Estimation of the Sobol indices in a linear functional multidimensional model

J.C. Fort, T. Klein, A. Lagnoux and B. Laurent*

* Institut de Mathématiques de Toulouse
 TOULOUSE - FRANCE

7th International Conference on Sensitivity Analysis of Model Output
Nice - July 1-4, 2013

This work has been partially supported by the French National Research Agency through COSINUS program: Costa-Brava project
Let \mathbb{H} a separable Hilbert space endowed with the scalar product \langle , \rangle. Usually $\mathbb{H} = L^2$.
We consider the following linear model

$$Y = \mu + \sum_{k=1}^{p} \langle \beta^k, X^k \rangle + \varepsilon$$

- X^k are centered stochastic processes $\in \mathbb{H}$ s.t $\mathbb{E}(\|X^k\|^4) < \infty$;
- β^k are elements of \mathbb{H};
- ε is a centered noise independent of the X^k’s s.t $\mathbb{E}(\|\varepsilon\|^4) < \infty$.

Remark: such a model can arise for example when one wants to define a metamodel to replace an expensive black-box.
Our goal is to quantify the influence of X^k on Y, for $k = 1 \ldots p$.

We use as the suggested by Hoeffding decomposition the Sobol index

$$S^{(k)} := \frac{\text{Var}(E(Y|X^k))}{\text{Var}(Y)}, \quad k = 1 \ldots p.$$
Our goal is to quantify the influence of X^k on Y, for $k = 1 \ldots p$.

We use as the suggested by Hoeffding decomposition the Sobol index

$$S^{(k)} := \frac{\text{Var} \left(\mathbb{E}(Y|X^k) \right)}{\text{Var}(Y)}, \quad k = 1 \ldots p.$$

The model: Let us restrict to $p = 1$ and consider

$$Y = \mu + < \beta, X > + \varepsilon$$ \hspace{1cm} (2)$$

In this setting, the quantity to estimate

$$S = \frac{\text{Var} \left(\mathbb{E}(Y|X) \right)}{\text{Var}(Y)}$$

is of less interest, but the computations then easily extend to the generic model.
Outline of the talk

Estimators considered
- A first estimation of $\text{Var}(\mathbb{E}(Y|X))$
- A second estimation of $\text{Var}(\mathbb{E}(Y|X))$

Asymptotic properties of the estimators

Numerical Applications

Conclusion
Outline of the talk

Estimators considered
- A first estimation of $\text{Var}(\mathbb{E}(Y|X))$
- A second estimation of $\text{Var}(\mathbb{E}(Y|X))$

Asymptotic properties of the estimators

Numerical Applications

Conclusion
A first estimation of $\text{Var}(\mathbb{E}(Y|X))$

Precisions on the framework

The observations consist in n i.i.d. copies (X_i, Y_i) of (X, Y).

Since $\text{Var}(Y)$ is naturally estimated by the empirical variance based on (Y_1, \ldots, Y_n)

\[
\frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \frac{1}{n} \sum_{i=1}^{n} Y_i \right)^2,
\]

the main purpose is to estimate the quantity $\text{Var}(\mathbb{E}(Y|X))$.
A first estimation of $\text{Var}(\mathbb{E}(Y|X))$

Our approach is based on the so-called Karhunen-Loève decomposition of the processes X and β:

$$X = \sum_{j=1}^{\infty} \sqrt{\lambda_j} \xi_j \varphi_j \quad \text{and} \quad \beta = \sum_{j=1}^{\infty} \gamma_j \varphi_j$$

with ξ_j centered and uncorrelated random variables. Then

$$\langle X, \varphi_j \rangle = \sqrt{\lambda_j} \xi_j.$$
A first estimation of $\text{Var}(\mathbb{E}(Y|X))$

Notice that

$$
\mathbb{E}(YX) = \mathbb{E}(\langle X, \beta \rangle X) = \mathbb{E} \left[\left(\sum_{l=1}^{\infty} \sqrt{\lambda_l} \gamma_l \xi_l \right) \left(\sum_{l=1}^{\infty} \sqrt{\lambda_l} \xi_l \varphi_l \right) \right]
$$

$$
= \mathbb{E} \left[\left(\sum_{l=1}^{\infty} \lambda_l \gamma_l \xi_l^2 \varphi_l \right) \right] = \sum_{l=1}^{\infty} \lambda_l \gamma_l \varphi_l
$$
A first estimation of $\text{Var}(\mathbb{E}(Y|X))$

Notice that

$$\mathbb{E}(YX) = \mathbb{E}(<X, \beta > X) = \mathbb{E}\left[\left(\sum_{l=1}^{\infty} \sqrt{\lambda_l} \gamma_l \xi_l \right) \left(\sum_{l=1}^{\infty} \sqrt{\lambda_l} \xi_l \varphi_l \right)\right]$$

$$= \mathbb{E}\left[\left(\sum_{l=1}^{\infty} \lambda_l \gamma_l \xi_l^2 \varphi_l \right)\right] = \sum_{l=1}^{\infty} \lambda_l \gamma_l \varphi_l$$

As a consequence, $\gamma_j = \frac{1}{\lambda_j} < \mathbb{E}(YX), \varphi_j >$ that is naturally estimated by

$$\hat{\gamma}_j = \frac{1}{\lambda_j} \frac{1}{n} \sum_{i=1}^{n} <X_i, \varphi_j > Y_i.$$
A first estimation of $\text{Var}(\mathbb{E}(Y|X))$

First, we have

$$\hat{\gamma}_j = \frac{1}{\lambda_j} \frac{1}{n} \sum_{i=1}^{n} <X_i, \varphi_j> Y_i.$$
A first estimation of $\text{Var}(\mathbb{E}(Y|X))$

- First, we have

$$\hat{\gamma}_j = \frac{1}{\lambda_j n} \sum_{i=1}^{n} < X_i, \varphi_j > Y_i.$$

- Second, expansion in the KL basis gives

$$\text{Var}(\mathbb{E}(Y|X)) = \mathbb{E}(< \beta, X >^2) = \sum_{j=1}^{\infty} \lambda_j \gamma_j^2.$$

A natural estimation of $\text{Var}(\mathbb{E}(Y|X))$ is then

$$\hat{E}_m^1 = \sum_{l=1}^{m} \frac{1}{\lambda_l} \frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} Y_i < X_i, \varphi_l > Y_j < X_j, \varphi_l >.$$
A second estimation of $\text{Var}(\mathbb{E}(Y|X))$

- We consider another design of experiment: let ε' be a copy of ε, independent of X and ε and

$$\begin{cases} Y &= \mu + \langle X, \beta \rangle + \varepsilon \\ Y^X &= \mu + \langle X, \beta \rangle + \varepsilon' \end{cases}$$

- Now the observations consist in

 1. n-sample of (X, Y): (X_i, Y_i), $1 \leq i \leq n$.
 2. n-sample of (X, Y^X): (X_i, Y_i^X), $1 \leq i \leq n$.

A second estimation of $\text{Var}(\mathbb{E}(Y|X))$

- We consider another design of experiment: let ε' be a copy of ε, independent of X and ε and

$$
\begin{align*}
Y &= \mu + <X, \beta> + \varepsilon \\
Y^X &= \mu + <X, \beta> + \varepsilon'
\end{align*}
$$

- Now the observations consist in

 (1) n-sample of $(X, Y) : (X_i, Y_i), 1 \leq i \leq n$.

 (2) n-sample of $(X, Y^X) : (X_i, Y_i^X), 1 \leq i \leq n$.

- $\text{Var}(Y)$ is naturally estimated by the empirical variance based on (Y_1, \ldots, Y_n) and (Y_1^X, \ldots, Y_n^X)

$$
\frac{1}{2n} \sum_{i=1}^{n} \left[(Y_i)^2 + (Y_i^X)^2 \right] - \left(\frac{1}{2n} \sum_{i=1}^{n} [Y_i + Y_i^X] \right)^2.
$$
A second estimation of $\text{Var}(\mathbb{E}(Y|X))$

- It remains to estimate $\text{Var}(\mathbb{E}(Y|X))$ that can be rewritten as
 \[\text{Var}(\mathbb{E}(Y|X)) = \text{Cov}(Y, Y^X). \]
- A natural estimation of $\text{Var}(\mathbb{E}(Y|X))$ is then:
 \[
 \hat{E}^2 = \frac{1}{n} \sum_{i=1}^{n} Y_i Y_i^X - \left(\frac{1}{2n} \sum_{i=1}^{n} [Y_i + Y_i^X] \right)^2.
 \]
Straighforwardly \hat{E}_m^1 is biased and

$$B_m = \mathbb{E}(\hat{E}_m^1) - \text{Var}(\mathbb{E}(Y|X)) = \sum_{l=m+1}^{\infty} \lambda_l \gamma_l^2$$

whereas \hat{E}^2 is unbiased.
Straighforwardly \hat{E}_m^1 is biased and

$$B_m = \mathbb{E}(\hat{E}_m^1) - \text{Var}(\mathbb{E}(Y|X)) = \sum_{l=m+1}^{\infty} \lambda_l \gamma^2_l$$

whereas \hat{E}_m^2 is unbiased.

Some statistical questions:

1. Are \hat{E}_m^1 and \hat{E}_m^2 “good” estimators for $\text{Var}(\mathbb{E}(Y|X))$?
2. Are they consistent? If yes, what is the rate of convergence?
 Answer: Central Limit Theorem (cv in \sqrt{n}).
3. Are they asymptotically efficient?
4. Can we measure their quality at a fixed n?
 Answer: Berry-Esseen and/or concentration inequalities.
5. Are the estimators and designs of experiment comparable?
Outline of the talk

Estimators considered
 A first estimation of $\text{Var}(\mathbb{E}(Y|X))$
 A second estimation of $\text{Var}(\mathbb{E}(Y|X))$

Asymptotic properties of the estimators

Numerical Applications

Conclusion
Asymptotic properties of \hat{E}_m^1

Consistency: \hat{E}_m^1 and $\hat{E}_m^2 \xrightarrow{P} n \to \infty$ are consistent.
Asymptotic properties of \hat{E}^1_m

Consistency: \hat{E}^1_m and $\hat{E}^2 \xrightarrow{\mathbb{P}}$ are consistent.

Asymptotic normality

$$\hat{E}^1_m = \sum_{l=1}^{m} \frac{1}{\lambda_l} \frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} Y_i < X_i, \varphi_l > Y_j < X_j, \varphi_l >$$

$$= U_n K + P_n L - B_m + \text{Var}(\mathbb{E}(Y|X))$$

with $U_n K = \sum_{l=1}^{m} \frac{1}{\lambda_l} \frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} Z^c_{i,l}$

and $P_n L = \frac{2}{n} \sum_{l=1}^{m} \sum_{i=1}^{n} \gamma_l Z^c_{i,l}$.
Asymptotic properties of \hat{E}_m^1

We want to show

$$B_m^2 = o\left(\frac{1}{n}\right), \quad U_nK = o_P\left(\frac{1}{\sqrt{n}}\right), \quad \sqrt{n}P_nL \xrightarrow{n \to \infty} N(0, C(\beta))$$
Asymptotic properties of \hat{E}_m^1

We want to show

$$B_m^2 = o\left(\frac{1}{n}\right), \quad U_nK = o_p\left(\frac{1}{\sqrt{n}}\right), \quad \sqrt{n}P_nL \xrightarrow{\mathcal{L}} \mathcal{N}(0, C(\beta)).$$

Assumptions :

- (A1) $\mathbb{E}(\|X\|^4) < +\infty$ and $\mathbb{E}(\varepsilon^4) < +\infty$.
- (A2) $\sup_{l \geq 1} \mathbb{E}(\xi_l^4) < +\infty$.
- (A3) there exist $C > 0$ and $\delta > 1$ such that

$$\forall l \geq 1, \quad \lambda_l \leq Cl^{-\delta}.$$

Now let $m = m(n) = \sqrt{nh(n)}$, where $h(n)$ satisfies : $h(n) \to 0$ and $\forall \alpha > 0, \ n^\alpha h(n) \to +\infty$ as $n \to +\infty$.
Theorem (Asymptotic normality)

(i) Since \(\hat{E}_m^1 - \text{Var}(E(Y|X)) = U_n K + P_n L - B_m \)

and assuming (A1-3) and \(n^{1/2}(\delta + 2s) << m << \sqrt{n} \), one gets

\[
\begin{align*}
B_m^2 &= o\left(\frac{1}{n}\right) \quad \mathbb{E}\left((U_n K)^2\right) = o\left(\frac{1}{n}\right) \\
\sqrt{n}P_n L &\xrightarrow{L} \mathcal{N}(0, 4\text{Var}(Y < X, \beta >))
\end{align*}
\]

then \(\sqrt{n}(\hat{E}_m^1 - \text{Var}(E(Y|X))) \xrightarrow{L} \mathcal{N}(0, 4\text{Var}(Y < X, \beta >)) \).

(ii) Since \(\mathbb{E}(Y^4) < \infty \),

\[
\sqrt{n}(\hat{E}^2 - \text{Var}(E(Y|X))) \xrightarrow{L} \mathcal{N}(0, \text{Var}((Y - \mathbb{E}(Y))(Y^X - \mathbb{E}(Y^X))))
\].
We may assume that $h(n) = 1/\log(n)$, and hence $m(n) = \sqrt{n}/\log n$, to fill the condition

$$\forall \alpha > 0, \lim_{n \to \infty} n^\alpha h(n) = +\infty.$$

The estimator \hat{V}_m^χ converges at the parametric rate $1/\sqrt{n}$, for any β. We could have chosen a smaller value of m leading to the same asymptotic efficiency, but depending on δ.

Asymptotic properties of \hat{S}_m^1 and \hat{S}^2

Using the so-called Delta method, one can extend these properties of the numerators to the estimators of the Sobol index S:

Theorem (Asymptotic Normality)

(i) Under the same assumptions as in the previous theorem, we have

$$\sqrt{n} \left(\hat{S}_m^1 - S \right) \xrightarrow{L} \mathcal{N} \left(0, \frac{\text{Var}(U)}{(\text{Var}(Y))^2} \right)$$

where $U := 2Y < X, \beta > -S(Y - \mathbb{E}(Y))^2$.

(ii) Since $\mathbb{E}(Y^4) < \infty$,

$$\sqrt{n} \left(\hat{S}^2 - S \right) \xrightarrow{L} \mathcal{N} \left(0, \frac{\text{Var}(V)}{(\text{Var}(Y))^2} \right)$$

where $V := (Y - \mathbb{E}(Y))(Y^X - \mathbb{E}(Y)) - S^X/2 \left((Y - \mathbb{E}(Y))^2 + (Y^X - \mathbb{E}(Y))^2 \right)$.
Remark

- For independent inputs, we establish more generally in the product space
 - the consistency
 - the asymptotic normality
 - the asymptotic efficiency

of \(\hat{S}_m^1 := (\hat{S}_{m}^{(1,1)}, \ldots, \hat{S}_{m}^{(1,p)}) \) and \(\hat{S}^2 := (\hat{S}^{(2,1)}, \ldots, \hat{S}^{(2,p)}) \) to the vector of Sobol indices

\[
S := (S^{(1)}, \ldots, S^{(p)}),
\]

the indices 1 and 2 refer to the first and second estimators.

- One can also generalize these results to Sobol indices defined for subsets \(I \subset \{1, \ldots, p\} \).
Outline of the talk

Estimators considered
A first estimation of $\text{Var}(\mathbb{E}(Y|X))$
A second estimation of $\text{Var}(\mathbb{E}(Y|X))$

Asymptotic properties of the estimators

Numerical Applications

Conclusion
We consider the model with \(p = 2, \mu = 0 \) and \(\varepsilon = 0 \):

\[
Y = \langle \beta^1, X^1 \rangle + \langle \beta^2, X^2 \rangle
\]

1. **First Model**: \(\gamma^i = (\gamma^i_1, \gamma^i_2, \gamma^i_3, \ldots) \) for \(i = 1, \ldots, 2 \)

\[
\gamma^i_l = l^{\delta^i_l} \quad \text{for} \quad 1 \leq l \leq L \quad \text{and} \quad \gamma^i_l = 0 \quad \text{for} \quad l > L;
\]

with \(i = 1 \ldots 2 \) and \(\delta^i_l = (-1/2 - 1/100) \).

2. **Second Model**: \(\gamma^i = (0, \gamma^i_2, \gamma^i_3, \ldots) \) for \(i = 1, \ldots, 2 \).

3. **Third Model**: \(\gamma^i = (\gamma^i_3, \gamma^i_4, \gamma^i_5, \ldots) \) for \(i = 1, \ldots, 2 \).

We perform \(N_{\text{sim}} = 5000 \) simulations and we study the influence of the parameter \(n \), where \(3n \) observations are used for both methods. We set \(L = 500 \) and \(m = \lfloor \sqrt{3n}/ \log(3n) \rfloor \).
First Model: \(S = (0.5107, 0.4893) \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\text{RMSE}(\hat{S}_m))</th>
<th>(\text{RMSE}(\hat{S}_{SPF}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^2)</td>
<td>(10^{-2}[7.17, 7.21])</td>
<td>(10^{-2}[8.95, 9.14])</td>
</tr>
<tr>
<td>(10^3)</td>
<td>(10^{-2}[2.26, 2.20])</td>
<td>(10^{-2}[2.79, 2.83])</td>
</tr>
</tbody>
</table>

Second Model: \(S = (0.7535, 0.2465) \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\text{RMSE}(\hat{S}_m))</th>
<th>(\text{RMSE}(\hat{S}_{SPF}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^2)</td>
<td>(10^{-2}[8.07, 5.45])</td>
<td>(10^{-2}[7.80, 9.90])</td>
</tr>
<tr>
<td>(10^3)</td>
<td>(10^{-2}[2.52, 1.71])</td>
<td>(10^{-2}[2.41, 3.13])</td>
</tr>
</tbody>
</table>

Third Model: \(S = (0.8655, 0.1345) \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\text{RMSE}(\hat{S}_m))</th>
<th>(\text{RMSE}(\hat{S}_{SPF}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^2)</td>
<td>(10^{-1}[3.01, 0.48])</td>
<td>(10^{-2}[7.12, 9.97])</td>
</tr>
<tr>
<td>(10^3)</td>
<td>(10^{-2}[4.67, 1.28])</td>
<td>(10^{-2}[2.24, 3.17])</td>
</tr>
</tbody>
</table>
We consider the model with $p=4$, $\mu = 0$ and $\varepsilon = 0$:

$$Y = \sum_{k=1}^{4} \langle \beta^k, X^k \rangle$$

1. First Model: $\gamma^i = (\gamma_1^i, \gamma_2^i, \gamma_3^i, \ldots)$ for $i = 1, \ldots, 4$
 $$\gamma_j^i = (l + 1)^{\delta_i} \quad \text{for} \quad 1 \leq l \leq L \quad \text{and} \quad \gamma_j^i = 0 \quad \text{for} \quad l > L;$$
 with $i = 1 \ldots 4$ and $\delta_i = (-1/2 - 1/100, -1, -2, 3/2)$.

2. Second Model: $\gamma^i = (0, \gamma_2^i, \gamma_3^i, \ldots)$ for $i = 1, \ldots, 4$.

3. Third Model: $\gamma^i = (\gamma_3^i, \gamma_4^i, \gamma_5^i, \ldots)$ for $i = 1, \ldots, 4$.

We perform $N_{sim} = 5000$ simulations and we study the influence of the parameter n, where $5n$ observations are used for both methods. We set $L = 500$ and $m = \lfloor \sqrt{5n}/\log(5n) \rfloor$.

First Model : \(S = (0.5438, 0.2639, 0.0635, 0.1288) \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\text{RMSE}(\hat{S}_m))</th>
<th>(\text{RMSE}(\hat{S}_{SPF}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^2)</td>
<td>(10^{-2}[5.55, 4.29, 2.35, 3.22])</td>
<td>(10^{-2}[9.92, 9.80, 9.75, 9.63])</td>
</tr>
<tr>
<td>(10^3)</td>
<td>(10^{-2}[1.82, 1.36, 0.72, 0.99])</td>
<td>(10^{-2}[3.13, 3.12, 3.11, 3.06])</td>
</tr>
</tbody>
</table>

Second Model : \(S = (0.7080, 0.2085, 0.0200, 0.0635) \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\text{RMSE}(\hat{S}_m))</th>
<th>(\text{RMSE}(\hat{S}_{SPF}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^2)</td>
<td>(10^{-2}[6.35, 3.92, 1.47, 2.31])</td>
<td>(10^{-1}[1.04, 0.99, 0.99, 0.99])</td>
</tr>
<tr>
<td>(10^3)</td>
<td>(10^{-2}[1.92, 1.22, 0.41, 0.73])</td>
<td>(10^{-2}[3.29, 3.15, 3.19, 3.14])</td>
</tr>
</tbody>
</table>

Third Model : \(S = (0.7561, 0.1871, 0.0112, 0.0456) \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\text{RMSE}(\hat{S}_m))</th>
<th>(\text{RMSE}(\hat{S}_{SPF}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^2)</td>
<td>(10^{-2}[6.14, 3.72, 1.22, 2.01])</td>
<td>(10^{-1}[1.07, 1.00, 1.01, 0.99])</td>
</tr>
<tr>
<td>(10^3)</td>
<td>(10^{-2}[1.97, 1.17, 0.33, 0.60])</td>
<td>(10^{-2}[3.36, 3.16, 3.14, 3.13])</td>
</tr>
</tbody>
</table>
Outline of the talk

Estimators considered
 A first estimation of $\text{Var}(\mathbb{E}(Y|X))$
 A second estimation of $\text{Var}(\mathbb{E}(Y|X))$

Asymptotic properties of the estimators

Numerical Applications

Conclusion
We construct two different estimators of

\[S := (S^{(1)}, \ldots, S^{(p)}), \]

based on two different designs of experiment for the functional linear regression.

1. The first one \(\hat{S}_m^1 \) is based on the Karhunen-Loève expansion of the covariance operator \(\Gamma(f) = \mathbb{E}(< X, f > X) \) and performs better for large values of \(p \).

2. Nevertheless, it is more complex and requires the knowledge of the \(\lambda_j \) and \(\varphi_j \) that can be estimated in a future work.

3. The second is more general and applies whatever the context but is performing as well.
Bibliography

