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Context and motivations



Thermal-hydraulic simulation in the nuclear field

I Needed to simulate power plants (innovative or in operation) as well as
for safety analyses of hypothetical accidental scenarios.

I Simulations run by Best Estimate computer codes with a great effort to
V&V (ex: the CATHARE code in CEA).

I Based on balance equations (mass, momentum and energy) which
require closure models due to time and space averaging.

I Example: the energy equation applied to a control volume:

ρ

(1)︷︸︸︷
∂I

∂t
= −

(2)︷ ︸︸ ︷
grad( .q′′) +

(3)︷︸︸︷
.
q
′′′ +

(4)︷︸︸︷
∂P

∂t
+

(5)︷︸︸︷
φ

(1) variation in time of enthalpy, (2) and (3) are heat fluxes which should be
modeled by (semi)-empirical models, (4) variation in time of the pressure, (5)
dissipation function.
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From modeling to simulation

”Nominal” closure models:
I Established by means of both expertise and well-chosen experimental

data, and denoted by
Mnom(x),

with x being thermal-hydraulic and design variables,

I Experimental uncertainty on x may occur but is often neglected in
practice.

Simulations:
i) Implemented from appropriate closure models =⇒ numerical

uncertainties to check (verification task).

ii) Comparisons between the simulations and corresponding experimental
data (validation task).

iii) Assessment of model uncertainty from the discrepancy between the two
=⇒ IUQ (inverse uncertainty quantification).
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Types of experimental data available (IETs, CETs, SETs)
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The CIRCE method



Probabilistic model uncertainty

CIRCE = Calcul des Incertitudes Relatives aux Corrélations Élémentaires
(De Crécy and Bazin, 2001).

Main assumptions:
• Model uncertainty is multiplicative:

Mλ(x) = λ×Mnom(x)

• λ is modeled as a probability distribution =⇒Mλ is aleatory,

• λ is Gaussian N (m,σ2),
• Model uncertainty is known as ”unbiased” if m = 1.

We wish that the bias, equal to 1− m̂, is as small as possible.
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Biased versus unbiased distributions
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CIRCE is an inverse problem

Probabilistic link between the experimental data and simulations:
• yi ∈ R the experimental QoI at xi (for i ∈ [[1;n]]),
• G the CATHARE code (used as a black-box),

• We assume that

yi = G(

Aleatory closure models︷ ︸︸ ︷
Mλ1,i (xi), · · · ,Mλp,i (xi)) + εi

= Gλi (xi) + εi

where

- λi = (λ1,i, · · · , λp,i)T ∈ Rp with λj,i ∼ N (mj , σ2
j ), j ∈ [[1; p]].

- εi ∼ N (0, σ2
εi

).

The CIRCE method jointly estimates all the mj and σ2
j

(SETs: p = 1, CETs: p ≥ 2).
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Ex : Emergency Core Cooling injection (Cocci, 2022)

This is a CET: p = 2 condensation phenomena, modeled respectively by
Mλ1 (.) and Mλ2 (.), take place at the same time.
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CIRCE implementation

CIRCE consists of three main steps:
1) Linearization of the simulations in λ at the nominal model, i.e. λ? = 1p

yi −Gλ? (xi) = hTi (λi − λ?) + εi, i ∈ [[1;n]].

2) Joint computation of Maximum Likelihood estimates (m̂j , σ̂
2
j ) if

H = [h1, · · · , hn]T ∈Mn,p(R) is full rank.

3) Confirmation of the results through a posterior inspection of both
linearity and normality assumptions.

In this presentation, we are focusing on the second step!
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Notations used in the sequel

I Mean parameters m := (m1, · · · ,mp)T ∈ Rp,

I Variance parameters σ2 := (σ2
1 , · · · , σ2

p)T ∈ Rp,

I Shifted observed data Y := (y1 −Gλ? (x1), · · · , yn −Gλ? (xn))T ∈ Rn,

I Shifted latent data λ := (λ1 − λ?, · · · , λn − λ?)T ∈Mn,p(R),

I Shifted complete data Z := {Y, λ}.
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Complete and marginal likelihood

I Complete likelihood: L(Z|m,σ2) =

Gaussian︷ ︸︸ ︷
L(Y |λ,m, σ2)

Gaussian︷ ︸︸ ︷
L(λ|m,σ2) with

L(Y |λ,m, σ2) ∝
n∏
i=1

exp
(
− 1

2

(
Yi − hTi λi

)2

σ2
εi

)
and

L(λ|m,σ2) ∝
n∏
i=1

|diag(σ2)|−1/2 exp
(
− 1

2(λi −m)Tdiag(σ2)−1(λi −m)
)
.

I Marginal likelihood: integrating over λ leads to the likelihood of the
observed data only, still Gaussian:

L(Y |m,σ2) ∝
n∏
i=1

(hTi diag(σ2)hi+σ2
εi

)−1/2 exp
(
− 1

2
(Yi − hTi m)2

hTi diag(σ2)hi + σ2
εi

)
.
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The ECME algorithm for MLE

ECME = Expectation-Conditional Maximization Either (Celeux et al., 2010)

1. Step of Expectation (E): calculation of

Q((m,σ2), (mk, σ2,k)) = Eλ[l(Z|m,σ2)|Y,mk, σ2,k].

The expectation is taken with respect to the distribution of λ conditional
on (Y,mk, σ2,k).

2. Steps of Conditional Maximization (CM):

• CM1: σ2,k+1 = argmax
σ2

Q((m,σ2), (mk, σ2,k)),
• CM2: mk+1 = argmax

m

l(Y |mk, σ2,k+1).

I CM1 and CM2 have analytic expressions as functions of (mk, σ2,k).

I Starting from a first sample (m0, σ
2
0), the convergence of the ECME

algorithm is faster than that of EM.
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CIRCE using CETs in practice

CIRCE on CETs
I p ≥ 2 factors estimated jointly from Y , often in a small data context

(50 ≤ n ≤ 200),

I If H?1 >> H?2 (case p = 2), then the estimators (m̂2, σ̂
2
2) and (m̂1, σ̂

2
1)

may be respectively inaccurate and degraded.

Multi-stage CIRCE: (Cocci et al., 2022)

I CETs can still be used, but to estimate only the dominant factor, say λ1,
while neglecting the other ones,

I If being known, the uncertainty of the other factors λj (2 ≤ j ≤ p) adds
up to the experimental uncertainty (case p = 2 below):

Yi = hi1λ1,i + εi with εi ∼ N
(
hi2m2, h

2
i2σ

2
2 + σ2

εi

)
.

⇐⇒
Yi − h12m2 = hi1λ1,i + εi with εi ∼ N

(
0, h2

i2σ
2
2 + σ2

εi

)
.
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Multi-group CIRCE



Multi-group CIRCE (Damblin et al., 2023)

Motivation:
The model uncertainty may not be the same across the whole set of
experimental tests Y . How to statistically check on it ?

I Y is now made up of s groups of different experimental setups:

Y := (Y1, · · · , Ys, · · · , Yl)T ∈ Rn ; 1 ≤ s ≤ l

I A variance parameter σ2
s is estimated for each group jointly to a mean

parameter m common to every group.

I For example, Ys may have a specific geometry or thermal-hydraulic input
range.

I Let is denote the last index of the s-th group. Then,

is−1 + 1 ≤ i ≤ is =⇒ λi ∼ N (m,σ2
s)
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MLE in the multi-group CIRCE

Multi-group complete likelihood:

L(Z|m,σ2
1 , · · · , σ2

l ) = L(Y |λ,m, σ2
1 , · · · , σ2

l )L(λ|m,σ2
1 , · · · , σ2

l )

with

L(λ|m,σ2
1 , · · · , σ2

l ) ∝
l∏

s=1

is∏
i=is−1+1

[
|diag(σ2

s)|−1/2

exp
(
− 1

2(λi −m)Tdiag(σ2
s)−1(λi −m)

)]
.

Both E. and CM. steps of the multi-group ECME are
still analytic, and thus the MLE is readily computable.
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The Wald test in the multi-group CIRCE

We aim to evaluate the degree of statistical evidence that the variances of the
groups are different to one another.

I Null hypothesis: H0 : σ2
s − σ2

s′ = 0, 1 ≤ s 6= s′ ≤ l.

I The Wald’s statistic is written as:

W = (σ̂2
s − σ̂2

s′)2

V[σ̂2
s ] + V[σ̂2

s′ ]− 2Cov(σ̂2
s , σ̂2

s′)
∼ χ2(1) under H0,

with χ2(1) denoting the chi-square distribution with one degree of
freedom.

I The test can be applied to each pair of indexes 1 ≤ s 6= s′ ≤ l.
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Application to the critical mass flow

I Discharge of coolant flow due to pressure drop at the break.

I The mass flow rate reaches a maximum value called critical mass flow
(or chocked flow).

I Several types of SETs for this phenomenon, including BETHSY Nozzle 2
(B2) and BETHSY Nozzle 6 (B6).
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Application to the critical mass flow

Is the uncertainty influenced by the geometry?

I p = 1 : Mnom is the so-called flashing model,

I Y = YB2 ∪ YB6 with nB2 = 25 and nB6 = 24,

I Simulations run with the CATHARE code,

I Log-Linearization was more accurate =⇒ λ ∼ LN (m,σ2),
I The multi-group ECME gives:

m̂ = 0.57 and (σ̂2
B2, σ̂

2
B6) = (0.31, 0.13).

I W = 3.62 and P[χ2(1) ≤ 3.84] = 0.95. The equality of variances is thus
not rejected at the 5% level.
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Related works



Related works

I Non-linear CIRCE (Barbillon et al., 2011), Bayesian CIRCE (Damblin
and Gaillard, 2020).

I Assessment of the adequacy of experimental databases through the
criteria of representativeness and completeness (Baccou et al., 2019).

I On going-OCDE project, named ATRIUM, on the realization of IUQ
methods by numerous worldwide participants.

I Scaling issue: do the uncertainties remain valid on IETs or ultimately on
an actual power plant?
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Cocci, R., Damblin, G., Ghione, A., Sargentini, L., and Lucor, D. (2022). Extension of the circe methodology to
improve the inverse uncertainty quantification of several combined thermal-hydraulic models. Nuclear
Engineering and Design, 398.

Damblin, G., Bachoc, F., Gazzo, S., Sargentini, L., and Ghione, A. (2023). A generalization of the circe method for
quantifying input model uncertainty in presence of several groups of experiments. Submitted to Nuclear
Engineering and Design.

Damblin, G. and Gaillard, P. (2020). Bayesian inference and non-linear extensions of the circe method for
quantifying the uncertainty of closure relationships integrated into thermal-hydraulic codes. Nuclear Engineering
and Design, 369(6).
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