Estimating Sobol indices by combining pick freeze estimators and Replicated Latin Hypercube sampling

Clémentine PRIEUR
(joint work with J.Y. Tissot)

University of Grenoble
Laboratoire Jean Kuntzmann
Inria "Project-team" MOISE

SAMO 2013, July 1-4 2013
One wishes to quantify the sensitivity of the output Y to the independent inputs X_1, \ldots, X_d by computing Sobol indices.

In this talk, we introduce new *pick & freeze estimator* based on Replicated Latin Hypercube sampling (RLHS).
I- Our new estimation procedure: notation, definition.

II- Properties.

III- Comparison with randomized QMC approaches.

IV- Conclusion, perspectives.
I- Our new estimation procedure: notation, definition

In this talk, we propose a new estimation procedure for first order Sobol’ indices, that is

\[S_i = \frac{\text{Var}(E(Y|X_i))}{\text{Var}(Y)}, \quad i = 1, \ldots , d. \]

We assume (without loss of generality)

\[\forall i = 1, \ldots , d \; X_i \sim U([0, 1]), \] the inputs are independent.
1- Our new estimation procedure: notation, definition

In this talk, we propose a new estimation procedure for first order Sobol’ indices, that is

\[S_i = \frac{\text{Var} (\mathbb{E}(Y|X_i))}{\text{Var}(Y)}, \quad i = 1, \ldots, d. \]

We assume (without loss of generality)

\[\forall i = 1, \ldots, d \; X_i \sim U([0,1]), \] the inputs are independent.

What about the pick & freeze estimation procedure?

Advantages • it is robust (one only needs very soft assumptions on the model), • one can derive asymptotic confidence intervals, • the rate of convergence does not depend on the dimension.

Disadvantages • this rate is rather slow \(n^{1/2} \), • with classical sampling strategies, the number of model evaluations needed for estimating all the first order Sobol’ indices is linear in the dimension \(d \).
I- Our new estimation procedure: notation, definition

Pick & Freeze procedure: n double evaluations of \mathcal{M} required.

Let \mathbf{X} and \mathbf{Z} be two independent random vectors distributed as $\mathcal{U}([0, 1]^d)$.

- the first of any double evaluation is a realization of the random variable $Y = \mathcal{M}(\mathbf{X})$,

- the complementary evaluation is a realization of the random variable denoted by Y_i defined by $Y_i = \mathcal{M}(\mathbf{X}_i : \mathbf{Z}_{ic})$ where $\mathbf{X}_i : \mathbf{Z}_{ic}$ is the d-dimensional random vector defined by

\[
(\mathbf{X}_i : \mathbf{Z}_{ic})_l = \begin{cases}
\mathbf{X}_i & \text{if } l = i \\
\mathbf{Z}_l & \text{if } l \neq i.
\end{cases}
\]
The i^{th} component of X has been frozen.
The i^{th} component of \mathbf{X} has been frozen.

We can prove [JKL$^+$12] that

$$S_i = \frac{\text{Cov}(Y, Y_i)}{\text{Var}[Y]} = \frac{\mathbb{E}[YY_i] - \mathbb{E}[Y]\mathbb{E}[Y_i]}{\text{Var}[Y]}.$$
The i^{th} component of X has been frozen.

We can prove [JKL$^{+}$12] that

$$S_i = \frac{\text{Cov}(Y, Y_i)}{\text{Var}[Y]} = \frac{\mathbb{E}[YY_i] - \mathbb{E}[Y]\mathbb{E}[Y_i]}{\text{Var}[Y]}.$$

Then the *pick & freeze* approach [Sob93] consists in proposing an empirical estimator for both the numerator and the denominator.
I- Our new estimation procedure: notation, definition

Design of Experiments:

we define

\[H(n) = \{ X^j, 1 \leq j \leq n \} \]
\[\tilde{H}(n) = \{ Z^j, 1 \leq j \leq n \} \]

We then define

\[H_i(n) = \{(X_i : Z_i^c)^j, 1 \leq j \leq n \} = \begin{pmatrix} Z_1^1 & \ldots & X_i^1 & \ldots & Z_d^1 \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ Z_1^n & \ldots & X_i^n & \ldots & Z_d^n \end{pmatrix} \]
I- Our new estimation procedure: notation, definition

Design of Experiments:

we define

\[H(n) = \{ X^j, \ 1 \leq j \leq n \} \]
\[\tilde{H}(n) = \{ Z^j, \ 1 \leq j \leq n \} \]

We then define

\[H_i(n) = \{ (X_i : Z_{i,c})^j, \ 1 \leq j \leq n \} = \begin{pmatrix}
Z_1^1 & \cdots & X_i^1 & \cdots & Z_d^1 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
Z_1^n & \cdots & X_i^n & \cdots & Z_d^n
\end{pmatrix} \]

Our design of experiments to estimate \(S_i \) with the \textit{pick & freeze} approach is \(D_i(N) = H(n) \cup H_i(n) \). It is of size \(N = 2n \).
I- Our new estimation procedure : notation, definition

Pick & freeze estimator:

For any j in $\{1, \ldots, n\}$, define

\[
\begin{align*}
Y^j_i &= \mathcal{M}(X^j) \\
Y^j &= \mathcal{M}((X_i : Z_{ic})^j)
\end{align*}
\]
I- Our new estimation procedure: notation, definition

Pick & freeze estimator :

For any j in $\{1, \ldots, n\}$, define

\[
\begin{align*}
Y_j &= \mathcal{M}(X_j) \\
Y_i^j &= \mathcal{M}((X_i : Z_{ic})^j)
\end{align*}
\]

We then introduce [JKL$^+$12]

\[
\hat{S}_{i,n} = \frac{1}{n} \sum_{j=1}^{n} Y_j Y_i^j - \left(\frac{1}{2n} \sum_{j=1}^{n} Y_j + Y_i^j \right)^2
\]

\[
\frac{1}{2n} \sum_{j=1}^{n} \left((Y_j)^2 + (Y_i^j)^2 \right) - \left(\frac{1}{2n} \sum_{j=1}^{n} Y_j + Y_i^j \right)^2
\]

Other choices for the empirical estimates of the numerator and the denominator are possible (e.g. [Sal02, Mau02, Owe12]).
I- Our new estimation procedure: notation, definition

We thus need \((1 + d)n\) evaluations of the model to compute all the \(\hat{S}_{i,n}, i = 1 \ldots, d\).

Example with \(d = 2\) and \(n = 4\):

- On the left hand side \(X (\star)\) and \((X_1 : Z_2)_{\text{sample}} (\bullet)\).
- On the right hand side \(X (\star)\) and \((X_2 : Z_1)_{\text{sample}} (\bullet)\).
I- Our new estimation procedure: notation, definition

Which design of experiments to overcome this issue?

Let D a design of experiments (DoE) of size n defined by

$$D = \{x^j = (x^j_1, \ldots, x^j_d), \ 1 \leq j \leq n\} \cdot$$

The DoE D' is replicated from D if there exist d independent random permutations of $\{1, \ldots, n\}$ — denoted by π_1, \ldots, π_d — such that

$$D' = \{x'^j = (x^{\pi_1(j)}_1, \ldots, x^{\pi_d(j)}_d), \ 1 \leq j \leq n\} \cdot$$
I- Our new estimation procedure: notation, definition

Then $D \cup D'$ can be used for estimating any first-order Sobol indices using the *pick & freeze* approach (see Figure below).

On the left hand side D is an independent sampling.

On the right hand side D is a LHS (thus D' too).
I- Our new estimation procedure: notation, definition

Replicated Latin Hypercube sampling \[\text{[McK95]}\]

Let \(H(n) = \{X^j, 1 \leq j \leq n\} \) and \(\tilde{H}(n) = \{X'^j, 1 \leq j \leq n\} \) be two Replicated Latin Hypercubes.

\[
j = 1, \ldots, n
\]

\[
x^j = \left(\frac{j-U_{1,j}}{n}, \ldots, \frac{j-U_{d,j}}{n} \right)
\]

\[
x'^j = \left(\frac{\pi_1(j)-U_{1,\pi_1(j)}}{n}, \ldots, \frac{\pi_d(j)-U_{d,\pi_d(j)}}{n} \right)
\]
I- Our new estimation procedure: notation, definition

Define $H_i(n) = \{X^\prime_{\pi^{-1}_i(j)}, 1 \leq j \leq n\}$

$$
\begin{pmatrix}
X^\prime_{\pi^{-1}_1(1)} & \ldots & X^1 & \ldots & X^\prime_{\pi^{-1}_1(n)} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
X^\prime_{\pi^{-1}_d(1)} & \ldots & X^d & \ldots & X^\prime_{\pi^{-1}_d(n)}
\end{pmatrix}
$$

We then choose $D_i(N) = H(n) \cup H_i(n)$. $D_i(N)$ allows estimating S_i with the *pick freeze* approach.

We remark that $D_i(N)$ as a non ordered set of points does not depend on i, and that’s the trick.
A central limit Theorem

If M^6 is integrable then for any $i \in \{1, \ldots, d\}$,

$$\sqrt{n}(\hat{S}_{i,n} - S_i)$$

satisfies a central limit theorem with zero-mean normal limit distribution.

Ideas for the proof: we first prove the result for two independent latin hypercubes, and then control the difference by replacing by replicated latin hypercubes.

Main tools: a SLLN and a CLT for latin hypercube sampling [Loh96], a delta method as in [JKL+12].

The asymptotic variance is smaller than the one in [JKL+12].
III- Comparison with randomized QMC approaches

Model: \(Y = f_1(X_1) \times \cdots \times f_d(X_d) \) with \((X_1, \ldots, X_d) \sim \mathcal{U}([0, 1]^d) \)

and

\[
f_i(X_i) = \frac{|4X_i - 2| + a_i}{1 + a_i}, \quad a_i \geq 0, \ i = 1, \ldots, d.
\]

i) \(d = 3, \ a = (0, 1, 9) \)

ii) \(d = 12, \ a = (0, 0, 0, 0, 1, 1, 1, 1, 9, 9, 9, 9) \)

iii) \(d = 24, \ a = (0, \ldots, 0, 1, \ldots, 1, 9, \ldots, 9). \)

\(\underbrace{8 \text{ times}}_{d-3}, \underbrace{8 \text{ times}}_{d-3}, \underbrace{8 \text{ times}}_{d-3} \)

i) \(S_1 = 0.742, \ S_2 = 0.185, \ S_3 = 0.007 \)

ii) \(S_1 = \cdots = S_4 = 0.098, \ S_5 = \cdots = S_8 = 0.024, \)

\(S_9 = \cdots = S_{12} = 0.001, \)

iii) \(S_1 = \cdots = S_8 = 0.018, \ S_9 = \cdots = S_{16} = 0.004, \)

\(S_{17} = \cdots = S_{24} = 10^{-4}. \)
III- Comparison with randomized QMC approaches

Rand. Sobol' seq.: a) Cranley-Patterson rotation, b) Owen's scrambling [Owe95, Owe97a, Owe97b].

mean squared error for \(S_1 \)

mean squared error for \(S_2 \)

mean squared error for \(S_3 \)

mss for \(S_1, \ldots, S_4 \)

mse for \(S_5, \ldots, S_8 \)

mse for \(S_9, \ldots, S_{12} \)
III- Comparison with randomized QMC approaches

mss for S_1, \ldots, S_8

mse for S_9, \ldots, S_{16}

mse for S_{17}, \ldots, S_{24}
We have proposed a new \textit{pick-freeze} estimator, based on replicated latin hypercube sampling, that allows estimating all the first order Sobol’ indices with a coat independent of the dimension.

Remarks, perspectives :

- the asymptotic variance in the CLT can be estimated (work in progress),
- the estimation procedure can be generalized with replicated latin hypercube sampling based on orthogonal arrays (strength 2\,=} second order Sobol’ indices, \ldots) \cite{TP12},
- one probably can adapt ideas in \cite{GJK13} for deriving non asymptotic properties (work in progress),
- \ldots

Some references II

Thanks for your attention