Extension of the Pareto Active Learning Method to Multi-Objective Optimisation for Stochastic Simulators

Bruno Barracosa^{1,2} Julien Bect² Héloise Dutrieux Baraffe¹ Juliette Morin¹ Josselin Fournel¹ Emmanuel Vazquez²

¹EDF R&D, Economic and Technical Analysis of Energy Systems (EFESE), France

²Université Paris-Saclay, CNRS, CentraleSupélec, L2S, France

Workshop on "Stochastic Simulators", MASCOT-NUM

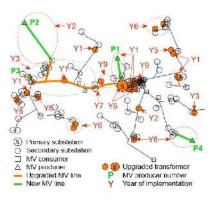
March 11, 2021

Overview

- Introduction
- Pareto Active Learning for Stochastic Simulators
- Numerical experiments
- Conclusions

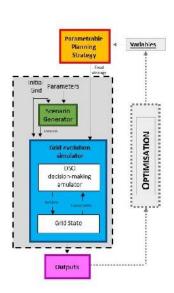
Motivation

- Simulator for the multi-year electricity distribution network planning.
- Costly-to-evaluate black-box stochastic simulator (Dutrieux, 2015).



 Goal: optimize planning strategy parameters to minimize technical and economic outputs (e.g., total costs, quality of service).

PARADIS



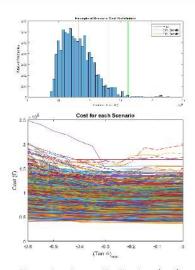
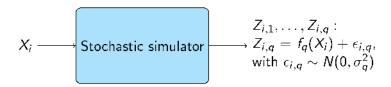


Figure: Example of cost distribution (top) and as a function of $(\tan \Phi)_{min}$ (bottom), per scenario.

Problem definition

- Input: planning strategy parameters $X_i \in \mathbb{X}$.
- Outputs: noisy observations of latent functions $f_1, \ldots, f_q : \mathbb{X} \mapsto \mathbb{R}$.
- Noise is additive, normally distributed and homoscedastic.



Optimization problem:

$$x^* = \underset{x \in \mathbb{X}}{\operatorname{arg\,min}} f_1(x), \dots, f_q(x)$$

Multi-objective optimization

Goal: identify best trade-offs among conflicting objectives.

Pareto domination: $y \prec y'$

- $y_q \leq y_q', \forall q$
- With at least one strict inequality.

Pareto set \mathcal{P} : the set of all non-dominated points.

$$\mathcal{P} = \big\{ x \in \mathbb{X} : \nexists x' \in \mathbb{X}, f(x') \prec f(x) \big\}$$

Pareto front \mathcal{F} : the image of \mathcal{P} .

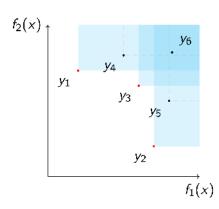


Figure: Pareto front $\mathcal{F} = \{y_1, y_2, y_3\}$ in a bi-objective example.

Overview

- Introduction
- Pareto Active Learning for Stochastic Simulators
- Numerical experiments
- Conclusions

Optimization using Gaussian processes

- Goal: select sequence of inputs to evaluate X_n , $n = 1 \dots, N$.
- At iteration n, previous observations $Z_{1,q}, \ldots, Z_{n,q}$ used to model f_q as a sample of a GP model $\xi_q \leadsto$ mean $\mu_{n,q}$ and variance $\sigma^2_{n,q}$ (prediction of f_q and uncertainty, respectively).
- GP model used to guide the optimization.

See Frazier (2018) for a tutorial.

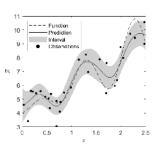


Figure: GP constructed from observations (dots). Latent function (dashed), with prediction (line) and uncertainty interval (gray).

Multi-objective noisy Bayesian optimisation

- Noise introduces observation uncertainty.
- Increased challenge in Pareto-domination assessment.

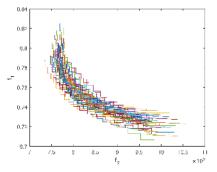
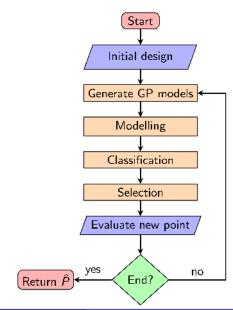


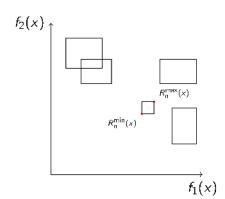
Figure: Example of Pareto fronts generated from noisy observations.

- Modification of the PAL algorithm (Zuluaga et al., 2013) to stochastic simulators.
- Strategy: classify each $x \in \mathbb{X}$ based on a region $R_n(x) \in \mathbb{R}^q$.

See Barracosa, et al. (2021) for details

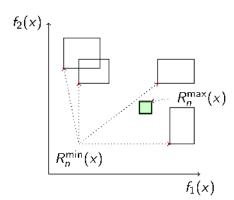


At each iteration n, each x is classified according to $R_n(x)$, built from GP prediction quantiles:



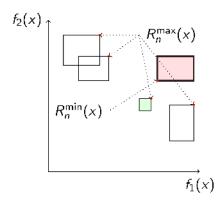
At each iteration n, each x is classified according to $R_n(x)$, built from GP prediction quantiles:

R_n^{max} of x is not dominated by another R_n^{min}: classify x as Pareto-optimal (P_n).



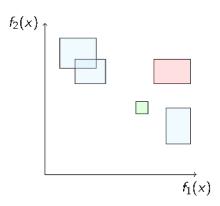
At each iteration n, each x is classified according to $R_n(x)$, built from GP prediction quantiles:

- R_n^{max} of x is not dominated by another R_n^{min}: classify x as Pareto-optimal (P_n).
- R_n^{min} of x is dominated by another R_n^{max}: classify x as non Pareto-optimal.



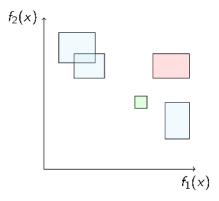
At each iteration n, each x is classified according to $R_n(x)$, built from GP prediction quantiles:

- R_n^{max} of x is not dominated by another R_n^{min}: classify x as Pareto-optimal (P_n).
- R_n^{min} of x is dominated by another R_n^{max}: classify x as non Pareto-optimal.
- **3** Otherwise: x remains unclassified (U_n) .



At each iteration n, each x is classified according to $R_n(x)$, built from GP prediction quantiles:

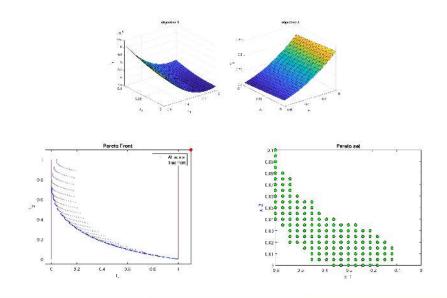
- R_n^{max} of x is not dominated by another R_n^{min}: classify x as Pareto-optimal (P_n).
- R_n^{min} of x is dominated by another R_n^{max}: classify x as non Pareto-optimal.
- **3** Otherwise: x remains unclassified (U_n) .



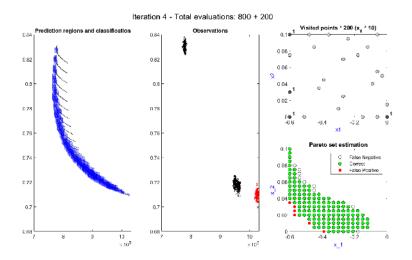
Select X_{n+1} :

$$X_{n+1} = \underset{x \in (P_n \cup U_n)}{\arg \max} \|R_n^{\min}(x) - R_n^{\max}(x)\|$$

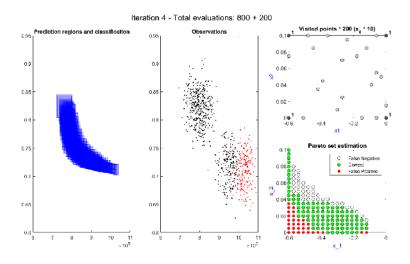
Problem for example (g_1)



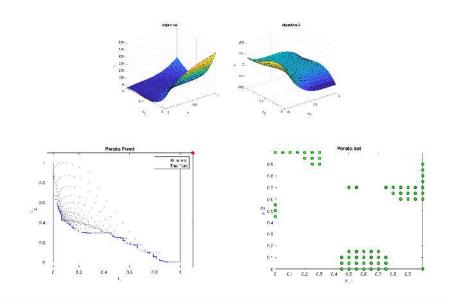
Example



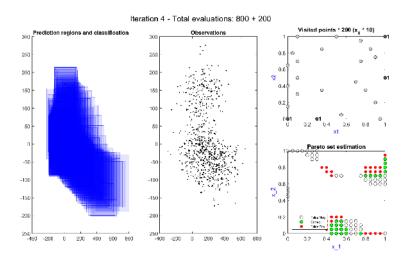
Example 2



Problem for example (g_8)



Example 3



Overview

- Introduction
- Pareto Active Learning for Stochastic Simulators
- Numerical experiments
- Conclusions

Numerical experiments

- Comparison with three approaches:
 - Random.
 - "Concentrated" Random Sampling (CoRS) (Barracosa, et al., 2021).
 - ParEGO (Knowles, 2006) with El_m.
- 9 test problems:
 - · Bi-objective.
 - Bi-dimensional and finite input space of size 21×21 .
 - Homoscedastic Gaussian white noise.
- performance metrics:
 - Volume of the symmetric difference (V_d) of the Pareto front.
 - Classification error (M) of the Pareto set.
 - Averaged over 500 runs of the algorithm.
- Batches of 200 evaluations, and a total budget of 50,000 evaluations.

Results

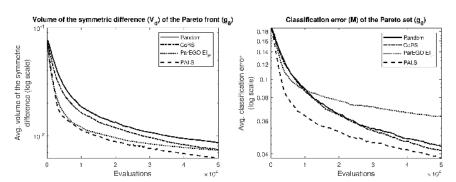


Figure: Average metrics volume of symmetric difference (left) and classification error (right), for a Random approach, a "Concentrated" Random Sampling approach, a scalarization ParEGO adapted with El_m , and PALS, for problem g_8 .

Table: Average metrics comparison (value in percentage), at final iteration, for a Random approach, a "Concentrated" Random Sampling approach, a scalarization ParEGO adapted with El_m, and PALS. The best metric values highlighted in bold with a green background. Metrics at 10% of the best metric are highlighted with a blue background.

	Random		Co	CoRS		El _m		PALS	
g	V_d	М	V_d	М	•	V_d	М	V_d	М
g_1	0.774	7.240	0.630	6.867		0.781	11.050	0.631	5.604
g_2	1.005	1.235	0.660	0.983		0.628	1.363	0.955	1.050
g 3	1.055	3.580	1.017	3.326		0.710	3.512	0.913	3.255
g ₄	1.212	2.121	1.045	2.113		1.073	2.278	1.132	1.934
g 5	1.102	3.858	0.662	3.332		0.903	7.864	0.694	3.254
g_6	1.411	0.695	0.443	0.433		0.471	1.513	0.469	0.387
g7	0.944	2.625	0.463	2.531		0.511	4.677	0.398	2.557
g_8	0.862	4.392	0.745	4.182		0.732	6.332	0.620	3.809
g_9	1.075	1.393	0.680	1.106		0.633	2.614	0.562	0.957

Overview

- Introduction
- Pareto Active Learning for Stochastic Simulators
- Numerical experiments
- Conclusions

Conclusions and future work

- PALS shows interesting performances for the multi-objective optimization of Stochastic Simulators:
 - Better performance than random approach.
 - Always good performance for Pareto set estimation.
- Future work includes:
 - Compare performance with other more complex algorithms (Picheny, 2015; Hernández-Lobato, et al. 2016).
 - Study performance impact when facing non-Gaussian and/or heteroscedastic simulators.
 - Assess performance when dealing with increased input space size or number objectives.

References

Barracosa, B., Bect, J., Dutrieux Baraffe, H., Morin, J., Fournel, J., & Vazquez, E. (2021)

Bayesian multi-objective optimization for stochastic simulators to appear soon on HAL + arXiv. available upon request

Dutrieux, H. (2015)

Méthodes pour la planification pluriannuelle des réseaux de distribution.

Application à l'analyse technico-économique des solutions d'intégration des énergies renouvelables intermittentes

Doctoral Thesis, Ecole Centrale de Lille

Frazier, P. I. (2018)

A tutorial on Bayesian optimization

arXiv preprint, arXiv:1807.02811

Hernández-Lobato, D., Hernandez-Lobato, J., Shah, A.,& Adams, R. (2016)

Predictive entropy search for multi-objective bayesian optimization

International Conference on Machine Learning, 1492-1501

References

Knowles, J. (2006)

ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems

IEEE Transactions on Evolutionary Computation 10(1), 50-66

Picheny, V. (2015)

Multiobjective optimization using Gaussian process emulators via stepwise uncertainty reduction

Stat Comput 25, 1265-1280

Zuluaga, M., Krause, A., Sergent, G., & Püschel, M. (2013)

Active learning for multi-objective optimization

30th International Conference on Machine Learning, 462-470

The End

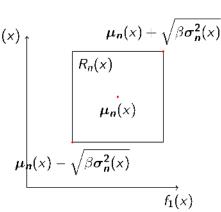
Thank you for your attention!

Modeling¹

At iteration n, GP models ξ_n used to generate predictions $\mu_n(x)$ and prediction uncertainty $\sigma_n^2(x)$.

Global uncertainty represented by a region $R_n(x)$:

$$R_n(x) = \left\{ y \in \mathbb{R}^n : \mu_n(x) - \sqrt{\beta \sigma_n^2(x)} \prec y \prec \mu_n(x) + \sqrt{\beta \sigma_n^2(x)} \right\}$$



¹Vector notation is used for simplification, e.g., $\mu_{\sigma}(x) = (\mu_{\sigma,1}(x), \dots, \mu_{\sigma,q}(x))$

Modeling¹

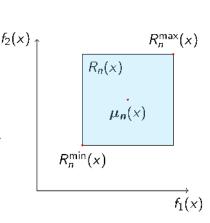
At iteration n, GP models ξ_n used to generate predictions $\mu_n(x)$ and prediction uncertainty $\sigma_n^2(x)$.

Global uncertainty represented by a region $R_n(x)$:

$$R_n(x) = \left\{ y \in \mathbb{R}^n : \mu_n(x) - \sqrt{\beta \sigma_n^2(x)} \prec y \prec \mu_n(x) + \sqrt{\beta \sigma_n^2(x)} \right\}$$

For each x define:

- an optimistic outcome $R_n^{\min}(x)$;
- a pessimistic outcome $R_n^{\max}(x)$.



¹Vector notation is used for simplification, e.g., $\mu_n(x) = (\mu_{n,1}(x), \dots, \mu_{n,q}(x))$

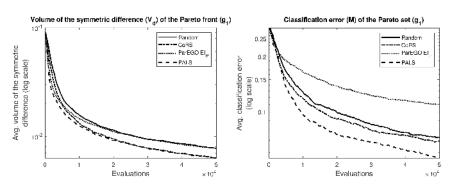


Figure: Average metrics volume of symmetric difference (left) and classification error (right), for a Random approach, an alternative random approach based on probability of non-domination, a scalarization ParEGO adapted with El_m and PALS, for problem g_1 .

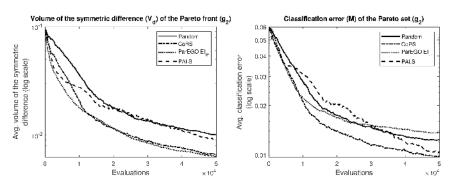


Figure: Average metrics volume of symmetric difference (left) and classification error (right), for a Random approach, an alternative random approach based on probability of non-domination, a scalarization ParEGO adapted with El_m and PALS, for problem g_2 .

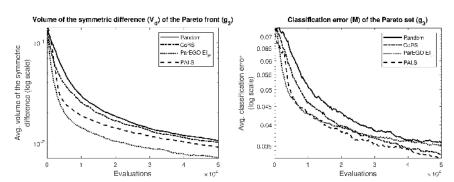


Figure: Average metrics volume of symmetric difference (left) and classification error (right), for a Random approach, an alternative random approach based on probability of non-domination, a scalarization ParEGO adapted with El_m and PALS, for problem g_3 .

Problem g₄

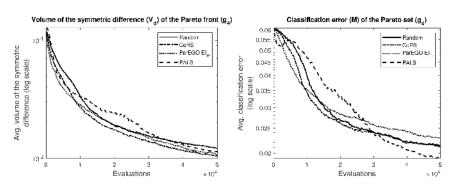


Figure: Average metrics volume of symmetric difference (left) and classification error (right), for a Random approach, an alternative random approach based on probability of non-domination, a scalarization ParEGO adapted with El_m and PALS, for problem g_4 .

Problem g₅

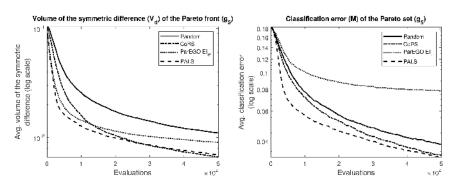


Figure: Average metrics volume of symmetric difference (left) and classification error (right), for a Random approach, an alternative random approach based on probability of non-domination, a scalarization ParEGO adapted with El_m and PALS, for problem g_5 .

Problem g₆

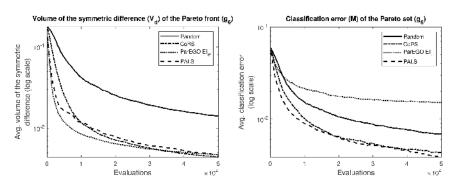


Figure: Average metrics volume of symmetric difference (left) and classification error (right), for a Random approach, an alternative random approach based on probability of non-domination, a scalarization ParEGO adapted with El_m and PALS, for problem g_6 .

Problem g₇

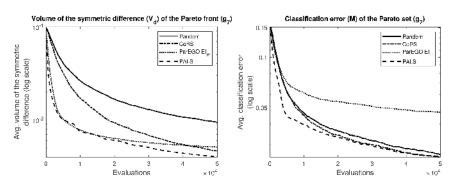


Figure: Average metrics volume of symmetric difference (left) and classification error (right), for a Random approach, an alternative random approach based on probability of non-domination, a scalarization ParEGO adapted with El_m and PALS, for problem g_7 .

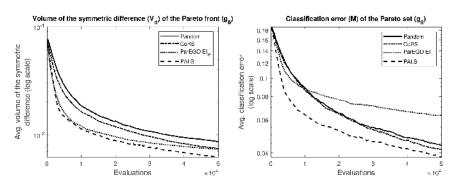


Figure: Average metrics volume of symmetric difference (left) and classification error (right), for a Random approach, an alternative random approach based on probability of non-domination, a scalarization ParEGO adapted with El_m and PALS, for problem g_8 .

Problem g₉

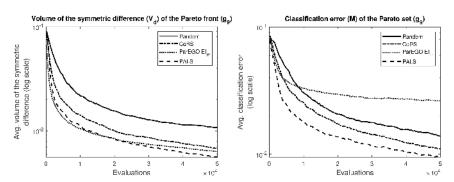


Figure: Average metrics volume of symmetric difference (left) and classification error (right), for a Random approach, an alternative random approach based on probability of non-domination, a scalarization ParEGO adapted with El_m and PALS, for problem g_9 .

Table: Average metrics comparison (value in percentage), at final iteration, for a Random approach, a "Concentrated" Random Sampling approach, a scalarization ParEGO adapted with El_m, and PALS. The best metric values highlighted in bold with a green background. Metrics at 5% of the best metric are highlighted with a blue background.

	Random		Co	CoRS		El _m		PALS	
g	V_{cl}	М	V_d	М	•	V_d	М	V_d	М
g ₁	0.774	7.240	0.630	6.867		0.781	11.050	0.631	5.604
g_2	1.005	1.235	0.660	0.983		0.628	1.363	0.955	1.050
g 3	1.055	3.580	1.017	3.326		0.710	3.512	0.913	3.255
g ₄	1.212	2.121	1.045	2.113		1.073	2.278	1.132	1.934
g 5	1.102	3.858	0.662	3.332		0.903	7.864	0.694	3.254
g_6	1.411	0.695	0.443	0.433		0.471	1.513	0.469	0.387
g7	0.944	2.625	0.463	2.531		0.511	4.677	0.398	2.557
g ₈	0.862	4.392	0.745	4.182		0.732	6.332	0.620	3.809
g_9	1.075	1.393	0.680	1.106		0.633	2.614	0.562	0.957

Problem's Pareto fronts

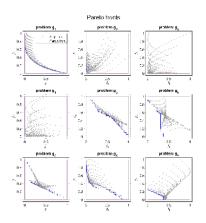


Figure: Pareto fronts of Problems g₁ to g₉.

Problem's Pareto sets

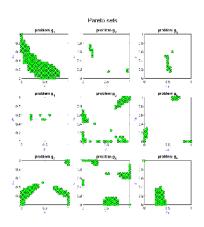


Figure: Pareto sets of Problems g_1 to g_9 .