Spatial blind source separation

François Bachoc

Institut de Mathématiques de Toulouse
Université Paul Sabatier

Joint work with Marc Genton (KAUST, Saudi Arabia), Klaus Nordhausen (Jyväskylä, Finland), Anne Ruiz-Gazen (Toulouse, France) and Joni Virta (Turku, Finland)

MASCOT NUM 2021 meeting
April 2021
Outline

1. The spatial blind source separation problem
2. A solution by co-diagonalization of two local covariance matrices
3. An improved solution by approximate diagonalization of several local covariance matrices
4. Asymptotic results
5. Numerical results
Mixing of independent sources

Consider \(p \) unobserved independent stationary random fields

\(Z_1 : \mathbb{R}^d \rightarrow \mathbb{R} \)

\(\vdots \)

\(Z_p : \mathbb{R}^d \rightarrow \mathbb{R} \)

called the sources.

Assume that we observe the mixed random fields

\(X_1 : \mathbb{R}^d \rightarrow \mathbb{R} \)

\(\vdots \)

\(X_p : \mathbb{R}^d \rightarrow \mathbb{R} \)

with

\[
\begin{pmatrix}
X_1 \\
\vdots \\
X_p
\end{pmatrix} = \Omega
\begin{pmatrix}
Z_1 \\
\vdots \\
Z_p
\end{pmatrix}
\]

where \(\Omega \) is the \(p \times p \) unknown mixing matrix.
Illustration \((d=1)\)

Unobserved source fields \(Z_1, Z_2.\)

Observed mixed fields \(X_1, X_2.\)

Here

\[
\Omega = \begin{pmatrix}
1 & 0.3 \\
1 & -0.4
\end{pmatrix}.
\]
Application examples

- Sound signal registered at p sensors \rightarrow we want to recover p speakers ($d = 1$, signal processing).
- p pollutant concentrations measured over a region \rightarrow we want to recover p main independent sources of pollution ($d = 2$, spatial statistics).
- Determining main drivers for time series ($d = 1$, finance).
- Recovering neuron sources in EEGs ($d = 1$, neurosciences).

A reference:

Objective

Knowing the **unmixing matrix** Ω^{-1} would be useful.

- **Recovery** of the independent sources with

 $$
 \begin{pmatrix}
 Z_1 \\
 \vdots \\
 Z_p
 \end{pmatrix} = \Omega^{-1}
 \begin{pmatrix}
 X_1 \\
 \vdots \\
 X_p
 \end{pmatrix}.
 $$

- **Interpretation** of the independent sources by subject experts.

- **Modeling** the distribution of (X_1, \ldots, X_p) (complex) \Rightarrow modeling independently the distributions of Z_1, \ldots, Z_p (simpler).

- **Predicting** X_1, \ldots, X_p by multivariate Kriging (cost $O(p^3 n^3)$) \Rightarrow predicting independently Z_1, \ldots, Z_p by univariate Kriging (cost $O(p n^3)$) (Muehlmann, Nordhausen, Yi, 2020).

\Rightarrow We want to estimate Ω^{-1}.
Identifiability aspects

- In
 \[
 \begin{pmatrix}
 X_1 \\
 \vdots \\
 X_p
 \end{pmatrix} = \Omega
 \begin{pmatrix}
 Z_1 \\
 \vdots \\
 Z_p
 \end{pmatrix},
 \]
 the observed \(X_1, \ldots, X_p \) are unchanged if
 - column \(i \) of \(\Omega \) multiplied by \(\lambda > 0 \),
 - \(Z_i \) multiplied by \(1/\lambda \).

\[\Rightarrow\] We assume that
 \[
 \text{Var}(Z_1(s)) = 1, \ldots, \text{Var}(Z_p(s)) = 1
 \]
 for \(s \in \mathbb{R}^d \).

- Still now
 - \(Z_i \) can not be distinguished from \(-Z_i\),
 - the order of \(Z_1, \ldots, Z_p \) can not be estimated.

\[\Rightarrow\] We want to estimate \(Z_1, \ldots, Z_p \) up to signs and order of the components.

\[\Rightarrow\] We want to estimate \(\Omega^{-1} \) up to signs and order of the rows.
1. The spatial blind source separation problem

2. A solution by co-diagonalization of two local covariance matrices

3. An improved solution by approximate diagonalization of several local covariance matrices

4. Asymptotic results

5. Numerical results
Observations and local covariance matrices

- **Observations:** We observe X_1, \ldots, X_p at the observation points $s_1, \ldots, s_n \in \mathbb{R}^d$.

 Our observations are thus
 - $X_1(s_1), \ldots, X_1(s_n)$
 - \vdots
 - $X_p(s_1), \ldots, X_p(s_n)$.

- **Local covariance matrices:**
 - let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be a kernel,
 - let
 \[
 X = \begin{pmatrix}
 X_1 \\
 \vdots \\
 X_p
 \end{pmatrix},
 \]
 - let
 \[
 \hat{M}(f) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} f(s_i - s_j)X(s_i)X(s_j)^\top
 \]
 \[(p \times p)\]
 (assume X_1, \ldots, X_p centered for simplicity).
Different types of kernels

- Let $f_0(s) = 1\{s = 0\}$.
 \[\hat{M}(f_0) = \frac{1}{n} \sum_{i=1}^{n} X(s_i)X(s_i)^\top\]
 (empirical covariance matrix).

- **Ball** kernel:
 \[f(s) = 1\{\|s\| \leq h\}\]

- **Ring** kernel:
 \[f(s) = 1\{h_1 \leq \|s\| \leq h_2\}\]

- **Gaussian** kernel:
 \[f(s) = e^{-\|s\|^2/h^2}\]
Co-diagonalization

Unmixing matrix estimator

Estimator $\hat{\Gamma}(f)$ by co-diagonalization of $\hat{M}(f_0)$ and $\hat{M}(f)$:

$$\hat{\Gamma}(f)\hat{M}(f_0)\hat{\Gamma}(f)^\top = I_p$$

and

$$\hat{\Gamma}(f)\hat{M}(f)\hat{\Gamma}(f)^\top = \hat{\Lambda}(f),$$

where $\hat{\Lambda}(f)$ is a diagonal matrix.

- $\hat{\Gamma}(f)$ estimates Ω^{-1}.
- **Intuition:** Can show that $\hat{\Gamma}(f) = \Omega^{-1}$ would make the above matrices diagonal in expectation.
- Similar method exists for independent observations and time series ($d = 1$) (see e.g. Belouchrani et al, 1997).
Co-diagonalization: pros and cons

+ $\tilde{\Gamma}(f)$ can be computed explicitly by diagonalization of

$$\hat{M}(f_0)^{-1/2} \hat{M}(f) \hat{M}(f_0)^{-1/2}$$

$(p \times p)$.

+ No need to model the random fields X_1, \ldots, X_p (the estimator is semi-parametric).

- The estimation quality strongly depends on the choice of f.
1. The spatial blind source separation problem

2. A solution by co-diagonalization of two local covariance matrices

3. An improved solution by approximate diagonalization of several local covariance matrices

4. Asymptotic results

5. Numerical results
Consider \(k \) kernels \(f_1, \ldots, f_k : \mathbb{R}^d \to \mathbb{R} \).

Unmixing matrix estimator

Estimator \(\hat{\Gamma}(f_1, \ldots, f_k) = \hat{\Gamma} \) satisfies

\[
\hat{\Gamma} \in \arg\max_{\Gamma} \sum_{l=1}^k \sum_{j=1}^p \left[\left(\hat{\Gamma} \hat{M}(f_l) \Gamma^\top \right)_{j,j} \right]^2.
\]

(1)

- \(\hat{\Gamma}(f) \) estimates \(\Omega^{-1} \).
- **Intuition:** Same principle as before but we want all the matrices
 \[
 \hat{\Gamma} \hat{M}(f_0) \hat{\Gamma}^\top, \hat{\Gamma} \hat{M}(f_1) \hat{\Gamma}^\top, \ldots, \hat{\Gamma} \hat{M}(f_k) \hat{\Gamma}^\top
 \]
 to be approximately diagonal.
- Similar method exists for independent observations and time series
 \((d = 1) \) (see e.g. Belouchrani et al., 1997).
- Here we extend to the spatial setting.
Approximate diagonalization: comments

- No explicit solution of the optimization problem.
- The cost function has complexity $O(kp^3)$.
- Efficient algorithms exist, e.g. Given’s rotations (Clarkson, 1988).

+ We have more flexibility to choose f_1, \ldots, f_k for a better estimation.
- Typically, a mix of different types of kernels is recommended.
1. The spatial blind source separation problem

2. A solution by co-diagonalization of two local covariance matrices

3. An improved solution by approximate diagonalization of several local covariance matrices

4. Asymptotic results

5. Numerical results
Asymptotic framework

- We let $n \to \infty$ and p be fixed.

Increasing-domain asymptotics: Infinite sequence $(s_i)_{i \in \mathbb{N}}$ of observation locations covering an infinite domain.

\implies Asymptotic weak dependence between observations.

Gaussianity: We assume that Z_1, \ldots, Z_p are Gaussian random fields.

- Technical conditions on the covariance functions of Z_1, \ldots, Z_p.
Consider kernels f_1, \ldots, f_k satisfying some technical conditions (allows balls, rings and Gaussian).

Let d_w be a distance between probability distributions such that

$$\mathcal{L}_n \xrightarrow{d} \mathcal{L}_\infty \iff d_w(\mathcal{L}_n, \mathcal{L}_\infty) \xrightarrow{n \to \infty} 0$$

(Dudley, 2002).

Let $\text{vect}(A)$ be the column vector obtained by row vectorization of a matrix A.

Central limit theorem

We show: Theorem

Let \((\hat{\Gamma}_n)\) be any sequence of matrices that approximately diagonalizes

\[
\hat{M}(f_0), \hat{M}(f_1), \ldots, \hat{M}(f_k).
\]

Then there exists a sequence \((\tilde{\Gamma}_n)\) such that for all \(n \in \mathbb{N}\)

\[
\tilde{\Gamma}_n = \hat{\Gamma}_n
\]

up to order of the rows and multiplication of the rows by \(\pm 1\).

Furthermore, let \(\mathcal{L}_n\) be the distribution of

\[
\sqrt{n} \ \text{vect} \ (\tilde{\Gamma}_n - \Omega^{-1}).
\]

Then we have

\[
d_w(\mathcal{L}_n, \mathcal{N} [0, V_n(f_1, \ldots, f_k)]) \xrightarrow{n \to \infty} 0.
\]

The sequence of matrices \(V_n(f_1, \ldots, f_k)\) is bounded. See paper.
1. The spatial blind source separation problem

2. A solution by co-diagonalization of two local covariance matrices

3. An improved solution by approximate diagonalization of several local covariance matrices

4. Asymptotic results

5. Numerical results
Results on simulated data

- y-axis: mean error criterion.

As n increases, asymptotic and empirical error criteria get closer.

Ring is better than ball. Using both is robust.
Results on simulated data

- Empirical (**black**) and asymptotic (**red**) distributions of error criterion.

François Bachoc
Spatial blind source separation
22 / 27
Results on simulated data

- **x-axis**: Ball (B), ring (R), Gaussian (G) and joint kernels.
- **y-axis**: mean error criterion.

⇒ Using combinations of kernels is robust.
Real data example

- $n = 594$ samples of terrestrial moss in Finland, Norway, Russia.
- $p = 31$ concentrations of chemical elements.
- (Nordhausen et al, 2015).
Real data example

- **Left, gold standard:** 2 most important estimated sources in Z by
 - co-diagonalization of $\hat{M}(f_0)$ and $\hat{M}(f_1)$,
 - f_1 is the ball kernel with radius 50km,
 - chosen carefully by hand with a subject expert.

- **Middle:** f_0 and f_1; ball kernel with radius 100km.

- **Right:** f_0 and f_1, f_2, f_3; ring kernels with varying radii.

![Map of gold standard and estimators](image-url)
Conclusion

- Unmixing the random fields for easier modeling, easier prediction, interpretation.
- Algorithms are semi-parametric and scale well with dataset size.
- Approximate joint diagonalization with multiple kernels is more robust.
- We have extended procedures and asymptotic results from time series to random fields.
- **Follow-up work:** Dimension reduction ([Muehlmann, Bachoc, Nordhausen, Yi, 2020](#)).
- **Open questions:** Fixed-domain asymptotics? Data driven selection of kernels?

The paper:

Thank you for your attention!

