Sensor Calibration

Regression and inversion step

Applicatior

Conclusion

Bayesian calibration of sensors for air and water pollution monitoring

Marine Dumon¹, Bérengère Lebental¹, Guillaume Perrin¹

¹*Université Gustave Eiffel, COSYS, F-77454 Marne-la-Vallée, France* Financed by ANR project CARDIF and H2020 project LOTUS

marine.dumon@univ-eiffel.fr

Sensor Calibration

Regression and inversion step

Application

Conclusion

Introduction

2 Sensor Calibration

8 Regression and inversion step

4 Application

Sensor Calibration

Regression and inversion step

Applicatior

Conclusion

Introduction

Sensor Calibration

Regression and inversion step

Application

Sensor Calibration

Regression and inversion step

Application

Conclusion

Context

- Environmental pollution causes more than 8 million deaths per year worldwide ^a.
- Need for deployment of accurate low-cost sensors in air and water pollution monitoring.
- Innovative materials based sensors : a possible solution.

Pollution on a ring road^{*a*}

▶ 4 3

May 31, 2023

^{*a*}afp.com/Francois Guillot

> < = > = = > > <

^aPollution and health: a progress update, The Lancet, 2022

Regression and inversion step

Application

Conclusion

Classical sensor issues

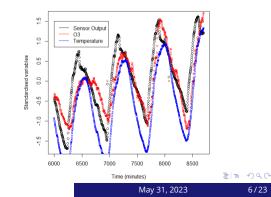
- Innovative materials based sensors: higly sensitive to desired and undesired pollutants (interferents).
- Different kinds of uncertainties (unmeasured quantities and noise).
- Potentially non negligeable response time.
- Temporal drift.

marine.dumon@univ-eiffel.fr

Polymer based sensor

The difficulty of moving from the laboratory to an uncontrolled environment

- Highly sensitive to pollutants **but few** specificity.
- Identification of sensitivity on laboratory.
- Strong correlation between environmental variables.



Regression and inversion step

Applicatior

Conclusion

Sensor Modelisation

- Known Outputs :
 - *y* : sensor outputs
- Known Inputs :
 - z : environmental variables
- Unknown Inputs :
 - *x* : observed and sensitive variables
- Unmeasured Inputs
 - *u*: error, interfering potential («What we know that we don't know...»)

Figure: Representation of a sensor

Sensor

Hypothetis : a model \mathcal{M} of parameters θ exists such that : $\mathbf{y} = \mathcal{M}(\mathbf{x}, \mathbf{z}, \mathbf{u}, \theta)$

> < = > = = > > <

-

May 31, 2023

Sensor Calibration

Regression and inversion step

Applicatior

Conclusion

2 Sensor Calibration

Regression and inversion step

Application

Regression and inversion step

Applicatio

Conclusion

Principle of sensor calibration

We are interested in the deployment of d_y sensors for monitoring d_x pollutants to estimate with d_z influents known quantities.

• Available information : $\mathcal{D}_n := (\mathbf{x}_i^{\text{mes}}, \mathbf{z}_i^{\text{mes}}, \mathbf{y}_i^{\text{mes}})_{i=1}^n$ to construct the model \mathcal{M} ,

• Hypothesis : $\forall 1 \leq i \leq n$ and a new value \star :

$$\mathbf{y}_{i}^{\text{mes}} = \mathcal{M}(\mathbf{x}_{i}^{\text{mes}} + \varepsilon_{i}^{x}, \mathbf{z}_{i}^{\text{mes}} + \varepsilon_{i}^{z}, \mathbf{u}_{i}, \boldsymbol{\theta}) + \varepsilon_{i}^{y}$$
(1)

$$\mathbf{y}_{\star}^{\text{mes}} = \mathcal{M}(\mathbf{x}_{\star}, \mathbf{z}_{\star}^{\text{mes}} + \varepsilon_{\star}^{z}, \boldsymbol{u}_{\star}, \boldsymbol{\theta}) + \varepsilon_{\star}^{y}$$
(2)

• Objective : estimate pollutants concentrations \mathbf{x}_{\star} knowing $\mathcal{D}_{n}, \mathbf{z}_{\star}^{\text{mes}}, \mathbf{y}_{\star}^{\text{mes}}$.

ntroduction Sensor Calibration Regression and inversion step Application Conclusi	
---	--

Bayesian formalism

In this framework, all unknown quantities are modeled by random variables and estimating \mathbf{x}_{\star} amounts to estimate :

$$\pi[\mathbf{X}_{\star}|\mathbf{y}_{\star}^{\text{mes}}, \mathbf{z}_{\star}^{\text{mes}}, \mathcal{D}_{n}] \propto \pi[\mathbf{y}_{\star}^{\text{mes}}|\mathbf{X}_{\star}, \mathbf{z}_{\star}^{\text{mes}}, \mathcal{D}_{n}]\pi[\mathbf{X}_{\star}|\mathbf{z}_{\star}^{\text{mes}}, \mathcal{D}_{n}] \text{ (Bayes)} \qquad (3)$$
$$\propto \int \pi[\mathbf{y}_{\star}^{\text{mes}}|\mathbf{X}_{\star}, \mathbf{z}_{\star}^{\text{mes}}, \boldsymbol{\theta}]\pi[\boldsymbol{\theta}|\mathbf{z}_{\star}^{\text{mes}}, \mathcal{D}_{n}]d\boldsymbol{\theta} \pi[\mathbf{X}_{\star}|\mathbf{z}_{\star}^{\text{mes}}, \mathcal{D}_{n}] \qquad (4)$$

Resolution in two step :

- **Regression step** : to estimate the law of hyperparameters $\pi[\theta | \mathbf{z}_{\star}^{\text{mes}}, \mathcal{D}_n]$ and the *a priori* law $\pi[\mathbf{x}_{\star} | \mathbf{z}_{\star}^{\text{mes}}, \mathcal{D}_n]$,
- Inversion step : to deduce the law π[x_{*}|y^{mes}, z^{mes}, D_n].

Sensor Calibration

Regression and inversion step

Applicatior

Conclusion

Sensor Calibration

3 Regression and inversion step

Application

Regression and inversion step

Applicatio

Conclusion

A first model : Linear Regression with model error (SLR or GLR + ME)

• Hypothesis :

$$\mathbf{y}_{i}^{\text{mes}} = \mathcal{M}(\mathbf{x}_{i}^{\text{mes}} + \varepsilon_{i}^{x}, \mathbf{z}_{i}^{\text{mes}} + \varepsilon_{i}^{z}, \mathbf{u}_{i}, \boldsymbol{\theta}) + \varepsilon_{i}^{y},$$
(5)

For each sensor *j* at time *i* :

$$(\mathbf{y}_{i}^{\text{mes}})_{j} = \mathbf{h}_{j}(\mathbf{x}_{i}^{\text{mes}}; \mathbf{z}_{i}^{\text{mes}})^{T} \boldsymbol{\beta}_{j} + (\boldsymbol{\varepsilon}_{i}^{\boldsymbol{y}})_{j} + (\boldsymbol{\varepsilon}_{i})_{j}$$
(6)

- **h**_j is a vector-valued function,
- β_j is a vector of parameters modeled by a gaussian vector known parameters (a priori),
- $(\varepsilon_i)_i$ a model error modeled by a gaussian vector of unknown variance.

May 31, 2023

A second model : Gaussian process regression with model error (GPR + ME)

• Previous model :

$$(\mathbf{y}_i^{\text{mes}})_j = \mathbf{h}_j(\mathbf{x}_i^{\text{mes}}; \mathbf{z}_i^{\text{mes}})^T \boldsymbol{\beta}_j + (\varepsilon_i^{\mathbf{y}})_j + (\varepsilon_i)_j$$
(7)

- Separate the model error into two :
 - $\varepsilon_j^{\text{mod}}$: to quantify the approximate character of the proposed function \mathbf{h}_j modeled by a Gaussian Process with mean and covariance to estimate,
 - $(\delta_i)_j$: to quantify the impact of not taking unobserved quantities \mathbf{u}_i into account modeled by a gaussian random variable with variance to estimate,

$$(\mathbf{y}_{i}^{\text{mes}})_{j} = \mathbf{h}_{j}(\mathbf{x}_{i}^{\text{mes}}; \mathbf{z}_{i}^{\text{mes}})^{T} \boldsymbol{\beta}_{j} + (\varepsilon_{i}^{y})_{j} + \varepsilon_{j}^{\text{mod}}(\mathbf{x}_{i}^{\text{mes}}; \mathbf{z}_{i}^{\text{mes}}) + (\delta_{i})_{j}. \tag{8}$$

May 31, 2023

13/23

marine.dumon@univ-eiffel.fr

Regression and inversion step

Application 00000 Conclusion

A third model : input uncertainties (GPR + IU)

Previous model

$$(\mathbf{y}_{i}^{\text{mes}})_{j} = \mathbf{h}_{j}(\mathbf{x}_{i}^{\text{mes}}; \mathbf{z}_{i}^{\text{mes}})^{T} \boldsymbol{\beta}_{j} + (\varepsilon_{i}^{\mathcal{Y}})_{j} + \varepsilon_{j}^{\text{mod}}(\mathbf{x}_{i}^{\text{mes}}; \mathbf{z}_{i}^{\text{mes}}) + (\delta_{i})_{j}.$$
(9)

Handling input incertainties

 $(\mathbf{y}_{i}^{\text{mes}})_{j} = \mathbf{h}_{j}(\mathbf{x}_{i}^{\text{mes}} + \boldsymbol{\varepsilon}_{i}^{x}; \mathbf{z}_{i}^{\text{mes}} + \boldsymbol{\varepsilon}_{i}^{z})^{T}\boldsymbol{\beta}_{j} + (\boldsymbol{\varepsilon}_{i}^{y})_{j} + \boldsymbol{\varepsilon}_{j}^{\text{mod}}(\mathbf{x}_{i}^{\text{mes}} + \boldsymbol{\varepsilon}_{i}^{x}; \mathbf{z}_{i}^{\text{mes}} + \boldsymbol{\varepsilon}_{i}^{z}) + (\hat{\delta}_{i})_{j}.$ (10)

Linearisation and Gaussian approximation

• Even if all parameters are gaussian, the law of $(\mathbf{y}_i^{\text{mes}})_j$ is not explicit (composition of gaussian variables).

• Assumptions :

- The measurement errors are small enough to make a linearisation with an approximation by Taylor expansion,
- The law is still not Gaussian (product of gaussian variables) : we approximate the measured sensor outputs by the Gaussian distribution of the same mean and covariance matrix.
- Estimation of hyperparameters by log-likelihood maximisation.

Regression and inversion step

Applicatior

Conclusion

Inversion step

• Estimate the law using \mathcal{M} :

$$\pi[\mathbf{x}_{\star}|\mathbf{y}_{\star}^{\text{mes}}, \mathbf{z}_{\star}^{\text{mes}}, \mathcal{D}_{n}] \propto \pi[\mathbf{y}_{\star}^{\text{mes}}|\mathbf{x}_{\star}, \mathbf{z}_{\star}^{\text{mes}}, \mathcal{D}_{n}]\pi[\mathbf{x}_{\star}|\mathbf{z}_{\star}^{\text{mes}}, \mathcal{D}_{n}] \quad \text{(Bayes)}$$
$$\propto \int \pi[\mathbf{y}_{\star}^{\text{mes}}|\mathbf{x}_{\star}, \mathbf{z}_{\star}^{\text{mes}}, \theta]\pi[\theta|\mathbf{z}_{\star}^{\text{mes}}, \mathcal{D}_{n}] \mathrm{d}\theta \ \pi[\mathbf{x}_{\star}|\mathbf{z}_{\star}^{\text{mes}}, \mathcal{D}_{n}]$$

- Not explicit : linearisation and gaussian approximation of $(\mathbf{y}_{\star}^{\text{mes}})_{j}$,
- θ is known based on the regression step,
- MCMC methods to approximate the PDF of x_{*}|z^{mes}, y^{mes}, D_n.

marine.dumon@univ-eiffel.fr

Sensor Calibration

Regression and inversion step

Application

Conclusion

Introduction

Sensor Calibration

Regression and inversion step

4 Application

	marine.	.dumon@	Juniv-	eiffel.fr
--	---------	---------	--------	-----------

Regression and inversion step

Application

18/23

May 31, 2023

Conclusion

3 examples of applications

• Simulated data

 \rightarrow $d_x = 2$ pollutants, $d_z = 2$ known environmental variables, $d_y = 5$ sensors simulated,

- \rightarrow Noisy data.
- Experimental dataset
 - → For water quality ¹: Calibration of pH and chlorine ($d_x = 2$), knowing temperature ($d_z = 1$) with $d_y = 20$ sensor outputs.
 - \rightarrow For air quality ² : Calibration of RH ($d_x = 1$) sensors based on radio frequency in lab conditions with $d_y = 2$ sensors outputs and different *z* possible.
 - \rightarrow For air quality : a dataset for ozone prediction, in progress.

 ¹G. Perrin B. Lebental, IEEE sensor journal, 2023
²B.B. Ngoune, Article will be submitted to IEEE sensor journal marine.dumon@univ-eiffel.fr

Regression and inversion step

Application

Conclusion

Results on the simaluted dataset

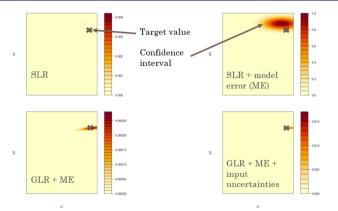


Figure: Graphical results for the prediction of two simulated pollutants at one time

```
marine.dumon@univ-eiffel.fr
```

May 31, 2023 19 / 23

Image: A math a math

▶ ▲ 王 ▶ 王 = 900

Some results on water quality (G. Perrin's work)

- A dataset made from lab experiments in drinking water loop for a pH and chlorine sensor based on carbon nanotube.
- Uncertainties on chlorine was as large as the response of PH variation.
- Dataset of 25 points (small data) analyzed through a leave-one-out (LOO) approach.

Method	$MAE_1(HClO)$	$MAE_2(pH)$
SLR	0.056	1.36
SLR+ME	0.054	1.75
GLR+ME	0.064	0.872
GLR+ME+IU	0.068	1.057
GPR+ME	0.054	1.75
GPR+ME+IU	0.039	0.254

Results with a LOO approach for Lotus project data

marine.dumon@univ-eiffel.fr

May 31, 2023

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シッペ

20/23

Regression and inversion step

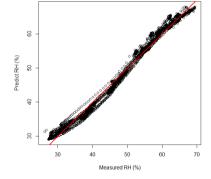
Application

Conclusion

Some results on air quality

ML	Evaluation metrics				
models	MAE (%RH)	MAPE (%)	R ² (%)	Prediction time (ms)	
LR	2.2	5.5	93.8	2	
SVM	1.1	2.4	98.6	864	
RF	1.0	2.3	98.6	64	
KNN	1.0	2.2	98.7	16	
GLR + ME	1.1	2.5	98.8	1	
GPR + ME	0.9	2.2	99.1	12000	

Comparison of different calibration methods



GLR with model error

marine.dumon@univ-eiffel.fr

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sensor Calibration

Regression and inversion step

Applicatior

Conclusion

Introduction

Sensor Calibration

Regression and inversion step

Application

6 Conclusion

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Regression and inversion step

Application

Conclusion

Conclusion and perspective

- Searching for the right model ${\mathcal M}$ with uncertainties.
- Choice of *x*, *z* (causal discovery).
- Improve the calibration model by adding a temporal part in the model.

Thank you for your attention

marine.dumon@univ-eiffel.fr