Space-time modelling and simulation of extreme rainfall

Gwladys Toulemonde1,2

1IMAG, Université Montpellier, CNRS, France
2INRIA, Lemon, Montpellier, France

with the members of the Cerise and Fraise lefe projects!

MASCOT 2021 Meeting
Proposition of a hierarchical space-time model for extreme precipitation data

\[s = \text{"Montpellier"}, \quad t = \text{"30 Sept. 2014"} \]

\[s = \text{"Venice"}, \quad t = \text{"8 Nov. 2014"} \]
Rainfall data

- Hourly observations at 50 rainfall stations for the years 1993 to 2014 from September to November (54542 hours)
- Moderately large dataset (50×54542 observations)
Three stations in France

- clusters of strong values over space and time,
- strong variations at very small spatial and temporal scales
Bivariate max-stable distributions

Let \((X_i, Y_i) \sim F\) be independent random vectors with w.l.g. unit Fréchet margins \(K(x) = \exp(-1/x), \ x > 0\). If a non-degenerate limit distribution for \((M_{x,n}, M_{y,n}) = (\max_{i=1,...,n} X_i, \max_{i=1,...,n} Y_i)\) exists \((F \in D(G))\),

\[
\lim_{n \to \infty} \mathbb{P}(M_{x,n} \leq nx, M_{y,n} \leq ny) = G(x, y)
\]

then \(G\) is **max-stable**: \(G^k(kx_1, kx_2) = G(x, y)\)

- If

\[
G(x, y) = K(x) K(y) = \exp \left(-\frac{1}{x} \right) \exp \left(-\frac{1}{y} \right)
\]

\(\leftarrow \text{ultimately, normalized maxima of } X \text{ and } Y \text{ are independent.}\)

\((X, Y)\) are said to be **Asymptotically Independent (AI)**.

Otherwise, \((X, Y)\) are **Asymptotically Dependent (AD)**.
Dependence measures χ and $\overline{\chi}$

Let $(X, Y) \sim F \in D(G)$, with F_X and F_Y margins.

The χ parameter

$$\chi = \lim_{u \to 1} \mathbb{P} \left(F_Y(Y) > u \mid F_X(X) > u \right)$$

$$= \lim_{u \to 1} 2 - \frac{\log \mathbb{P}(F_X(X) \leq u, F_Y(Y) \leq u)}{\log \mathbb{P}(F_X(X) \leq u)}$$

$$\equiv \lim_{u \to 1} \chi(u)$$

- $\chi > 0 \Rightarrow X$ and Y are AD;
- $\chi = 0 \Rightarrow X$ and Y are AI.

χ quantifies the strength of the extremal dependence.

The $\overline{\chi}$ parameter

$$\overline{\chi} = \lim_{u \to 1} \frac{2 \log \mathbb{P}(F_X(X) > u)}{\log \mathbb{P}(F_X(X) > u, F_Y(Y) > u)} - 1$$

$$\equiv \lim_{u \to 1} \overline{\chi}(u)$$

- $\overline{\chi} = 1 \Rightarrow X$ and Y are AD.
- $-1 \leq \overline{\chi} < 1 \Rightarrow X$ and Y are AI;

moreover $\overline{\chi}$ provides a measure that increases with dependence strength.

Example 1: Gaussian vectors with correlation parameter $\rho \neq 1$: $\chi = 0$, $\overline{\chi} = \rho$.

Example 2: For max-stable distribution, $\chi(u) = \chi$ (same dependence structure $\forall u$)
Our rainfall data: extremal dependence measure I

Spatial lag: \(x = (s, t), x' = (s + h_s, t) \)

\[\chi_{x,x'}(u) \]

\[\overline{\chi}_{x,x'}(u) \]
Our rainfall data: extremal dependence measure II

Temporal lag: \(x = (s, t), x' = (s, t + h_t) \)

\[\chi_{x,x'}(u) \]

\[\bar{\chi}_{x,x'}(u) \]
Space-time setup

- \(\{Z(x), x \in D\} \), **space-time** process where \(x = (s, t), \ D \subset \mathbb{R}^2 \times \mathbb{R}_+ \)
 - \(s \) space coordinate
 - \(t \) time coordinate
- Types of concern when dealing with extreme values of the processes:
 - accurate inference for marginal distributions
 - assessment of the space-time dependence of the extreme values
 - Possibly **asymptotically independent**
- What **Extreme** means for a process? no unique definition
Exceedances

- Model for tail behaviour of $Z(x)$ by fixing a “high” threshold u and focusing only on the (left-censored) values above u (exceedances)

\rightarrow We explicitly model the original event data
Marginal modelling: Generalized Pareto (GP) distribution

- Distribution for (censored) exceedances: the GP distribution
- Asymptotic justification for \(u \to \tau_F \) (upper endpoint)

\[
\Pr(Z(x) - u \leq y | Z(x) > u) \approx 1 - \left(1 + \frac{\xi}{\psi} \frac{y}{\psi}\right)^{-1/\xi}_+
\]

\[
:= H(y; \xi, \psi), \quad y \geq 0
\]

- A different look at the GP distribution (when \(\xi > 0 \)): GP distribution as a Gamma mixture for the rate of the exponential distribution:

\[
V | G \sim \text{Exp}(G), \ G \sim \text{Gamma}(1/\xi, \psi/\xi) \Rightarrow V \sim \text{GP}(\cdot; \xi; \psi).
\]
Hierarchical space-time process with GP marginals

Hierarchical formulation for exceedances (following an idea of Bortot and Gaetan, 2014)

\[Y(x) := (Z(x) - u) \mathbb{1}\{Z(x) > u\} \]

- latent space-time process with Gamma marginals

\[G(x) \sim \text{Gamma}(\alpha, \beta) \]

\[Y(x) | [G(x), Y(x) > 0] \sim \text{Exp}(G(x)) \]

\[P(Y(x) > 0 | G(x)) = \exp(-\kappa G(x)) \]

where \(\kappa > 0 \) is a parameter controlling the rate of upcrossings of the threshold.

\[\leadsto \text{joint space-time structure of the zero part and the positive part in the distribution of } Y(x) \]
Multivariate distribution over the threshold

Exploiting a direct connection between probabilities for $Y(\cdot)$ and $L_G(\cdot)$, we obtain:

$$\Pr(Z(x) > u) = E[\Pr(Z(x) > u \mid G(x))] = L_G(x)(\kappa)$$

Data $\mathbf{z} = (z_1, \ldots, z_n)'$; for $\mathbf{z} \geq \mathbf{u}$,

$$\Pr(Z(x_1) > z_1, \ldots, Z(x_n) > z_n) = L_G(z - (u - \kappa))$$

Multivariate densities can be evaluated as soon as L_G is known.

Notation for bivariate distribution with $z_1 > u$ and $z_2 > u$:

$$\Pr(Z(x_i) \leq z_i, Z(x_j) \leq z_j) = H(z_i, z_j)$$
Which space-time process $G(\cdot)$ with Gamma marginals?

Based on Slated elliptical cylinder + Gamma random field
(Huser and Davison, 2014) (Wolpert and Ickstadt, 1998)

- The ellipse describes the spatial influence zone of a storm
- The ellipse (storm) moves through space with a velocity ω
- The duration of a storm is $\delta > 0$
Which space-time process $G(\cdot)$ with Gamma marginals?

We propose to model the space-time process $\{G(x), x \in \mathcal{D}\}$ as a convolution of a Gamma random field $\Gamma(\cdot)$ (Wolpert and Ickstadt, 1998)

$$G(x) = \int_{A_x} \Gamma(dx') = \Gamma(A_x).$$

with $\Gamma(\cdot)$ a Gamma RF defined on the space-time domain $\mathcal{D} = \mathbb{R}^2 \times \mathbb{R}_+$ such that

- for any set A, $\Gamma(A) := \int_A \Gamma(dx) \sim \text{Gamma}(\alpha(A), \beta)$;
- for any sets A_1, A_2 such that $A_1 \cap A_2 = \emptyset$, $\Gamma(A_1)$ and $\Gamma(A_2)$ are independent random variables.
Extremal dependence of $Z(\cdot)$:

Asymptotic Independence

$$\chi_{x,x'} = 0 \text{ and } \bar{\chi}_{x,x'} = \frac{c_2}{2c_0 - c_2} \geq 0$$
Application to rainfall data

- Hourly observations at 50 rainfall stations for the years 1993 to 2014 from September to November (54,542 hours)
- Moderately large dataset (50 × 54,542 observations)
Application to rainfall data

- Marginal distributions are not stationary in space

- Fit a GP distribution separately to each site \(s \) with thresholds chosen as the empirical quantiles \(q_{0.99}(s) \)
- Transform the exceedances to the same GP distribution
Space-time dependence parameters

\(\theta = (\phi, \gamma_1, \gamma_2, \delta, \omega)' \)
Inferential issues: composite likelihood approach

Let u be a sufficiently high threshold

- Different (censored) likelihood contribution $L(z_1, z_2; \theta)$ of $Z(x_1) = z_1$, $Z(x_2) = z_2$

- Weighted composite likelihood (Lindsay, 1988, Bevilacqua et al., 2012)

\[PL(\theta) = \prod_{i=1}^{n-1} \prod_{j=i+1}^{n} L(z_i, z_j; \theta) w_{ij} \]

w_{ij} positive weights that depend on the space-time distance.

Then we maximise pairwise weighted censored log-likelihood to obtain parameter estimations.
Application to rainfall data

Two models for space-time dependence

G1 Gamma-Pareto process

G2 model G1 without velocity ($\omega = 0$)
Estimates, standard errors (in italic) values of the Gamma-Pareto fitted models.

\[\theta = (\phi, \gamma_1, \gamma_2, \delta, \omega)' \]

Parameter units are kms for \(\gamma_1 \) and \(\gamma_2 \), radians for \(\phi \), hours for \(\delta \) and kms per hour for \(\omega_1 \) and \(\omega_2 \).
Comparison with other AI processes

Comparison with three variants of a censored anisotropic Gaussian space-time copula.

- **C1** Space-time separable model
- **C2** Non-separable model (frozen field, Christakos, 2017)
- **C3** Non-separable model with spherical correlation function

Comparison according to

- **CLIC** (minimum for our Gamma-Pareto process G1)
- **Bivariate conditional probabilities**
 \[\Pr(Z(s, t) > q | Z(s', t - h_t) > q) \]
- **RMSE based on multivariate conditional probability**
 \[\chi^{*}_{s_i; h_t}(q) := \Pr(Z(s_j, t) > q, s_j \in \partial s_i | Z(s_i, t - h_t) > q) \]
Angle $\pi/4$

Estimated probabilities $\Pr(Z(s, t) > q | Z(s', t - h_t) > q)$ along different directions and at different temporal lags h_t. Dotted points correspond to empirical estimates. The value q is fixed to the empirical 99\% quantile.
Estimated probabilities $\Pr(Z(s, t) > q | Z(s', t - h_t) > q)$ along different directions and at different temporal lags h_t. Dotted points correspond to empirical estimates. The value q is fixed to the empirical 99% quantile.
Compute

empirical estimates $\hat{p}_i(h_t)$ of the multivariate conditional probability

$$\chi_{s_i;h_t}^*(q) := \Pr(Z(s_j, t) > q, s_j \in \partial s_i | Z(s_i, t - h_t) > q)$$

where ∂s_i is the set of the four nearest neighbors of site s_i, $i = 1, \ldots, 50$.

Monte-Carlo estimates $\tilde{p}_i^{(j)}(h_t)$, $j = 1, \ldots, 200$.

Calculate site-specific root mean squared errors (RMSE)

$$\text{RMSE}_i(h_t) = \left\{ \frac{\sum_{j=1}^{200} (\tilde{p}_i^{(j)}(h_t) - \hat{p}_i(h_t))^2}{200} \right\}^{1/2},$$

and the resulting total $\text{RMSE}(h_t) = \sum_{i=1}^{50} \text{RMSE}_i(h_t)$.

RMSE
<table>
<thead>
<tr>
<th></th>
<th>RMSE(0)</th>
<th></th>
<th></th>
<th>RMSE(1)</th>
<th></th>
<th></th>
<th>RMSE(2)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$q_{0.99}$</td>
<td>$q_{0.995}$</td>
<td>$q_{0.99}$</td>
<td>$q_{0.995}$</td>
<td>$q_{0.99}$</td>
<td>$q_{0.995}$</td>
<td>$q_{0.99}$</td>
<td>$q_{0.995}$</td>
</tr>
<tr>
<td>G1</td>
<td>2.614</td>
<td>2.096</td>
<td>1.901</td>
<td>1.643</td>
<td>1.475</td>
<td>1.496</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>2.605</td>
<td>2.072</td>
<td>1.907</td>
<td>1.626</td>
<td>1.477</td>
<td>1.480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>2.240</td>
<td>2.455</td>
<td>2.053</td>
<td>2.428</td>
<td>1.779</td>
<td>1.928</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Total root mean squared errors for the estimates of $\chi_{s_i;h_t}(q)$ with $h_t = 0, 1, 2$ hours.
Conclusions on this part

- A space-time model for threshold exceedances of data with asymptotically vanishing dependence strength with physical interpretation.

- Extensions to asymptotic dependence are possible.

- Simulations of exceedances
Why simulate extreme rainfall?

Example of simulated water level and speed in Montpellier with a urban flood model.

Left: study area (600m x 600m). Center: simulated water depths. Right: detail view of the mesh. The lowest depths in blue and the largest depths (5 cm) in red.

Input for urban flood models: rainfall forcing.

- Exploration of not already observed scenarios from limited observations
- Stochastic inputs for impact studies

Reconstructing extreme space-time rainfall forcing scenarios as close to reality as possible is therefore a crucial issue.
Urban flood risk study

Which extremal behaviour of $Z = \{Z(x), x \in D\}$?

- what does it mean rainfall extreme we would like to simulate?
- Events satisfying an exceedance condition

\[
\begin{align*}
\{\max_i Z_i(x)\} & \quad \text{Max-stable} \\
\{\max(Z(x), u)\} & \quad \text{Gamma-Pareto processes} \\
\{Z(x) | \sup_{x \in D} Z(x) > u\} & \quad \text{Pareto processes} \\
\ell\text{-Pareto process} & \quad \{Z(x), x \in D | \ell(Z(x)) > u\}
\end{align*}
\]
Semi-parametric simulation method

Construction of standard space-time ℓ-Pareto processes

(Based on Ferreira and de Haan, 2014; Dombry and Ribatet, 2015)

\[Z(s, t) := R Y(s, t) \]

with $R \sim \text{Pareto}(1, \gamma_R)$ independent of $Y(s, t) \geq 0$, $\ell(Y(s, t)) = 1$ with ℓ a cost functional (a continuous non negative function that is homogeneous).
Semi-parametric simulation method

- **Standardisation** \(\left\{ Z^*(s, t), s \in \mathcal{S}, t \in \mathcal{T} \right\} \) the Pareto standardised process.

- **Extraction**
 - Defining extreme episodes \(\rightarrow \) Cost functional \(\ell + \) threshold \(u \)
 - Select the \(m \) most extreme episodes
 \(\left\{ Z^*_{[i]}(s, t), s \in \mathcal{S}_i \subset \mathcal{S}, t \in \mathcal{T}_i \subset \mathcal{T} \right\}, \ i \in \{1, \ldots, m\} \)

For each \(i \in \{1, \ldots, m\} \),

- **Lifting procedure**
 - Non-parametric approach for the dependence structure
 - Sample \(R_i \) according to a Pareto r.v. with shape 1 and scale \(\alpha > 0 \) and generate

\[
V_i(s, t) = R_i \frac{Z^*_{[i]}(s, t)}{\ell(Z^*_{[i]}(s, t))} = R_i Y_i(s, t).
\]

- **Back-transformation to original scale**
Application to precipitation in Mediterranean France

- Reanalysis data-set
- Hourly rainfall totals \((mm)\).
- \(133\text{kms} \times 104\text{kms}\) grid with \(1\text{km}\) spatial resolution.
- Years: from 1997 to 2007. \(N = 87642\) hours time steps.

- \(\ell\): Space-time neighborhoods(15 kms, 24h)
- \(u = 0.99\)-quantile.
Some perspectives about urban flood risk study

Flow models

Risk indicators $f(H_s,t, V_s,t)$

Simulations of extreme events

Forcings

Stoch. Models

Data
Statistical modelling of extreme events

- Framework:
 - multivariate,
 - temporal,
 - spatial

→ taking into account associated complex dependence.

- Three main issues (I1), (I2) and (I3)
 - (I1) Asymptotic independence (hybrid according components)
 - (I2) Spatial and/or temporal non-stationarity of the dependence structure (Carreau J., Toulemonde G., 2020)
 - (I3) Combination of extreme and non-extreme events.
Some perspectives about urban flood risk study

Data → Simulations of extreme events → Flow models → Risk indicators

Forcings: Need high ST resolution

HR: Very time-consuming

Risk indicators: $f(H_s,t, V_s,t)$

Multivariate risk measures
Some references

THANK YOU!