Estimation d’arrondis, analyse de stabilité des grands codes de calcul numérique

Jean-Marie Chesneaux, Fabienne Jézéquel, Jean-Luc Lamotte, Jean Vignes

Laboratoire d'Informatique de Paris 6, P. and M. Curie University, Paris, France

Workshop quantification d’incertitude et calcul intensif

GDR MASCOT-NUM.

March 2013
Overview

- Floating-point arithmetic and round-off errors
- The CESTAC method and the stochastic arithmetic
- The CADNA software
- Contributions of CADNA in numerical methods
- CADNA for new architectures
Physics phenomena \rightarrow measurement errors
Mathematical modelisation \rightarrow modelisation errors
Modelisation discretisation \rightarrow approximation errors
Numerical code \rightarrow roundoff errors propagation
An example proposed by S. Rump (1)

Computation of $f(10864, 18817)$ and $f\left(\frac{1}{3}, \frac{2}{3}\right)$ with $f(x, y) = 9x^4 - y^4 + 2y^2$

```fortran
program ex1
    implicit double precision (a-h,o-z)
x = 10864.d0
y = 18817.d0
write(*,*)'P(10864,18817) = ', rump(x,y)
x = 1.d0/3.d0
y = 2.d0/3.d0
write(6,100) rump(x,y)
100 format('P(1/3,2/3) = ',e24.15)
end

function rump(x,y)
    implicit double precision (a-h,o-z)
a=9.d0*x*x*x*x
b=y*y*y*y
c=2.d0*y*y
return = a-b+c
return
end
```

CADNA library (LIP6) Stabilité codes numériques GDR MASCOT-NUM., March 2013
An example proposed by S. Rump (2)

The results:

\[P(10864, 18817) = 2.00000000000000 \]
\[P(1/3, 2/3) = 0.802469135802469E+00 \]
Let \mathbb{F} be the set of real numbers which can be coded exactly on a computer: the set of floating point numbers.

Every real number x which is not a floating point number is approximated by a floating point number $X \in \mathbb{F}$.

Let X_{\min} (resp. X_{\max}) be the smallest (resp. the greatest) floating point number:

$$\forall x \in]X_{\min}, X_{\max}[, \ \exists \{X^-, X^+\} \in \mathbb{F}^2$$

such that

$$X^- < x < X^+ \text{ and }]X^-, X^+ [\cap \mathbb{F} = \emptyset$$

To choose the rounding mode is to choose the algorithm that, according to x, gives X^- or X^+.
The 4 rounding modes of the IEEE 754 standard

Rounding to zero: x is represented by the floating point number the nearest to x between x and 0.

Rounding to nearest: x is represented by the floating point number the nearest to x.

Rounding to plus infinity: x is represented by X^+.

Rounding to minus infinity: x is represented by X^-.

The rounding operation is performed after each assignment and after every elementary arithmetic operation.
Inconsistency of the floating point arithmetic

On a computer, arithmetic operators are only approximations.

- commutativity
- no associativity
- no distributivity

On a computer, order relationships are the same as in mathematics

\Rightarrow it leads to a global inconsistent behaviour.

\[
\begin{align*}
X = Y & \not\Rightarrow x = y \quad \text{and} \quad x = y & \not\Rightarrow X = Y. \\
X \geq Y & \not\Rightarrow x \geq y \quad \text{and} \quad x \geq y & \not\Rightarrow X \geq Y.
\end{align*}
\]
Round-off error model

Let \(r \in \mathbb{R} \) be the exact result of a computation of \(n \) elementary arithmetic operations.

On a computer, one obtains the result \(R \in \mathbb{F} \) which is affected by round-off errors.

\(R \) can be modeled, at the first order with respect to \(2^{-p} \), by

\[
R \approx r + \sum_{i=1}^{n} g_i(d) \cdot 2^{-p} \cdot \alpha_i
\]

\(p \) is the number of bits used for the representation including the hidden bit, \(g_i(d) \) are coefficients depending only on data and \(\alpha_i \) are the round-off errors.

Remark: we have assumed that exponents and signs of intermediate results do not depend on \(\alpha_i \).
The number of significant bits in common between R and r is defined by

$$C_R \approx -\log_2 \left| \frac{R - r}{r} \right| = p - \log_2 \left| \sum_{i=1}^{n} g_i(d) \cdot \frac{\alpha_i}{r} \right|$$

The last part corresponds to the accuracy which has been lost in the computation of R, we can note that it is independent of p.

Theorem

The loss of accuracy during a numerical computation is independent of the precision used.
Round-off error analysis
Several approaches

- Inverse analysis
 based on the “Wilkinson principle”: the computed solution is assumed to be the exact solution of a nearby problem
 - provides error bounds for the computed results

- Interval arithmetic
 The result of an operation between two intervals contains all values that can be obtained by performing this operation on elements from each interval.
 - guaranteed bounds for each computed result
 - the error may be overestimated
 - specific algorithms

- Probabilistic approach
 - uses a random rounding mode
 - estimates the number of exact significant digits of any computed result
The CESTAC method

The implementation of the CESTAC method in a code providing a result R consists in:

- performing N times this code with the random rounding mode to obtain N samples R_i of R,
- choosing as the computed result the mean value \overline{R} of R_i, $i = 1, \ldots, N$,
- estimating the number of exact significant decimal digits of \overline{R} with

\[
C_R = \log_{10} \left(\frac{\sqrt{N} |\overline{R}|}{\sigma \tau_{\beta}} \right)
\]

where

\[
\overline{R} = \frac{1}{N} \sum_{i=1}^{N} R_i \quad \text{and} \quad \sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (R_i - \overline{R})^2.
\]

τ_{β} is the value of Student’s distribution for $N - 1$ degrees of freedom and a probability level β.

\log_{10} is the base 10 logarithm.
On the number of runs

2 or 3 runs are enough. To increase the number of runs is not necessary.

From the model, to increase by 1 the number of exact significant digits given by C_m, we need to multiply the size of the sample by 100.

Such an increase of N will only point out the limit of the model and its error without really improving the quality of the estimation.

It has been shown that $N = 3$ is the optimal value.
Self-validation of the CESTAC method

The CESTAC method is based on a 1st order model.

- A multiplication of two insignificant results
- or a division by an insignificant result

may invalidate the 1st order approximation.

Therefore the CESTAC method requires a dynamical control of multiplications and divisions, during the execution of the code.
The problem of stopping criteria

Let a general iterative algorithm be: $U_{n+1} = F(U_n)$, U_0 being a data.

WHILE (ABS(X-Y) > EPSILON) DO
 X = Y
 Y = F(X)
ENDDO

ε too low \implies a risk of infinite loop
ε too high \implies a too early termination.

The optimal choice from the computer point of view:
$X - Y$ an insignificant value.

New methods for numerical algorithms may be developed.
J. Vignes, 1986

Definition

Using the CESTAC method, a result \(R \) is a **computed zero**, denoted by \(@.0 \), if

\[
\forall i, \ R_i = 0 \text{ or } C_R \leq 0.
\]

This means that 0 belongs to the confidence interval.

It means that \(R \) is a computed result which, because of round-off errors, cannot be distinguished from 0.
The stochastic definitions

Definition

Let X and Y be two computed results using the CESTAC method (N-sample), X is stochastically equal to Y, noted $X \equiv Y$, if and only if

$$X - Y = @.0.$$

Definition

Let X and Y be two results computed using the CESTAC method (N-sample).

- X is stochastically strictly greater than Y, noted $X > Y$, if and only if
 $$\overline{X} > \overline{Y} \quad \text{and} \quad X \neq Y$$

- X is stochastically greater than or equal to Y, noted $X \geq Y$, if and only if
 $$\overline{X} \geq \overline{Y} \quad \text{or} \quad X \equiv Y$$

DSA **Discrete Stochastic Arithmetic** is defined as the joint use of the CESTAC method, the computed zero and the relation definitions.
A few properties

- $x = 0 \implies X = @.0$.
- $X s\neq Y \implies x \neq y$.
- $X s> Y \implies x > y$.
- $x \geq y \implies X s\geq Y$.

The relation $s>$ is transitive.

The relation $s=$ is reflexive, symmetric but not transitive.

The relation $s\geq$ is reflexive, antisymmetric but not transitive.
The CADNA library implements Discrete Stochastic Arithmetic.

CADNA allows to estimate round-off error propagation in any scientific program.

More precisely, CADNA enables one to:
- estimate the numerical quality of any result
- control branching statements
- perform a dynamic numerical debugging
- take into account uncertainty on data.

CADNA is a library which can be used with Fortran or C++ programs and also with MPI parallel programs.

CADNA can be downloaded from http://www.lip6.fr/cadna
The stochastic types

CADNA provides two new numerical types, the stochastic types (3 floating point variables x, y, z and a hidden variable acc):

- **type (single_st)** for stochastic variables in single precision stochastic type associated with real.
- **type (double_st)** for stochastic variables in double precision stochastic type associated with double precision.

All the operators and mathematical functions are overloaded for these types.

The cost of CADNA is about:

- 4 for memory
- 10 for run time.
The use of the CADNA library involves six steps:

- declaration of the CADNA library for the compiler,
- initialization of the CADNA library,
- substitution of the type REAL or DOUBLE PRECISION by stochastic types in variable declarations,
- possible changes in the input data if perturbation is desired, to take into account uncertainty in initial values,
- change of output statements to print stochastic results with their accuracy,
- termination of the CADNA library.
program ex1

implicit double precision (a-h,o-z)

x = 10864.d0
y = 18817.d0
write(*,*)'P(10864,18817) = ', rump(x,y)
x = 1.d0/3.d0
y = 2.d0/3.d0
write(*,*)'P(10864,18817) = ', rump(x,y)
end

function rump(x,y)

implicit double precision (a-h,o-z)
a = 9.d0*x*x*x*x
b = y*y*y*y
c = 2.d0*y*y
rump = a-b+c
return
end
program ex1
use cadna
implicit double precision (a-h,o-z)

x = 10864.d0
y = 18817.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)
x = 1.d0/3.d0
y = 2.d0/3.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)

end

function rump(x,y)
use cadna
implicit double precision (a-h,o-z)
a = 9.d0*x*x*x*x
b = y*y*y*y
c = 2.d0*y*y
rump = a-b+c
return
end
program ex1
use cadna
implicit double precision (a-h,o-z)
call cadna_init(-1)
x = 10864.d0
y = 18817.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)
x = 1.d0/3.d0
y = 2.d0/3.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)
end

function rump(x,y)
use cadna
implicit double precision (a-h,o-z)
a = 9.d0*x*x*x*x
b = y*y*y*y
c = 2.d0*y*y
rump = a-b+c
return
end
program ex1
use cadna
implicit double precision (a-h,o-z)
call cadna_init(-1)
x = 10864.d0
y = 18817.d0
write(*,*)'P(10864,18817) = ', rump(x,y)
x = 1.d0/3.d0
y = 2.d0/3.d0
write(*,*)'P(10864,18817) = ', rump(x,y)
call cadna_end()
end

function rump(x,y)
use cadna
implicit double precision (a-h,o-z)
a = 9.d0*x*x*x*x
b = y*y*y*y
c = 2.d0*y*y
rump = a-b+c
return
end
program ex1
use cadna
implicit double precision (a-h,o-z)
call cadna_init(-1)
x = 10864.d0
y = 18817.d0
write(*,*)'P(10864,18817) = ', rump(x,y)
x = 1.d0/3.d0
y = 2.d0/3.d0
write(*,*)'P(10864,18817) = ', rump(x,y)
call cadna_end()
end

function rump(x,y)
use cadna
implicit double precision (a-h,o-z)
a = 9.d0*x*x*x*x
b = y*y*y*y
C = 2.d0*y*y
rump = a-b+c
return
end
program ex1
use cadna
implicit type(double_st) (a-h,o-z)
call cadna_init(-1)
x = 10864.d0
y = 18817.d0
write(*,*)'P(10864,18817) = ', rump(x,y)
x = 1.d0/3.d0
y = 2.d0/3.d0
write(*,*)'P(10864,18817) = ', rump(x,y)
call cadna_end()
end

function rump(x,y)
use cadna
implicit type(double_st) (a-h,o-z)
a = 9.d0*x*x*x*x
b = y*y*y*y
c = 2.d0*y*y
rump = a-b+c
return
end
program ex1
use cadna
implicit type(double_st) (a-h,o-z)
call cadna_init(-1)
x = 10864.d0
y = 18817.d0
write(*,*)'P(10864,18817) = ', rump(x,y)
x = 1.d0/3.d0
y = 2.d0/3.d0
write(*,*)'P(10864,18817) = ', rump(x,y)
call cadna_end()
end

function rump(x,y)
use cadna
implicit type(double_st) (a-h,o-z)
a = 9.d0*x*x*x*x
b = y*y*y*y
c = 2.d0*y*y
rump = a-b+c
return
end
program ex1
use cadna
implicit type(double_st) (a-h,o-z)
call cadna_init(-1)
x = 10864.d0
y = 18817.d0
write(*,*)’P(10864,18817) = ’,str(rump(x,y))
x = 1.d0/3.d0
y = 2.d0/3.d0
write(*,*)’P(10864,18817) = ’,str(rump(x,y))
call cadna_end()
end

function rump(x,y)
use cadna
implicit type(double_st) (a-h,o-z)
a = 9.d0*x*x*x*x
b = y*y*y*y
c = 2.d0*y*y
rump = a-b+c
return
end
The run with CADNA

CADNA software — University P. et M. Curie — LIP6
Self-validation detection: ON
Mathematical instabilities detection: ON
Branching instabilities detection: ON
Intrinsic instabilities detection: ON
Cancellation instabilities detection: ON

P(10864,18817) = @.0
P(1/3,2/3) = 0.802469135802469E+000

CADNA software — University P. et M. Curie — LIP6
There are 2 numerical instabilities
0 UNSTABLE DIVISION(S)
0 UNSTABLE POWER FUNCTION(S)
0 UNSTABLE MULTIPLICATION(S)
0 UNSTABLE BRANCHING(S)
0 UNSTABLE MATHEMATICAL FUNCTION(S)
0 UNSTABLE INTRINSIC FUNCTION(S)
2 UNSTABLE CANCELLATION(S)
Contributions of CADNA

- In direct methods:
 - estimate the numerical quality of the results
 - control branching statements

- In iterative methods:
 - optimize the number of iterations
 - check if the computed solution is satisfactory

- In approximation methods:
 - optimize the integration step
0.3x^2 − 2.1x + 3.675 = 0

Without CADNA, in single precision with rounding to the nearest:
\[d = -3.8146972 \times 10^{-6} \]
Two complex roots
\[z_1 = 3.499999 \times 10^1 + i \times 0.9765625 \times 10^{-3} \]
\[z_2 = 3.499999 \times 10^1 + i \times -0.9765625 \times 10^{-3} \]

With CADNA:
\[d = @.0 \]
The discriminant is null
The double real root is 0.3500000E+01
Iterative methods: which strategy to adopt?

- problems with a solution that cannot be controlled (sequence computation):
 The following stopping criterion should be used

\[
\text{IF } (x(k).eq.x(k + 1)) \text{ THEN }
\]

- problems with a solution that can be controlled:
 the solution \(x_s\) satisfies \(\Psi(x_s) = 0\).
 The optimal stopping criterion should be used

\[
\text{IF } (\Psi(x(k)).eq.0) \text{ THEN }
\]
Iterative methods: the solution cannot be controlled

\[S_n(x) = \sum_{i=1}^{n} \frac{x^i}{i!} \]

Stopping criterion
- IEEE: \(|S_n - S_{n-1}| < 10^{-15}|S_n|\)
- CADNA: \(S_n = S_{n-1}\)

<table>
<thead>
<tr>
<th>(x)</th>
<th>iter</th>
<th>(S_n(x))</th>
<th>(S_n(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.</td>
<td>37</td>
<td>6.737946999084039E-003</td>
<td>0.673794699909E-002</td>
</tr>
<tr>
<td>-10.</td>
<td>57</td>
<td>4.539992962303130E-005</td>
<td>0.45399929E-004</td>
</tr>
<tr>
<td>-15.</td>
<td>76</td>
<td>3.059094197302006E-007</td>
<td>0.306E-006</td>
</tr>
<tr>
<td>-20.</td>
<td>94</td>
<td>5.621884472130416E-009</td>
<td>@.0</td>
</tr>
<tr>
<td>-25.</td>
<td>105</td>
<td>-7.129780403672074E-007</td>
<td>@.0</td>
</tr>
</tbody>
</table>
Iterative methods: the solution can be controlled

The linear system $\mathbf{AX} = \mathbf{B}$ is solved using Jacobi method.

$$x_i^{(k+1)} = -\frac{1}{a_{ii}} \sum_{j=1,j \neq i}^{n} a_{ij} x_j^{(k)} + \frac{b_i}{a_{ii}}$$

Without CADNA

- Stop when $\max_{i=1}^{n} |x_i^k - x_i^{k-1}| < \varepsilon$
- Compute $R = \mathbf{B} - \mathbf{AX}^k$.
\[\text{eps}=1.0 \times 10^{-3} \]

\[\text{nliter} = 35 \]

\[
\begin{align*}
 x(1) &= 0.1699924 \times 10^1 \quad (\text{exact}: 0.1700000 \times 10^1), \quad r(1) = 0.3051758 \times 10^{-3} \\
 x(2) &= -0.4746889 \times 10^4 \quad (\text{exact}: -0.4746890 \times 10^4), \quad r(2) = 0.1953125 \times 10^{-2} \\
 x(3) &= 0.5023049 \times 10^2 \quad (\text{exact}: 0.5023000 \times 10^2), \quad r(3) = 0.1464844 \times 10^{-2} \\
 x(4) &= -0.2453197 \times 10^3 \quad (\text{exact}: -0.2453200 \times 10^3), \quad r(4) = -0.7324219 \times 10^{-3} \\
 x(5) &= 0.4778290 \times 10^4 \quad (\text{exact}: 0.4778290 \times 10^4), \quad r(5) = -0.4882812 \times 10^{-3} \\
 x(6) &= -0.7572980 \times 10^2 \quad (\text{exact}: -0.7573000 \times 10^2), \quad r(6) = 0.9765625 \times 10^{-3} \\
 x(7) &= 0.3495430 \times 10^4 \quad (\text{exact}: 0.3495430 \times 10^4), \quad r(7) = 0.3173828 \times 10^{-2} \\
 x(8) &= 0.4350277 \times 10^1 \quad (\text{exact}: 0.4350000 \times 10^1), \quad r(8) = 0.0000000 \times 10^0 \\
 x(9) &= 0.4529804 \times 10^3 \quad (\text{exact}: 0.4529800 \times 10^3), \quad r(9) = 0.9765625 \times 10^{-3} \\
 x(10) &= -0.2759901 \times 10^1 \quad (\text{exact}: -0.2760000 \times 10^1), \quad r(10) = 0.9765625 \times 10^{-3} \\
 x(11) &= 0.8239241 \times 10^4 \quad (\text{exact}: 0.8239240 \times 10^4), \quad r(11) = 0.7568359 \times 10^{-2} \\
 x(12) &= 0.3459919 \times 10^1 \quad (\text{exact}: 0.3460000 \times 10^1), \quad r(12) = -0.4882812 \times 10^{-3} \\
 x(13) &= 0.1000000 \times 10^4 \quad (\text{exact}: 0.1000000 \times 10^4), \quad r(13) = 0.9765625 \times 10^{-3} \\
 x(14) &= -0.4999743 \times 10^1 \quad (\text{exact}: -0.5000000 \times 10^1), \quad r(14) = 0.1464844 \times 10^{-2} \\
 x(15) &= 0.3642400 \times 10^4 \quad (\text{exact}: 0.3642400 \times 10^4), \quad r(15) = -0.1953125 \times 10^{-2} \\
 x(16) &= 0.7353594 \times 10^3 \quad (\text{exact}: 0.7353600 \times 10^3), \quad r(16) = -0.3662109 \times 10^{-3} \\
 x(17) &= 0.1700038 \times 10^1 \quad (\text{exact}: 0.1700000 \times 10^1), \quad r(17) = 0.1464844 \times 10^{-2} \\
 x(18) &= -0.2349171 \times 10^4 \quad (\text{exact}: -0.2349170 \times 10^4), \quad r(18) = 0.1953125 \times 10^{-2} \\
 x(19) &= -0.8247521 \times 10^4 \quad (\text{exact}: -0.8247520 \times 10^4), \quad r(19) = -0.8728027 \times 10^{-2} \\
 x(20) &= 0.9843570 \times 10^4 \quad (\text{exact}: 0.9843570 \times 10^4), \quad r(20) = 0.0000000 \times 10^0
\end{align*}
\]
eps=1.E-4

niter = 1000

x(1)= 0.1699924E+01 (exact: 0.1700000E+01), r(1)= 0.1831055E-03
x(2)=-0.4746890E+04 (exact:-0.4746890E+04), r(2)=-0.4882812E-03
x(3)= 0.5022963E+02 (exact: 0.5023000E+02), r(3)=-0.9765625E-03
x(4)=-0.2453193E+03 (exact:-0.2453200E+03), r(4)= 0.1464844E-02
x(5)= 0.4778290E+04 (exact: 0.4778290E+04), r(5)=-0.1464844E-02
x(6)=-0.7573022E+02 (exact:-0.7573000E+02), r(6)=-0.1953125E-02
x(7)= 0.3495430E+04 (exact: 0.3495430E+04), r(7)= 0.5126953E-02
x(8)= 0.4350277E+01 (exact: 0.4350000E+01), r(8)=-0.4882812E-03
x(9)= 0.4529798E+03 (exact: 0.4529800E+03), r(9)=-0.9765625E-03
x(10)=-0.2760255E+01 (exact:-0.2760000E+01), r(10)=-0.1953125E-02
x(11)= 0.8239240E+04 (exact: 0.8239240E+04), r(11)= 0.3173828E-02
x(12)= 0.3459731E+01 (exact: 0.3460000E+01), r(12)= 0.1464844E-02
x(13)= 0.1000000E+04 (exact: 0.1000000E+04), r(13)=-0.1953125E-02
x(14)=-0.4999743E+01 (exact:-0.5000000E+01), r(14)= 0.1953125E-02
x(15)= 0.3642400E+04 (exact: 0.3642400E+04), r(15)= 0.0000000E+00
x(16)= 0.7353599E+03 (exact: 0.7353600E+03), r(16)=-0.7324219E-03
x(17)= 0.1699763E+01 (exact: 0.1700000E+01), r(17)=-0.4882812E-03
x(18)=-0.2349171E+04 (exact:-0.2349170E+04), r(18)= 0.0000000E+00
x(19)=-0.8247520E+04 (exact:-0.8247520E+04), r(19)=-0.9155273E-03
x(20)= 0.9843570E+04 (exact: 0.9843570E+04), r(20)=-0.3906250E-02
With CADNA

\[
\begin{align*}
niter &= 29 \\
\text{x(1)} &= 0.170\text{E+01} \quad \text{(exact: } 0.1699999\text{E+01}), \quad \text{r(1)} = @0.0 \\
\text{x(2)} &= -0.4746888\text{E+04} \quad \text{(exact: } -0.4746888\text{E+04}), \quad \text{r(2)} = @0.0 \\
\text{x(3)} &= 0.5023\text{E+02} \quad \text{(exact: } 0.5022998\text{E+02}), \quad \text{r(3)} = @0.0 \\
\text{x(4)} &= -0.24532\text{E+03} \quad \text{(exact: } -0.2453199\text{E+03}), \quad \text{r(4)} = @0.0 \\
\text{x(5)} &= 0.4778287\text{E+04} \quad \text{(exact: } 0.4778287\text{E+04}), \quad \text{r(5)} = @0.0 \\
\text{x(6)} &= -0.75729\text{E+02} \quad \text{(exact: } -0.7572999\text{E+02}), \quad \text{r(6)} = @0.0 \\
\text{x(7)} &= 0.349543\text{E+04} \quad \text{(exact: } 0.3495428\text{E+04}), \quad \text{r(7)} = @0.0 \\
\text{x(8)} &= 0.435\text{E+01} \quad \text{(exact: } 0.4349999\text{E+01}), \quad \text{r(8)} = @0.0 \\
\text{x(9)} &= 0.45298\text{E+03} \quad \text{(exact: } 0.4529798\text{E+03}), \quad \text{r(9)} = @0.0 \\
\text{x(10)} &= -0.276\text{E+01} \quad \text{(exact: } -0.2759999\text{E+01}), \quad \text{r(10)} = @0.0 \\
\text{x(11)} &= 0.823923\text{E+04} \quad \text{(exact: } 0.8239236\text{E+04}), \quad \text{r(11)} = @0.0 \\
\text{x(12)} &= 0.346\text{E+01} \quad \text{(exact: } 0.3459999\text{E+01}), \quad \text{r(12)} = @0.0 \\
\text{x(13)} &= 0.10000\text{E+04} \quad \text{(exact: } 0.9999996\text{E+03}), \quad \text{r(13)} = @0.0 \\
\text{x(14)} &= -0.5001\text{E+01} \quad \text{(exact: } -0.4999999\text{E+01}), \quad \text{r(14)} = @0.0 \\
\text{x(15)} &= 0.364239\text{E+04} \quad \text{(exact: } 0.3642398\text{E+04}), \quad \text{r(15)} = @0.0 \\
\text{x(16)} &= 0.73536\text{E+03} \quad \text{(exact: } 0.7353597\text{E+03}), \quad \text{r(16)} = @0.0 \\
\text{x(17)} &= 0.170\text{E+01} \quad \text{(exact: } 0.1699999\text{E+01}), \quad \text{r(17)} = @0.0 \\
\text{x(18)} &= -0.234917\text{E+04} \quad \text{(exact: } -0.2349169\text{E+04}), \quad \text{r(18)} = @0.0 \\
\text{x(19)} &= -0.8247515\text{E+04} \quad \text{(exact: } -0.8247515\text{E+04}), \quad \text{r(19)} = @0.0 \\
\text{x(20)} &= 0.984356\text{E+04} \quad \text{(exact: } 0.9843565\text{E+04}), \quad \text{r(20)} = @0.0
\end{align*}
\]
Specific implementations

- Specific implementation using SSE for X86 architecture
- SAM : extended precision of CADNA
- parallel codes using MPI
 - need to define new MPI types for the stochastic types
 - works as for sequential codes
- parallel codes using OpenMP
 - No implementation
 - problem with the reduction operation (see OpenMP 4)
- GPU applications
GPU and CADNA

- C++: enough functionalities in CUDA 3.0 to overload operators and functions
- Random functions and the random rounding mode
- Instability detection and trace
The random rounding mode

CPU

```c
if (RANDOM) rnd_switch();
res.x=a.x*b.x;  +∞

if (RANDOM) rnd_switch();
res.y=a.y*b.y;  −∞
rnd_switch();
res.z=a.z*b.z;  +∞
```

GPU

```c
if (RANDOMGPU())
    res.x=__fmul_ru(a.x,b.x);
else
    res.x=__fmul_rd(a.x,b.x);

if (RANDOMGPU()) {
    res.y=__fmul_rd(a.y,b.y);
    res.z=__fmul_ru(a.z,b.z);
}
else {
    res.y=__fmul_ru(a.y,b.y);
    res.z=__fmul_rd(a.z,b.z);
}
```

2 types `float_st` for CPU computation and `float_gpu_st` for GPU computation.
Implemented solutions

- No counter for the numerical instabilities.
 - need more memory (shared)
 - need a lot of atomic operations
 - instabilities are associated to a result.

```cpp
class float_st {
protected:
float x, y, z;
private:
mutable unsigned int accuracy;
unsigned char accuracy;
mutable unsigned char error;
unsigned char pad1, pad2;
}
```

```cpp
class float_gpu_st {
public:
float x, y, z;
public:
mutable unsigned char accuracy;
mutable unsigned char error;
unsigned char pad1, pad2;
}
```
Implemented solutions

- No counter for the numerical instabilities.
 - need more memory (shared)
 - need a lot of atomic operations
 - instabilities are associated to a result.

```cpp
class float_st {
protected:
    float x, y, z;
private:
    mutable unsigned int accuracy;
    unsigned char accuracy;
    mutable unsigned char error;
    unsigned char pad1, pad2;
};
```

```cpp
class float_gpu_st {
public:
    float x, y, z;
private:
    mutable unsigned char accuracy;
    mutable unsigned char error;
    unsigned char pad1, pad2;
};
```
Implemented solutions

- No counter for the numerical instabilities.
 - need more memory (shared)
 - need a lot of atomic operations
 - instabilities are associated to a result.

CPU + GPU

```cpp
class float_st {
protected:
float x,y,z;
private:
mutable unsigned int accuracy;
unsigned char accuracy;
mutable unsigned char error;
unsigned char pad1, pad2;
}
```

GPU

```cpp
class float_gpu_st {
public:
float x,y,z;
public:
mutable unsigned char accuracy;
mutable unsigned char error;
unsigned char pad1, pad2;
}
```
2DRMP is a suite of 2D R-matrix propagation programs simulating electron scattering from H-like atoms and ions at intermediate energies. We focus on the NEWRD program which involves the computation of a large number of Slater integrals:

\[I_\lambda = J_{1,\lambda} + J_{2,\lambda} \]

with

\[J_{1,\lambda} = \int_a^b \int_y^b f_\lambda(x, y) \, dx \, dy, \]

\[f_\lambda(x, y) = \frac{P_{n_1,l_1}(y) P_{n_3,l_3}(y)}{y^{\lambda+1}} x^\lambda P_{n_2,l_2}(x) P_{n_4,l_4}(x), \quad x \in [a, y], \]

\[J_{2,\lambda} = \int_a^y \int_y^b \phi_\lambda(x, y) \, dx \, dy, \]

\[\phi_\lambda(x, y) = P_{n_1,l_1}(y) P_{n_3,l_3}(y) y^\lambda \frac{P_{n_2,l_2}(x) P_{n_4,l_4}(x)}{x^{\lambda+1}}, \quad x \in [y, b], \]

\(P_{n_l,l_i} \): eigenfunctions of the Schrödinger equation
Performance

- Intel Core 2 Quad Processor Q8200 (4M Cache, 2.33 GHz, 1333 MHz FSB)
- NVIDIA C1060
- NVIDIA C2050 FERMI, CUDA Core 448, Mem 3GB GDDR5

<table>
<thead>
<tr>
<th>Architecture</th>
<th>time without CADNA</th>
<th>time with CADNA</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>501 sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1060 GPU without texture</td>
<td>26 sec</td>
<td>7 min 22</td>
<td>17</td>
</tr>
<tr>
<td>C1060 GPU with texture</td>
<td>21 sec</td>
<td>7 min 15</td>
<td>20.7</td>
</tr>
<tr>
<td>C2050 GPU without texture</td>
<td>22 sec</td>
<td>3 min 20</td>
<td>9</td>
</tr>
<tr>
<td>C2050 GPU with texture</td>
<td>22 sec</td>
<td>3 min 20</td>
<td>9</td>
</tr>
</tbody>
</table>

All the results are correct with 7 significant digits.
Efficient method but time and memory consuming
Can be used on real life applications
Difficulties to understand the numerical instabilities in large codes
solution for parallel programs (MPI and GPU)
difficult to use with the libraries (BLAS, LAPACK ...)
project : a compiler for CADNA