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Model Y = G(X1; : : : ; Xm)

X1; : : : ; Xm independent random variables, pdfpj , cdf Fj

The Contribution to the Sample Mean (CSM) for X j is:

8q 2 [0; 1];

Cj (q) =

F � 1
j (q)R

�1

� R
Rm� 1 G(x)pX� j (x� j )dx� j

�
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1st question

What relation between CSM plot
and �rst-order sensitivity indicesSj?
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Relation between CSM and �rst-order indicesSj

Property

Let denotecv = � (Y )=E(Y ) .

For any inputXj we have:

Sj =
1
c2

v
�

1Z

0

"
d
dq

(Cj (q) � q)

#2

dq (2)
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Elements of proof

CSM expression using conditional expectation

8q 2 [0; 1]; Cj (q) =
1

E(Y )

F � 1
j (q)Z

�1

E [Y j Xj = xj ] pj (xj )dxj
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2nd question

Computing �rst-order e�ectsSj
from a CSM plot?
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Polynomial regression

expansion of CSM usingshifted Legendre polynomials (Pk )k2 N

which are orthogonal on[0; 1]

8i = 1: : : n; ci =
dX

k= 0

� kPk (qi ) + � i
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expansion of CSM usingshifted Legendre polynomials (Pk )k2 N

which are orthogonal on[0; 1]

8i = 1: : : n; ci =
dX

k= 0

� kPk (qi ) + � i

selecting max order d? by minimizing AICc information criterion

d? = argmin
d2 N

"
n
2

� log

 
2�
n

nX

i = 1

� i (d)2

!

+
n
2

+
n � (d + 2)
n � d � 3

#

SAMO 2013 Nice July 1-4 Saint-Geours et al. 11 / 22



Introduction Relation between CSM and Sj Computing Sj from a CSM plot Test cases Conclusion

Polynomial regression

explicit formula for S j derived from Eqn.(2) usingPk properties

with :

~� k =
�

� k if k > 1;
� k � 1

2 if k = 1

we obtain:

Ŝj =
2

ĉv
2

dX

k;l= 1
k+ l 2 2Z

~� k ~� l � min(k; l ) [1 + min(k; l )] (3)
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3rd point

Numerical test cases
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Test cases

1 Ishigami function
X1 to X3 i.i.d � U[� �; � ]

Y = sin(X1) + a � sin(X2)2 + b � X4
3 � sin(X1)

2 G-Sobol function
X1 to X8 i.i.d � U[0; 1]
�xed parameter vectora = ( 0; 1; 4:5; 9; 99; 99; 99; 99):

Y =
8Y

j = 1

j4Xj � 2j + aj

1 + aj
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Conclusion

+ Results

explicit formulalinking S j and CSM (derivative)

Ŝj estimator based onpolynomial expansion of the CSM plot
(explicit formula from regression coe�cients)

�! computation ofSj from given data
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Conclusion

+ Results

explicit formulalinking S j and CSM (derivative)

Ŝj estimator based onpolynomial expansion of the CSM plot
(explicit formula from regression coe�cients)

�! computation ofSj from given data

� Limits

minimum sample sizen � 1000

Ŝj does not compare well with other estimators based on given
data such as EASI (Plischke, 2010)

why ? because it requiresapproximating derivatives
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Conclusion

�! Further research

Total-order e�ects ?

Contribution to the Sample Variance (CSV plot)
�rst attempts were unsuccessful but. . .

Tarantola S., V. Kopustinskas, R. Bolado-Lavin, A. Kaliatk a, E. Uspuras, M.
Vaisnoras
Sensitivity analysis using contribution to sample variance plot: Application to a
water hammer model
Reliab. Eng. Syst. Saf., 2012, 99, 62-73.
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Thank you for your attention !
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Elements of proof (2)

First-order variance-based sensitivity indices

Sj =
VarXj

�
EX� j [Y j Xj ]

�

V(Y )
(Saltelli et al., 2008)
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Estimation of the coe�cient of variation

Set of CSM points(qi ; ci ) i = 1:::n

Coe�cient of variation cv = � (Y )=E(Y )

Usingci � ci � 1 = y� ( i )=(n�̂ ) we get:

ĉv = n

vu
u
t

n� 1X

i = 1

(ci + 1 � ci �
1
n

)2 (4)
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Shifted Legendre polynomials

Shifted Legendre polynomialPk are de�ned by
Pk (q) = P(s)

k (2q � 1)

with P(s)
k the standardized Legendre polynomials,

which are given by the Rodrigue's formula [2, p.785, Eqn. 22.11.5]
:

8k 2 N; 8q 2 [� 1; 1]; P(s)
k (q) =

(� 1)k

2k � k!
dk

dqk

h
(q2 � 1)k

i
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Detailed proof for Eqn.(3)
Using the approximationC(q) �

P
k � k Pk (q), we get an approximation of the

integral I =
R1

0
d
dq (C(q) � q)2 dq:

Î =

Z 1

0

" 
dX

k= 1

� k P0
k (q)

!

� 1

#2

dq (5)

We use the fact thatP0
1(q) = 2 to de�ne modi�ed coe�cients (~� k )k= 1;:::; d as

equal to coe�cients (� k )k= 1;:::; d except for ~� 1 = � 1 � 1
2 , :

Î =

Z 1

0

"
dX

k= 1

~� k P0
k (q)

#2

dq

=
dX

k; l= 1

~� k ~� l

Z 1

0

P0
k (q)P0

l (q)dq

=
dX

k; l= 1

~� k ~� l Ikl

(6)
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Detailed proof for Eqn.(3)

Let assume thatk � n.
Using an integration by parts we have :

Ik; l =
�
P0

k (q)Pl (q)
� 1

0
�

1Z

0

P00
k (q)Pl (q)dq (7)

P00
k is a polynom of degreek � 2 : it can be decomposed on the �nite

orthogonal basis(Pi ) i = 1;:::; k � 2. As k � 2 < l , using the orthogonality of shifted
Legendre polynomials(Pk )k2 N on [0; 1], we �nd that the integralR1

0
P00

k (q)Pl (q)dq is equal to 0. Hence :

Ik; l = P0
k (1)Pl (1) � P0

k (0)Pl (0) (8)
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Detailed proof for Eqn.(3)
The values ofPk (q) and its derivativeP0

k (q) at q = 0 and q = 1 can be found
from the corresponding values of non-shifted Legendre polynomial P (s)

k (q) at
q = � 1 and q = 1, which are given in [2, p.777], Eqn.(22.4.6), (22.5.37) and
(22.4.2). Using the relationsPk (q) = P (s)

k (2q � 1) and
P0

k (q) = 2(P (s)
k )0(2q � 1) we have:

8k 2 N

8
><

>:

Pk (1) = 1
P0

k (1) = k(k + 1)
Pk (0) = ( � 1)k

P0
k (0) = ( � 1)k� 1k(k + 1)

(9)

We �nally obtain:
8(k; l ) 2 N2; k � l ;
Ik; l = k(k + 1)[1 + ( � 1)k+ l ]

(10)

which we can also write this way:

8(k; l ) 2 N2;
Ikl = 2 min(k; l ) [1 + min(k; l )] 1f (k+ l ) 2 2Ng

(11)
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Contribution to the Sample Variance

Contribution to the sample variance for input parameterXj at quantile q
is given by:

Dj (q) = 1
V(Y )

F � 1
j (q)R

�1
E

h
(Y � E(Y ))2 j Xj = xj

i
p(xj )dxj (12)
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Contribution to the Sample Variance
Slope of the CSV plot

The slope of the CSV plot between the two points(q1; D(q1)) and (q2; D(q2))
is given by:

D(q2) � D(q1)
q2 � q1

=
V(Y ?[z1;z2])

V(Y )
(13)

with varianceV(Y ?[z1;z2]), de�ned as the variance of the model output when
the range of the parameterXj is reduced to[z1; z2], but with respect to
constant meanE(Y ) over the full range of all parameters:

V(Y ?f zg ) = E
�
(Y � E(Y )) 2 j Xj = z

�
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Contribution to the Sample Variance
Relation with total order sensitivity indices?

Total order sensitivity indices:

STj = 1 �
EXj

�
VarX� j (Y j Xj )

�

V(Y )

= 1 �
EXj

�
EX� j

�
(Y � E [Y j Xj ])

2 j Xj = xj

��

V(Y )

Let denote byV(Y � f xj g) the quantity EX� j

�
(Y � E [Y j Xj ])

2 j Xj = xj

�
. It is

the variance of model output when model inputXj is �xed to the value xj , but
with respect to the conditional meanE [Y j Xj = xj ]. We then have:

STj =

1Z

0

"

1 �
V(Y

�
�

F � 1
j (q)

	
)

V(Y )

#

dq (14)
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Contribution to the Sample Variance
Relation with total order sensitivity indices?

Trouble is that the two variancesV(Y �f zg) and V(Y ?f zg) are not equal,
as they are not computedwith respect to the same mean value.

constant meanE(Y ) for V(Y ?f zg)

conditionnal meanE [Y j Xj = z] for V(Y �f zg))
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