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Examples of computer model systems

• Multi-physics systems of computer simulators, e.g., coupled tsunami

simulators with earthquake and landslide sources;

• Multi-disciplinary systems, e.g., automotive and aerospace systems;

• Other examples include climate models, multi-disciplinary future biodiver-

sity models, etc.
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Composite vs integrated emulator

Composite emulator (single Gaussian process):
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Integrated emulator (combined Gaussian processes):
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Method comparison

System Trend
Local I/O

Dimension

Analytical

Solutions

Adaptive

Design

Kyzyurova et al.

(2018)
two models

linear in one

local input
≥1 SExp-ARD+nugget No

Marque-Pucheu et al.

(2019)
two models

linear in basis

functions of

global inputs

=1 SExp-ARD Yes

Sanson et al.

(2019)
multi-models zero ≥1 No, by MC∗ Yes

This study multi-models

linear in local

inputs and basis

functions of

global inputs

≥1

Exp-ARD

SExp-ARD

Matérn-1.5-ARD

Matérn-2.5-ARD

+

nugget

Yes

†SExp = Squared exponential; ‡ARD = Automatic relevance determination; ∗MC = Monte Carlo
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Integrated emulator at iteration i
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Under a mild condition on the trend function and assume that

• Wi(xi)
ind
∼ N (µi(xi), σ2

i (xi)) for k = 1, . . . , d ,

the output Y (x1, . . . , xd, z) predicted at the input positions x1, . . . , xd and z has

its mean and variance

µI =E(µg(W, z))

σ2

I =Var(µg(W, z)) + E(σ2

g(W, z))

that can be expressed in closed-form for a wide range of kernels.
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Variance decomposition (I)
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Variance decomposition (II)
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V1(S)

V1(S) = VarWk∈S

(
EWk∈Sc [µg(W, z)]

)
, S ⊆ {1, . . . , d}
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Synthetic experiment I – graphical comparison

f1x f2 f3
yw1 w2
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(a) Composite Emulator (b) Integrated Emulator
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Synthetic experiment I – Smart design
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Experiment II – graphical comparison

f1
x1

f2
x2

f3
y

w1

w2

Layer 1 Layer 2

(c) Composite Emulator (d) Integrated Emulator
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Synthetic experiment II – Smart design
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Feed-back coupled satellite model – (I)
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Figure 1: Fire-detection satellite model from Sankararaman and Mahadevan (2012). The

decoupling is implemented by the algorithm from Baptista et al. (2018).
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Feed-back coupled satellite model – (II)

(a) τtot (b) Ptot (c) Asa
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Feed-back coupled satellite model – (III)

(d) Orbit Analysis (e) Attitude Control (f) Power Analysis

MASCOT-NUM PhD Students’ Day 14/17



Summary

Comparing to the composite emulator, the integrated emulator

1. produces better predictive performance with moderate-size designs;

2. achieves similar predictive error levels with reduced computational costs;

3. allows a smart adaptive designing strategy that can further reduce the

predictive errors (or computational cost) remarkably by recognising the

heterogeneous functional complexity of different computer models.

However, it may not show significant predictive improvement when a single

computer model dominates the functional complexity of the whole system.
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Thank you for your attention!
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