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Context

• Environmental pollution causes more
than 8 million deaths per year
worldwide a.

• Need for deployment of accurate
low-cost sensors in air and water
pollution monitoring.

• Innovative materials based sensors : a
possible solution.

aPollution and health: a progress update, The
Lancet, 2022

Pollution on a ring roada

aafp.com/Francois Guillot
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Classical sensor issues

• Innovative materials based
sensors: higly sensitive to desired
and undesired pollutants
(interferents).

• Different kinds of uncertainties
(unmeasured quantities and noise).

• Potentially non negligeable response
time.

• Temporal drift.
Polymer based sensor
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The difficulty of moving from the laboratory to an uncontrolled
environment

• Highly sensitive to pollutants but few
specificity.

• Identification of sensitivity on
laboratory.

• Strong correlation between
environmental variables.

Figure: Sensor variables
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Sensor Modelisation

• Known Outputs :
• y : sensor outputs

• Known Inputs :
• z : environmental variables

• Unknown Inputs :
• x : observed and sensitive variables

• Unmeasured Inputs
• u : error, interfering potential (≪What

we know that we don’t know. . . ≫)

Figure: Representation of a sensor

Hypothetis : a model M of parameters θ exists such that : y = M(x, z,u, θ)
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Principle of sensor calibration

We are interested in the deployment of dy sensors for monitoring dx pollutants to
estimate with dz influents known quantities.

• Available information : Dn := (xmes
i , zmes

i ,ymes
i )n

i=1 to construct the model M,
• Hypothesis : ∀1 ≤ i ≤ n and a new value ⋆ :

ymes
i = M(xmes

i + εx
i , zmes

i + εz
i ,ui ,θ) + ε

y
i (1)

ymes
⋆ = M(x⋆, zmes

⋆ + εz
⋆,u⋆,θ) + εy

⋆ (2)
• Objective : estimate pollutants concentrations x⋆ knowing Dn, zmes

⋆ ,ymes
⋆ .
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Bayesian formalism

In this framework, all unknown quantities are modeled by random variables and
estimating x⋆ amounts to estimate :

π[x⋆|ymes
⋆ , zmes

⋆ ,Dn] ∝ π[ymes
⋆ |x⋆, zmes

⋆ ,Dn]π[x⋆|zmes
⋆ ,Dn] (Bayes) (3)

∝
∫

π[ymes
⋆ |x⋆, zmes

⋆ ,θ]π[θ|zmes
⋆ ,Dn]dθ π[x⋆|zmes

⋆ ,Dn] (4)

Resolution in two step :
• Regression step : to estimate the law of hyperparameters π[θ|zmes

⋆ ,Dn] and the
a priori law π[x⋆|zmes

⋆ ,Dn],
• Inversion step : to deduce the law π[x⋆|ymes

⋆ , zmes
⋆ ,Dn].
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A first model : Linear Regression with model error (SLR or GLR +
ME)

• Hypothesis :
ymes

i = M(xmes
i + εx

i , zmes
i + εz

i ,ui ,θ) + ε
y
i , (5)

For each sensor j at time i :

(ymes
i )j = hj(xmes

i ; zmes
i )Tβj + (εy

i )j + (εi)j (6)

• hj is a vector-valued function,
• βj is a vector of parameters modeled by a gaussian vector known parameters (a

priori),
• (εi)j a model error modeled by a gaussian vector of unknown variance.
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A second model : Gaussian process regression with model error
(GPR + ME)

• Previous model :

(ymes
i )j = hj(xmes

i ; zmes
i )Tβj + (εy

i )j + (εi)j (7)
• Separate the model error into two :

• εmod
j : to quantify the approximate character of the proposed function hj modeled

by a Gaussian Process with mean and covariance to estimate,

• (δi)j : to quantify the impact of not taking unobserved quantities ui into account
modeled by a gaussian random variable with variance to estimate,

(ymes
i )j = hj(xmes

i ; zmes
i )Tβj + (εy

i )j + εmod
j (xmes

i ; zmes
i ) + (δi)j . (8)
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A third model : input uncertainties (GPR + IU)

• Previous model

(ymes
i )j = hj(xmes

i ; zmes
i )Tβj + (εy

i )j + εmod
j (xmes

i ; zmes
i ) + (δi)j . (9)

• Handling input incertainties

(ymes
i )j = hj(xmes

i +εx
i ; zmes

i +εz
i )

Tβj +(εy
i )j +εmod

j (xmes
i + εx

i ; zmes
i + εz

i )+(δ̂i)j . (10)
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Linearisation and Gaussian approximation

• Even if all parameters are gaussian, the law of (ymes
i )j is not explicit (composition

of gaussian variables).

• Assumptions :
• The measurement errors are small enough to make a linearisation with an

approximation by Taylor expansion,
• The law is still not Gaussian (product of gaussian variables) : we approximate the

measured sensor outputs by the Gaussian distribution of the same mean and
covariance matrix.

• Estimation of hyperparameters by log-likelihood maximisation.
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Inversion step

• Estimate the law using M :

π[x⋆|ymes
⋆ , zmes

⋆ ,Dn] ∝ π[ymes
⋆ |x⋆, zmes

⋆ ,Dn]π[x⋆|zmes
⋆ ,Dn] (Bayes)

∝
∫

π[ymes
⋆ |x⋆, zmes

⋆ ,θ]π[θ|zmes
⋆ ,Dn]dθ π[x⋆|zmes

⋆ ,Dn]

• Not explicit : linearisation and gaussian approximation of (ymes
⋆ )j ,

• θ is known based on the regression step,

• MCMC methods to approximate the PDF of x⋆|zmes
⋆ ,ymes

⋆ ,Dn.
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3 examples of applications

• Simulated data
➝ dx = 2pollutants, dz = 2 known environmental variables, dy = 5 sensors
simulated,
➝ Noisy data.

• Experimental dataset
➝ For water quality 1: Calibration of pH and chlorine ( dx = 2), knowing
temperature ( dz = 1) with dy = 20 sensor outputs.
➝ For air quality 2 : Calibration of RH ( dx = 1) sensors based on radio frequency
in lab conditions with dy = 2 sensors outputs and different z possible.
➝ For air quality : a dataset for ozone prediction, in progress.

1G. Perrin B. Lebental, IEEE sensor journal, 2023
2B.B. Ngoune, Article will be submitted to IEEE sensor journal
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Results on the simaluted dataset

Figure: Graphical results for the prediction of two simulated pollutants at one time
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Some results on water quality (G. Perrin’s work)

• A dataset made from lab experiments in drinking water loop for a pH and
chlorine sensor based on carbon nanotube.

• Uncertainties on chlorine was as large as the response of PH variation.
• Dataset of 25 points (small data) analyzed through a leave-one-out (LOO)

approach.

Results with a LOO approach for Lotus project data
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Some results on air quality

Comparison of different calibration
methods
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Conclusion and perspective

• Searching for the right model M with uncertainties.

• Choice of x , z (causal discovery).

• Improve the calibration model by adding a temporal part in the model.
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Thank you for your attention
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