Calibration of a PDE system for thermal regulation of an aircraft cabin

SMAI 2013, 27 - 31 of May 2013, Seignosse Le Penon

EADS France - Applied Mathematics Team

Nabil RACHDI, nabil.rachdi@eads.net
Michel FOUQUEMBERGH, michel.fouquembergh@eads.net
Outline

1 Context

2 Calibration from experimental data

3 Meta model strategy

4 Summary & challenges
PDE calibration for aircraft cabin thermal regulation

Outline

1. Context

2. Calibration from experimental data

3. Meta model strategy

4. Summary & challenges
PDE calibration for aircraft cabin thermal regulation

General context of thermal regulation

External environment

Avionic bay

Equipment
Provide thermal comfort & cabin pressurization for crew / passengers

Thermal control of electric cores or highly dissipative equipment of avionic bay
PDE calibration for aircraft cabin thermal regulation

General context of thermal regulation

- Provide thermal comfort & cabin pressurization for crew / passengers
- Thermal control of electric cores or highly dissipative equipment of avionic bay
Installation of equipment in avionic bay requires the specification of equipment thermal environment

Figure: Aircraft & Equipment - Avionic bay

- Need to provide convection coefficients around the equipment...
- ... For a robust equipment conception
PDE calibration for aircraft cabin thermal regulation

Topics of the presentation

PHASE I
Model Calibration

PHASE II
Thermal Analyses

Two phases:
- 1/ PDE parameter estimation
- 2/ Phenomenon study with parametrized PDE
Two phases:

- **1/ PDE parameter estimation**
- **2/ Phenomenon study with parametrized PDE**
PDE calibration for aircraft cabin thermal regulation

Modelling

- **(simplified) Thermal exchange modelling** (Navier Stokes equations)

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) &= 0 \\
\frac{\partial (\rho C_p T)}{\partial t} + \nabla \cdot (u \rho C_p T) &= \nabla \cdot (k \nabla T) \\
\frac{\partial (\rho u)}{\partial t} + (u \nabla) u + \nabla p &= \mu \Delta u + \rho g
\end{align*}
\]

Boundary Conditions:
\[
\begin{align*}
u &= u_0(M) \text{ with turbulence model } \text{RANS}(\tau) \\
\phi &= h_C (T - T_{\text{Skin}})
\end{align*}
\]

\(\rho\) = air density, \(u\) = air speed, \(T\) = temperature, \(\tau\) = turb. rate, \(h_C\) = heat transf. coef., \(T_{\text{Skin}}\) = skin temp.
Modelling

- **(simplified) Thermal exchange modelling** (Navier Stokes equations)

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0 \\
\frac{\partial (\rho C_p T)}{\partial t} + \nabla \cdot (\mathbf{u} \rho C_p T) &= \nabla \cdot (k \nabla T) \\
\frac{\partial (\rho \mathbf{u})}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p &= \mu \Delta \mathbf{u} + \rho g
\end{align*}
\]

Boundary Conditions:

\[
\begin{align*}
u &= u_0(M) \text{ with turbulence model RANS(\tau)} \\
h_C &= (T - T_{Skin})
\end{align*}
\]

\[
\rho = \text{air density}, \quad u = \text{air speed}, \quad T = \text{temperature}, \quad \tau = \text{turb. rate}, \quad h = \text{heat transf. coef.}, \quad T_{Skin} = \text{skin temp.}
\]

⇒ Lack of knowledge on \(\tau, h_C\) and \(T_{Skin}\)!
Modelling

(simplified) Thermal exchange modelling (Navier Stokes equations)

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) &= 0 \\
\frac{\partial (\rho C_p T)}{\partial t} + \nabla \cdot (u\rho C_p T) &= \nabla \cdot (k\nabla T) \\
\frac{\partial (\rho u)}{\partial t} + (u \nabla) u + \nabla p &= \mu \Delta u + \rho g
\end{align*}
\]

Boundary Conditions:

\[
\begin{align*}
u &= u_0(M) \quad \text{with turbulence model RANS(} \tau) \\
\phi &= h_C (T - T_{\text{Skin}})
\end{align*}
\]

\(\rho\) = air density, \(u\)=air speed, \(T\)=temperature, \(\tau\)=turb. rate, \(h\)= heat transf. coef., \(T_{\text{Skin}}\)= skin temp.

\(\Rightarrow h_C\) should be estimated
\(\Rightarrow \tau\) and \(T_{\text{Skin}}\) are subjected to uncertainties
Modelling

- **(simplified) Thermal exchange modelling** (Navier Stokes equations)

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \nabla.(\rho u) & = 0 \\
\frac{\partial (\rho C_p T)}{\partial t} + \nabla.(u.\rho C_p T) & = \nabla.(k\nabla T) \\
\frac{\partial (\rho u)}{\partial t} + (u.\nabla)u + \nabla p & = \mu \Delta u + \rho g
\end{align*}
\]

Boundary Conditions:

\[
\begin{align*}
u & = u_0(M) \quad \text{with turbulence model RANS(τ)} \\
\phi & = h_C (T - T_{\text{Skin}})
\end{align*}
\]

\(\rho=\) air density, \(u=\) air speed, \(T=\) temperature, \(\tau=\) turb. rate, \(h=\) heat transf. coef., \(T_{\text{Skin}}=\) skin temp.

\(\Rightarrow h_C\) should be **estimated**

\(\Rightarrow \tau\) and \(T_{\text{Skin}}\) are subjected to **uncertainties**

- **Input/Output model view**

 Equation & Boundary Conditions induce an Input/Output system

 \(\mathcal{H}((\tau, T_{\text{Skin}}), h_C)\).

 In particular, the post-processing providing convection coefficients is some function \(h((\tau, T_{\text{Skin}}), h_C)\).
PDE calibration for aircraft cabin thermal regulation

Question?

How to estimate h_C in presence of uncertainties (τ, T_{Skin})?

- We need additional information (reference measures, experimental data, etc.)
- How to model the uncertainties?
- How to take into account uncertainties in identification procedures?
Outline

1. Context

2. Calibration from experimental data

3. Meta model strategy

4. Summary & challenges
Experiments

Figure: Flight test - Chamber test

- **Principle:**
 At a fixed environmental condition, one can measure convection coefficients C_{i}^{obs} around the equipment.
 - Flight tests / Chamber tests
 - Few sensors are used
Experiments

Figure: Flight test - Chamber test

Principle:
At a fixed environmental condition, one can measure convection coefficients \(C_{i}^{obs} \) around the equipment.

- Flight tests / Chamber tests
- Few sensors are used

Finally, one gets a very precious database \((C_{i}^{obs}) \) for \(i = 1, \ldots, N \) with \(N \) limited!
Summary

We have two ingredients:

- We can compute convection coefficients of the equipment from Navier Stokes equations
 \[C^{comp} = h((\tau, T_{Skin}), h_C) \]

- Experimental database
 \[(C_{i}^{obs})_{i=1,...,N}\]
Summary

We have two ingredients:

- We can compute convection coefficients of the equipment from Navier Stokes equations
 \[C^{comp} = h((\tau, T_{Skin}), h_C) \]

- Experimental database
 \[(C_{i}^{obs})_{i=1,...,N} \]

Remark: a single run of \(h \) may take several hours (\(\sim 6 \) hours !)
Summary

We have two ingredients:

- We can compute convection coefficients of the equipment from Navier Stokes equations
 \[C^{\text{comp}} = h((\tau, T_{\text{Skin}}), h_C) \]

- Experimental database
 \[(C_{i}^{\text{obs}})_{i=1,\ldots,N} \]

Remark: a single run of \(h \) may take several hours (\(\sim 6 \) hours !)

Q : How to estimate \(h_C \) from the experimental database ?
Mathematical formalization

- **Variable of interest** (induced by a PDE system)
 We call a variable of interest any quantity obtained by a post-processing of some PDE equations resolution. It takes the form
 \[h(X, \theta) \]
 where
 - \(X \in (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), P_x) \) is a random vector representing the uncertainties
 - \(\theta \in \mathbb{R}^k \) is the vector of parameters to identify
 (in our application: \(X = (\tau, T_{Skin}) \in (\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2), P_x) \) and \(\theta = h_C \in \mathbb{R} \))

- **Experimental/Reference data** (also called **Learning data**)
 It is a set of points:
 - \((z_i, Y_i)_{i=1,...,N} \) → if \(h(X, \theta) \) is a field \(z \mapsto h(X, \theta)[z] \)
 - \((Y_i)_{i=1,...,N} \) → if \(h(X, \theta) \) is scalar
 (Remark: a priori, **There is not** a model linking the observation \(Y \) and the simulation \(h(X, \theta) \). For instance, we don’t have the regression framework
 \[Y = h(X, \theta) + \varepsilon \]
 where \(\varepsilon \) is the model error. Indeed, we **don't have** joint information \((X_i, Y_i) \) !)
There are two calibration methods depending on the nature of the variable of interest $h(X, \theta)$, scalar or field.
Calibration method I (case for fields)

- **Least Squares principle:**
 Find parameters $\theta \in \mathbb{R}^k$ which minimize the quantity

$$
\mathcal{J}(\mathbf{X}, \theta) = \sum_{i=1}^{N} (Y_i - h(\mathbf{X}, \theta)[z_i])^2
$$

- **Remark !:**
 the function $\theta \mapsto \mathcal{J}(\mathbf{X}, \theta)$ to minimize is random (due to uncertainties \mathbf{X})!
Calibration method I (case for fields)

■ Least Squares principle:
 Find parameters $\theta \in \mathbb{R}^k$ which minimize the quantity
 \[
 \mathcal{J}(X, \theta) = \sum_{i=1}^{N} (Y_i - h(X, \theta)[z_i])^2
 \]

■ Remark !:
 the function $\theta \mapsto \mathcal{J}(X, \theta)$ to minimize is random (due to uncertainties X) !
 \Rightarrow Classical least squares methods are infeasible ...
PDE calibration for aircraft cabin thermal regulation

Calibration method I (case for fields)

- **Least Squares principle:**
 Find parameters \(\theta \in \mathbb{R}^k \) which minimize the quantity
 \[
 \mathcal{J}(X, \theta) = \sum_{i=1}^{N} (Y_i - h(X, \theta)[z_i])^2
 \]

- **Remark !:**
 the function \(\theta \mapsto \mathcal{J}(X, \theta) \) to minimize is random (due to uncertainties \(X \))!
 \(\Rightarrow \) Classical least squares methods are infeasible ...

- **Issue: Stochastic Optimization**

 Principle: Minimize a quantity \(\rho(\mathcal{J}(X, \theta)) \) (deterministic)
 - Mean : \(\rho(\mathcal{J}(X, \theta)) = \mathbb{E}_X(\mathcal{J}(X, \theta)) \)
 - Variance : \(\rho(\mathcal{J}(X, \theta)) = \text{Var}_X(\mathcal{J}(X, \theta)) \)
 - Mixed : \(\rho_\lambda(\mathcal{J}(X, \theta)) = \mathbb{E}_X(\mathcal{J}(X, \theta)) + \lambda \sqrt{\text{Var}_X(\mathcal{J}(X, \theta))} \)
 - etc.
PDE calibration for aircraft cabin thermal regulation

Calibration method I (case for fields)

Illustration

\[\theta \mapsto \rho_\lambda(J(X, \theta)) = \mathbb{E}_X(J(X, \theta)) + \lambda \sqrt{\text{Var}_X(J(X, \theta))} \text{ for different } \lambda > 0 \]

(deterministic function \(\Leftrightarrow \theta \mapsto J(X_{\text{nom}}, \theta) \), where \(X_{\text{nom}} \) is the nominal value of \(X \))
Calibration method I (case for fields)

- Stochastic/Robust Optimization
 - Large literature
 - Practical algorithms
 Need practical and efficient algorithms ...
Recall the framework:

- We have observations \((Y_i)_{1,...,N}\)
- We get a scalar output \(h(X, \theta)\) after a post-processing of a PDE system
Calibration method II (case for scalar outputs)

- Recall the framework:
 - We have observations \((Y_i)_{1,...,N}\)
 - We get a scalar output \(h(X, \theta)\) after a post-processing of a PDE system

- Estimation method:

Principle:

Find parameters \(\theta \in \mathbb{R}^k\) which minimize "a distance" between the **empirical distribution** of the \(Y_i\)’s and the **simulated distribution** of the random variable \(h(X, \theta)\) (based on a simulated sample \(h(X_1, \theta), ..., h(X_m, \theta)\), where \(X_1, ..., X_m\) are \(m\) simulations of the uncertainty \(X\)).
PDE calibration for aircraft cabin thermal regulation

Calibration method II (case for scalar outputs)

- Recall the framework:
 - We have observations \((Y_i)_1, \ldots, N\)
 - We get a scalar output \(h(X, \theta)\) after a post-processing of a PDE system

- Estimation method:

Principle:

Find parameters \(\theta \in \mathbb{R}^k\) which minimize "a distance" between the empirical distribution of the \(Y_i\)’s and the simulated distribution of the random variable \(h(X, \theta)\) (based on a simulated sample \(h(X_1, \theta), \ldots, h(X_m, \theta)\), where \(X_1, \ldots, X_m\) are \(m\) simulations of the uncertainty \(X\)).

- Example: Maximum-Likelihood based method

Find \(\theta\) minimizing

\[
\mathcal{J}(\theta) = -\sum_{i=1}^{N} \log \left(\sum_{j=1}^{m} K_b(Y_i - h(X_j, \theta)) \right), \quad \text{with} \quad K_b(y) = \frac{1}{\sqrt{2\pi b}} e^{-y^2/2b^2}
\]
Calibration method II (case for scalar outputs)

Theoretical results of the estimator $\hat{\theta}_{N,m}$ where

$$\hat{\theta}_{N,m} = \text{Argmin} \sum_{\theta \in \Theta} N \log \left(\sum_{i=1}^{m} K_b \left(Y_i - h(X_j, \theta) \right) \right)$$
Calibration method II (case for scalar outputs)

Theoretical results of the estimator $\hat{\theta}_{N,m}$ where

$$\hat{\theta}_{N,m} = \text{Argmin}_{\theta \in \Theta} \sum_{i=1}^{N} \log \left(\sum_{j=1}^{m} K_b(Y_i - h(X_j, \theta)) \right)$$

Theorem (Consistency) [Rachdi2012]

Denote by f_{θ}^x the density function of $h(X, \theta)$ and θ^* by

$$\theta^* = \text{Argmin}_{\theta \in \Theta} -\mathbb{E}(\log(f_{\theta}^x)(Y)) \quad \text{(unknown target)}.$$

Under technical conditions, \exists constants c_1, c_2, c_3, a_1, a_2 such that $\forall 0 < \tau < 1/2$, with probability at least $1 - 2 \tau$

$$\|\hat{\theta}_{N,m} - \theta^*\|^2 \leq c_1 \sqrt{\frac{\log(a_1 \tau^{-1})}{N}} + \frac{c_2 \sqrt{\log(a_2 \tau^{-1})}}{\sqrt{m}} + c_3 m^{1/10}.$$
PDE calibration for aircraft cabin thermal regulation

Calibration method II (case for scalar outputs)

Theoretical results of the estimator $\hat{\theta}_{N,m}$ where

$$\hat{\theta}_{N,m} = \text{Argmin}_{\theta \in \Theta} - \sum_{i=1}^{N} \log \left(\sum_{j=1}^{m} K_b(Y_i - h(X_j, \theta)) \right)$$

Theorem (Consistency) [Rachdi2012]

Denote by f_x^θ the density function of $h(X, \theta)$ and θ^* by

$$\theta^* = \text{Argmin}_{\theta \in \Theta} - \mathbb{E} \left(\log(f_x^\theta)(Y) \right) \quad \text{(unknown target)}.$$

Under technical conditions, \exists constants c_1, c_2, c_3, a_1 and a_2 such that $\forall 0 < \tau < 1/2$, with probability at least $1 - 2\tau$

$$\|\hat{\theta}_{N,m} - \theta^*\|^2 \leq c_1 \frac{\log(a_1 \tau^{-1})}{N} + c_2 \frac{\sqrt{\log(a_2 \tau^{-1})} + c_3 m^{1/10}}{\sqrt{m}}.$$

\Rightarrow the right hand side is not the rate of convergence! ... but ensure the consistency.
Calibration method II (case for scalar outputs)

Theoretical results of the estimator \(\hat{\theta}_{N,m} \) where

\[
\hat{\theta}_{N,m} = \text{Argmin}_{\theta \in \Theta} \left(-\sum_{i=1}^{N} \log \left(\sum_{j=1}^{m} K_b(Y_i - h(X_j, \theta)) \right) \right)
\]

Theorem (Consistency) [Rachdi2012]

Denote by \(f_{\theta}^x \) the density function of \(h(X, \theta) \) and \(\theta^* \) by

\[
\theta^* = \text{Argmin}_{\theta \in \Theta} \mathbb{E} \left(\log(f_{\theta}^x)(Y) \right) \quad \text{(unknown target)}.
\]

Under technical conditions, \(\exists \) constants \(c_1, c_2, c_3, a_1 \) and \(a_2 \) such that \(\forall 0 < \tau < 1/2 \), with probability at least \(1 - 2\tau \)

\[
\|\hat{\theta}_{N,m} - \theta^*\|^2 \leq c_1 \sqrt{\frac{\log(a_1\tau^{-1})}{N}} + \frac{c_2 \sqrt{\log(a_2\tau^{-1})} + c_3 m^{1/10}}{\sqrt{m}}.
\]

\(\Rightarrow \) the right hand side is not the rate of convergence ! ... but ensure the consistency.

Theorem (Central Limit Theorem)

In progress!
Simulation of \(h \) is limited!

- **Calibration may be very greedy ...**
 Both calibration methods may need several computations of \(h \) involving new PDE system resolutions.
 - In most of our applications, one run of \(h \) (i.e numerical resolution + post-processing) \(\sim 6 \) hours
 - So for 50 calibration algorithm iterations, we have to wait \(\sim 13 \) days!

- **Strategy adopted:**
 Replace the CPU time expensive model \(h(X, \theta) \) by a mathematical approximation (analytical) \(\tilde{h}(X, \theta) \), very cheap to evaluate.
PDE calibration for aircraft cabin thermal regulation

Outline

1. Context

2. Calibration from experimental data

3. Meta model strategy

4. Summary & challenges
Meta model strategy

A well adopted strategy (among others...):

- **Sample, Build, Validate and Replace**

Different types of meta models

- **Regression-based**: (Neural network, Polynomial Chaos, Least squares, etc.)
- **Interpolation-based**: (Radial Basis Functions, Gaussian processes/Kriging, etc.)

Calibration methods only involve the metamodel, i.e one calibrates the metamodel! (no more the PDE system...)
PDE calibration for aircraft cabin thermal regulation

Outline

1. Context
2. Calibration from experimental data
3. Meta model strategy
4. Summary & challenges
Summary: global process of thermal analysis

- CFD model setup
 Must be valid on the parameter set range

- DOE (Design Of Experiment) generation
 Choice of parameters, observables
 Experts knowledge

- Post-processing
 Observables data output

- Results database build up

- HPC

- THERMAL ANALYSES
 convec. coef, temperatures, etc.

- Meta model setup
 Meta modeling methods (Regression, Krigging, RBF...)

- Calibration

- Meta model integration in a modelling software (Dymola, etc.)
Conclusions & Issues

- Asymptotic study of the estimator $\hat{\theta}_{N,m}$
- Mathematical study of calibration procedures induced by the Stochastic Optimization of $\theta \mapsto J(X, \theta)$
- Quantify the robustness of equipment specification when considering the uncertainties
- Improve existing metamodel-based algorithms (adaptive metamodelling, on-line refinement, etc.)
- HPC capabilities for metamodel constructions
- Facilitate metamodels exportation (distribution to suppliers, etc.)
- Extend the method for Multi-Fidelity learning data (varying mesh size, etc.)
Thank you for your attention!

A. Shapiro, D. Dentcheva, A. Ruszczynski (2009), Lectures on Stochastic Programming, MPS-SIAM Series on Optimization

A. Ben-Tal, L. El Ghaoui, A. Nemirovski (2009), Robust Optimization, Princeton Series in Applied Mathematics