt the idea of Additive Models to Kriging
Z(x) = Z(%) + E+ Z ((x)
Resulting kernels, for independent processes:
k=ki®...®ky
1 The aim:To deal with theurse of dimensionality

11 Our contribution [Collab withN. Durrande, andD. Ginsbourge}

Theory:Equivalence betwedternel& sample pathadditivity
Empiric: Investigation ofralaxation algorithm for inference
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Additive kernels

' Examples of simulatiorigackage fanovaGraph]
A rigid pattern... with more degrees of freedom

Non-additive kernel Additive kernel
Z(x) =1 Y(x) Z(X) =1 1Z,(Xy) + ! ,2Z5(X5)
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Block-additive kernels

11 The idedCollab. with T. Muehlenstaedt, J. Fruth, S. Kuhnt and L. Carraro]
To identifygroupsof variables that have no interaction together
To use the interactiongjraphto defineblock-additive kernels

' New mathematical tools

Total interactions
Involves the inputs sets containibgth x; and x

Stiy = 2 uaqigy S

FANOVA graph
Vertices: input variables b Edges: weighted by the total interactions
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Block-additive kernels

' lllustration of the idea relevance on the Ishigami function
f(x) = sin(xq) + Asire(x,) + B(g)*sin(x) = f,0x;) + f; x1,%;)

k=ki Q@ky® ks k=ko® (ki ®ks)

py %‘.

o - ;
— RMSE = 0.1479 / — RMSE = 00318 (3 )
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Block-additive kernels

11 Illustration of the blocks identification on a 6D function @b

f(x) = cos([1,%%, %]Ja0) ESTIMATION

+

"'Sin([l’%’)%,xe]l}é) THRESHOLDING
+tan([1,%,%,]cO)

f(x) = 11 5 4%, %,%)

5. d% %6 %)
3 A6, %) -

Z(X) = Zl,2,3(xl’;2’X3) N NWERSPE (RN
+ 2, 5 d %%, %) Indep + Ky 5,415, h)
+ Z3 (%3 %)) Assump + K3 4(hs, hy)
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Block-additive kernels

|1 Graph thresholding issue
Sensitivity of the method accuracy to the graph threshold value

RMSE vs delta,
function b
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Application to two case studies

Standard Kriging Model Modified Kriging Model
Sheet Part 0 o
T T
Flange Aﬁ.:fer forming i |
angle / o o
@ 8
<> . <> .
/ 0 Te]
After springback o™ o
5 — RMSE = 0.0867 | — RMSE = 0.0758
- T T T - T T T
12 13 14 12 13 14
y y
Estimated Graph
e _
© O main effect
pag O interactions
[(e]
© -
=+ _
o
™~
R
Q ] ——
[en]
K1 X2 X3

17



Application to two case studies

Standard Kriging Model Modified Kriging Model
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Kernels for Kriging mean SA

' Motivation:
To perform asensitivity analysis (independent inputs) of the proxy
To avoid the curse of recursion

11 The idedCollab. with N. DurrandeD. Ginsbourger and L. Carraro]
Adapt the ANOVA kernels
k=1+k)®..0 (1+kg)
based on the fact that the FANOVA decomposition of
f=0+A)®..0 1+ fa)

where thefOsare zero-mearfunctions, is obtainedirectly by
expanding the product (Sobol, 1993)
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Kernels for Kriging mean SA

11 Solution with the functional interpretation
Start from the 1d-RKHSH, with kernelk;

Build theRKHS ofzero-meanfunctions inH;, by considering
the linear form |2 h — [ h(t)dv;(t). Its kernel is:

. . [ ki(z,s)dvi(s) X [ ki(y,t)dvi(t)
kio(z,y) = ki(z,y) I ki (s,t)dvi(s)dvi (t)

Use themodified FANOVA kernel
k = (1 + kl,O) X ... (1 -+ kd,O)
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Kernels for Kriging mean SA

With this kernel, the Sobol indicest any order of the corresp
Kriging mean are computeahalytically without recursion

Proposition 3. The sensitivity indices S; of m are given by:

S = var(my (X)) _ FK™ (Qier i) KT'F
var(m(X))  ptg-1 (szl(lnxn T — 1nxn) K-1F

where T'; is the n X n matriz ['; = fDi K (z;)K (z;)tdp; (z;) and 1y is the k x 1
matriz of ones.

21
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Contributions B Designs



Selection of an Initial design

11 Theradial scanning statistic (RSS)
Automatic defects detection in 2D or 3D subspaces
Visualization of defects

Underlying mathematics:
law of a sum of uniforms, GOF test for uniformity based on spacings

If we use this design with a deterministic
simulator depending only on,,
we lose 80% of the information!




Selection of an initial design

|1 Context: first investigation of deterministiccode
|1 Two objectives, and the current practice:
11 To catch the code complexity
space-fillindesigns (SFDs)
11 To avoid losing information by dimension reduction
space-fillingness should be stable by projection onto margins

11 Our contribution [Collab. with J. Franco, A. Jourdan and L. Carraro]
' Dimension reduction techniques involve variables of the forre:
space-fillingness should be stable by projectizin onio



Selection of an initial design
1 Application of the RSS to design selection
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Contributions P Software



Software for data analysis

1 The need
To apply the applied mathemation industrial case studies
To investigate the proposed methodologies
To re-use our [own!] codedl year later (hopefully more)E

11 The software form
R language:
Freeware - Easy to use - Huge choice of updated libraries (packages)

User-friendlysoftwareprototypes
Trade-off between professional quality (unwanted) and un-re-usable codes
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Software for data analysis

1 The packages and their authors

A collective work: Supervisors [really], (former) PhD students
andE some brave industrial partners!

DiceDesign :J. Franco, DupuyO. Roustant

DiceKriging :O. Roustant, D. Ginsbourger,Y. Deville

DiceOptim :D.Ginsbourger, O. Roustant

DiceEval: D.DupuyC Helbert

DiceView :Y. Richet,Y. Deville, C. Chevalier
Kriginv : V.Picheny.Ginsbourger

fanovaGraph : JFruth, T. MuehlenstaedfRQustant
(in preparation) AKM :N. Durrande
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Software for data analysis
1 The Dice packages (Feb. and March 2010) and their satellites

DiceDesign ~ DiceOptim
Design creation and evaluation Kriging-Based optimization

Kriglnv

DiceKriging / Kriging-Based inversion
Creation, Simulation, Estimatien,

and Prediction of Kriging models

DiceEval .
Validation of DiceView "a
statistical models Section views of

Kriging predictions

4



Software with data analysis

11 Some comments about implementation [ongoing work with
D. Ginsbourger, and Y. Deville]
' Leading Idea
The code should be as close as possible as the underlying maths
Example: Operations on kernels.

lllustration with isotropic kernels

:to create a new
program k., for each new kernel k

Implemented solution : to have the
same code forany  kernel k
Tool: object-oriented programming
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Contributions B References



11 Additive kernels
' PhD thesis of N. Durrande

' N. Durrande D. Ginsbourger, O. Roustant (+2012Additive covariance
kernels for high-dimensional Gaussian process'modelmsion for the
Annales de la FacultZ des Sciences de Toulouse

|1 Block-Additive kernels

11 J. Fruth, O. Roustant, S. Kuhnt (+201Iyt@l interaction indices for the
decomposition of functions with high conip)eddy.

11 T.Muehlenstaedt, O. Roustant, L. Carraro, S. Kuhnt (20DBt{®
driven Kriging models based on FANOVA-decomMpusitished
online inStatistics & Computing



' ANOVA* kernels
11 PhD thesis of N. Durrande (2011)

' N. Durrande, D. Ginsbourger, O. Roustant, L. Carraro (+2012),
"Reproducing kernels for spaces of zero mean functions. Application to
sensitivity analysis", in revision for theurnal of Multivariate Analysis

| Radial Scanning Statistic
11 A first version in the PhD thesis of J. Franco (2009)

' The actual one in: O. Roustant, J. Franco, L. Carraro, A. Jourdan (2010),
"A radial scanning statistic for selecting space-filling designs in compute
experimentsin A. Giovagnoli,A.C. Atkinson, B.Thorsney and C. May,
"MODA - 9 - Advances in Model-Oriented Design and Analysis",
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|1 Software
Seeslide25 for the packages authdisames

O. Roustant, D. Ginsbourger,Y. Deville (+2012)iceKrigin@iceOptim
twoR packages for the analysis of computer experiments by kriging-bas
metamodellirmndoptimizatioh in revision for theJournal of Statistical

Software

11 For a synthesis: O. Roustant, mZmoire dOHDR, cospimg(on
my webpagég
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Part 3
Focus: Interaction screening
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Ongoing research, in collaboration with J. Fruth and S. Kuhnt



FANOVA- Hoeffding decomposition
(Efron and Stein, 1981, Hoeffding 1948, Sobol later)

11 Assume thalX,, E, X 4 are independent random variables.

Let f be a function defined oB in Rf. Thenf is uniquely
decomposed as:

with the centering conditions:

and thenon-simplificatiorconditions, implying orthogonality:

36



FANOVA decomposition

(main effects, interactions)

1 The terms are obtained recursively:

' Mean, Main effects

11 2" order interactions

' And more generally:



FANOVA decomposition
(Sobol indices)

't The name OFANOVAO becomes from the relation on
variances implied by orthogonality:

' (unnormalized) Sobol indices:
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FANOVA decomposition

(Total indices)

' The total index of one variable Xmplies all the subsets J
containng{i}

' Extension for a group of variables: ¥nplies all the subsets J
that containat least one elemenn | (or equivalenty, that are
not contairedin D [)
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Total indices and screening

11 If D,'=0, the variable Xis removed (no terms containing,)X
Remark:A condition is required on the probability measure

Total indices of the
g-Sobol function :

a=(0,1,4.5,9, 99, 99, 99, 99) Xg, Xg, X7, Xg
can be removed

[package
sensitivity]
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Total interactions & FANOVA graph

11 The of a group of variables Xmplies
all subsets J contaimy|l. For a pair:

D..TI =

1 The FANOVA graphs avalued graph with
Vertices: the input variables (weigth: main elfect
Edgesexists if the total interaction indebs >0, (weightits value)

41



Total interactions & Interaction screening

11f D, = 0, the interaction (XX) is removed in the graph
(no terms containing both Yand X)
Remark:A condition is required on the probability measure

Total interaction indices of f

All the interactions (X;,X;) with i in the
1st group {1,3,5} and j in the 2" one
{2,4,6} can be removed

42



Total interaction indices B Theory



FANOVA decomposition

(Closed indices)

1 The closed index of a group of variablegrKplies alll
subsets J contasal in |

11 The link with total indices is the following:
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First formula

11 There I1s an obvious link betweéntal interactionindices
andtotal effectsof agroup of variables

Proposition 1

45



Second formula (Ofixing methodO)

! X3, E, X 4, and consider th&"d order interactionof the
function:

(X3, %) " (X)) = 11(X ) + T(Xg) + T1o(Xq, %0, X g 2)

11 Denote Dy, g4 the Its Index. Then, the. L. index is
obtained byintegrationover Xxs,...Xy.
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Second formula (Ofixing methodO)

Proposition 2

Proofs (see [Fruth et al., 2011])
11 With the FANOVA decomposition of the 2-dimensional functic
2! Via total indices

a7



Total interaction indices B Estimation



Estimators of the total interaction
iIndices
11 Via closed effects with Monte Carlo (Sobol method)

11 Via total effects with RBD-FAST

11 FAST + (usual) Monte Carlo, for the fixing method

49



Estimators: some properties

FAST + MC

Estimator Positivity Bias Variance
Closed effects /

7
Sobol method NO 0 '
Total effects /

"
RBD-FAST NO can be large :
Fixing method / VES small 5

50




Estimators: numerical cost

' Number of function evaluations to evaluate all the total
Interaction indices

1 In this table:

d=problem dimension, M=6R.=500 (o satisfy the positivity
constraintL(>100), B,,,; Nyc are integers.
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Empirical tests

'1'In the following the 3 estimators are compared for a same
number of function evaluations

' Example 1:A 6-dimensional complex function
1 Example 2: A function with only oné®3®rder interaction
1 Example 3:A function with"2 order interactions only
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Example 1: A 6-dim. complex function

11 Let us consider the 6D g-Sobol function over [-0,1]

with a =(0,0,0,0.4,0.4, 5), and uniform distrib.

11 This Is a complex function:
Overall variancd: 3.27
Sum of main effects + 2nd order interactiohs2.06
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Example 1: A 6-dim. complex function

1 We compare the three estimators for an equal number of
functions evaluations

N =75000 ->L =7500,8,,~= 3 409, =10
N = 600 000 -> 8 times higher values for Ly f, Nyc
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Example 1: A 6-dim. complex function

Results for N = 15x40000, obtainedv\fvith 100 replicates



Example 2: Pure 3 ' order interaction

Results for N = 6x5000, obtained with 100 replicates, for the function:
X,X,X5, Over [-1,1]* (uniform measure)



Example 3: 2 " order interactions only

Results for N = 6x5000, obtained with 100 replicates, for the function:
sin(x;+X,) + 0.4*cos(x5tX,), over [-1,1]* (uniform measure)



Example 3: 2 " order interactions only

Remark . With the new estimator for the Sobol method [Janon et al, 2012]
58




Some important remarks

11 The accuracy of théxing methoddepends on the
variability of the interaction of the fixed function with
respect to the fixed variables
Very good for second order interaction only
Not so good for a (pure) high order interaction
Very good when the total interaction is zero

# Recommended for interaction screening

11 RBD-FAST is sometimes highly biased
Needs a correction (see [Tissot and Prieur, 2011])
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Total interaction indices ® Conclusion



Conclusion (1/2)

11 Tl generalizes screening to interactions

|1 Estimation:
The fixing method reduces computations to 2-dim. functions,
and is highly accurate to estimate inactive TII.

Two other estimators defined over usual estimators for total
or closed indices

Their accuracy depends on those ones
Reasonable global computational cost: €)(d
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Conclusion (2/2)

1 Scope:
2" d" 20 (say)
Suited to functions with high order interactions

Under the assumption @2order interactions onlyO:
TIl = 20d order interaction
The fixing method is very accurate

' Applications:
Data-driven identification of groups of variables
Recovery of block-additive structures
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Thank you for your attention!






Supplementary slides
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Software for data analysis

11 DiceOptim: Kriging-Based optimization
1llustration of the adaptive constant liar strategy for 10 processors

Start: 9 points (triangles) b Estimate a Kriging model.

15t stage: 10 points simultaneousiy { ) B Reestimate
2nd stage: 10 new points simuft ) B Reestimate
E
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Supplementary slides

11 DiceView: 2D (3D)section viewf the Kriging curve
(surface) and Kriging prediction intervals (surfaces) at a site
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