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Introduction

Computer model
Let f (x ,θ) denote the output of a real-valued, deterministic
function, which implements a mathematical model aimed at
reproducing a real phenomenon

I x = (x1 . . . , xp)> are input variables describing
controllable or observable aspects of the system
(environmental variables)

I θ = (θ1, . . . , θk)> are model parameters which are
unknown in the context of physical experiments
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Example: Photovoltaic plant
12 photovoltaic panels connected together

f (x ,θ) is the instantaneous power delivered by the plant,
where

I x = (t, Ig , Id ,Te)>: t is the time since the beginning of
the year, Ig is the global irradiation of the sun, Id is the
diffuse irradiation of the sun, and Te is the ambient
temperature.

I θ = (θ1, . . . , θ6)> but only one is treated as unknown, the
module photo-conversion efficiency. A sensitivity analysis
has proven the other parameters to be of negligible
importance.

I Carmassi et al. (2019)
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Introduction

Field experiments
Let x1, . . . , xn the configurations at which the field
experiments are conducted; that is,

x i = (x1,i , . . . , xp,i)
>

denotes the values of the input variables that have been set for
the ith experiment (or that will be observed as part of that
experiment, if corresponding to environmental variables)

Following Craig et al. (1996, 1997), Craig et al. (2001), but
most notably Kennedy and O’Hagan (2001), model the field
data as

y(x i) = f (x i ,θ) + δ(x i) + εi
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Introduction

Accounting for various sources of uncertainty

y(x i) = f (x i ,θ) + δ(x i) + εi

I εi are independent N(0, σ2
0) random variables which

represent measurement error

I θ denotes the “true” but unknown value of the vector of
model parameters

I δ(x i) denotes the discrepancy function and is meant to
account for model inadequacy
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Introduction

Uncertainty quantification
Bayarri et al. (2007), Higdon et al. (2004)

I Emulation: construction of a fast approximation for f (·, ·)
I Calibration: estimation of θ

I Validation: how does f (·, ·) fare as a representation of the
real phenomenon?

I Prediction, both inter- and extrapolation
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Introduction

Our Problem:

I In most applications, the interest is not in δ(·) itself

I By incorporating δ(·) in the statistical model, one hopes
for more meaningful calibration and to improve prediction
— bias-corrected prediction

I Our goal is to ascertain which are the input variables
that can be labeled as active in δ(·)

I Those inputs are being mishandled in the computer
model — need further attention

I It’s not recommend to extrapolate along those inputs
I Screening the discrepancy function
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Statistical framework

Gaussian process prior
We place a Gaussian process prior on δ(·):

δ(·) | σ2,ψ ∼ GP(0, σ2c(·, · | ψ))

where

c(x i , x j) =

p∏
`=1

c(x`i , x`j | ψ`)

with ψ` > 0 being a range parameter.

We will use the power exponential correlation function:

c(x`i , x`j | ψ`) = exp (−|x`i − x`j |a/ψ`)

with 0 < a ≤ 2 fixed.
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Statistical framework

Remarks

I There are known confounding issues between δ(·) and θ
(e.g. Tuo and Wu, 2015)

I Brynjarsdóttir and O’Hagan (2014) (and others before)
show how incorporating meaningful prior information on δ
may be important

I Plumlee (2017) and Gu and Wang (2018) place more
sophisticated priors on δ to ensure the separation between
δ and θ

I Important: in what follows, we assume that f (·, ·) is fast
to compute, although the methodology applies also to the
case where we need to construct a surrogate model



10

Statistical framework

I x1, . . . , xn are the configurations at which the field
experiments are conducted

I y> = (y1, . . . , yn), yi = y(x i)

I f (θ) = (f (x i ,θ), i = 1, . . . , n)>

I R = [c(x i , x j | ψ)]i ,j=1,...,n

y | ψ, σ2, σ2
0,θ, f (θ) ∼ Nn(f (θ), σ2R + σ2

0 I n)
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Statistical framework

I Given the separable structure of the correlation function,
as ψ` → +∞ the effect of x` on R vanishes

I A possible solution: place priors on all unknowns and
deem as inactive all x` that have “large” ψ`

I But how large is large enough? Always the case with
estimation-based approaches to variable selection.
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Linkletter’s reparametrization
Linkletter et al. (2006) introduced the following
reparametrization of the power exponential to address variable
selection of a computer model:

ρ` = exp(−(1/2)a/ψ`)

which produces

c(x`i , x`j | ρ`) = ρ
2a|x`i−x`j |a
`

with a fixed at some value in the range of (0, 2].

Advantages:

I 0 ≤ ρ` ≤ 1

I x` is inert if ρ` = 1



13

Our approach — model selection

Let γ = (γ1, . . . , γp)> index all the 2p models for δ(·) that
result from all possible subsets of {x1, . . . , xp} being active:

γ` =

{
1, if x` is active

0, if x` is inert

Under model Mγ,

y | ρ, σ2, σ2
0,θ, f (θ) ∼ Nn(f (θ), σ2Rγ + σ2

0 I n)

with

Rγ =

[ ∏
`:γ`=1

c(x`i , x`j | ρ`)

]
i ,j=1,...,n

that is,
ρ` = 1⇔ γ` = 0
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Posterior model probabilities

A natural way to quantify model uncertainty is through the
posterior model probabilities

π(γ | y) ∝ m(y | γ) π(γ)

where π(γ) = P(Mγ) and π(γ | y) = P(Mγ | y) and

m(y | γ) =

∫
N(y | f (θ), σ2 Rγ + σ2

0 I n)

π(σ2, σ2
0,ρ | γ) π(θ) dσ2 dσ2

0 dρ dθ .

with

I π(θ) specified using expert information

I π(σ2, σ2
0,ρ | γ) = π(σ2, σ2

0) π(ρ | γ)
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PIPS

Once π(γ | y) is computed for all γ, we can obtain the
posterior inclusion probabilities of each input x`:

π(x` | y) =
∑

γ: γ`=1

π(γ | y)

or even of pairs of inputs:

π(x` ∨ xj | y) = π(x` | y) + π(xj | y)−
∑

γ: γ`=1,γj=1

π(γ | y)

These quantities are central to our proposal: posterior
inclusion probability screening.
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Existing methodology

Savitsky et al. (2011) extends Linkletter et al. (2006) by
proposes writing

π(ρ | γ) =

p∏
`=1

[
γ` I(0,1)(ρ`) + (1− γ`) Dir1(ρ`)

]
with Dir1 representing the Dirac delta at 1.

(Discrete) spike and slab prior of Bayesian variable selection
(Mitchell and Beauchamp, 1988):

if a variable is present in the model, the prior on ρ is
the ‘slab’, a U(0, 1) here; otherwise it’s a ‘spike’, a
point mass at 1.
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Existing methodology

Additionally

π(γ) =

p∏
`=1

τ`
γ`(1− τ`)1−γ` ,

where τ` is a fixed number representing the prior probability
that x` is active.

Fairly sophisticated MCMC schemes to sample from the
posterior distribution of (ρ, σ2, σ2

0,γ). The selection of
variables is made by inspecting the posterior on (ρ,γ).



18

Existing methodology

Linkletter et al. (2006): set τ` = τ and integrate out γ from
π(ρ,γ) = π(ρ | γ) π(γ), resulting in

π(ρ) =

p∏
`=1

[
τ I[0,1](ρ`) + (1− τ)Dir1(ρ`)

]
.

Model indicator γ is no longer available so how to declare a
variable inert? We revert back to the estimation-based
approach!
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Existing methodology

Reference distribution variable selection: for a large number of
times, say T = 100

I add a fictitious input xnew to the correlation kernel (along
with ρnew ) and to the design set

I obtain the posterior distribution of (ρ, ρnew), record the
posterior median of ρnew

input x` if inert if the posterior median of ρ` exceeds a fixed
lower percentile (say, the 10%) of the distribution of the
posterior median of ρnew .
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Our approach

Continuous spike and slab (George and McCulloch, 1993)

π(ρ | γ) =

p∏
`=1

[
γ` I(0,1)(ρ`) + (1− γ`) Be(ρ` | α`, 1)

]
where Be· | α, β) represents the Beta density with positive
shape parameters α and β. α` is a large value, typically larger
than 50:
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Computation

π(γ | y) can be written as a function of the Bayes factor

Bγ =
m(y | γ)

m(y | γ = 1)

which is a ratio of normalizing constants.
Ratio importance sampling of Chen and Shao, 1997

Bγ = E1

[
g(y | ρ,η,γ) π(ρ,η | γ)

g(y | ρ,η,γ = 1) π(ρ,η | γ = 1)

]
,

which allows us to estimate all the Bayes factors using a
sample from the posterior of the full model γ = 1

η = (σ2, σ2
0,θ)>
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Computation

If {ρ(r),η(r), r = 1, . . . ,M} is a sample from the posterior
distribution of the unknowns for γ = 1, then

Bγ ≈
1

M

M∑
r=1

g(y | ρ(r),η(r),γ) π(ρ(r),η(r) | γ)

g(y | ρ(r),η(r),γ = 1) π(ρ(r),η(r) | γ = 1)

=
1

M

M∑
r=1

π(ρ(r) | γ)

We show that this is a finite variance importance sampling
estimator.
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Alternative approach

I Joseph and Yan (2015) also proposes screening the
discrepancy function

I Fit the KOH model; plug the estimated values in the
posterior mean of the discrepancy function, δ(·); next,
screen the estimated discrepancy function using sensitivity
analysis

I This approach hinges on a single estimate of θ whereas
ours is fully Bayesian

I Given the confounding between δ(·) and θ, relying on a
estimate of θ is dangerous

I We have an example where we empirically demonstrate
potential pitfalls of the two-step approach that our
methodology, by relying on the joint distribution of θ and
δ(·) is able to circumvent.
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Simulation studies

The paper includes

I A comparison between RDVS and PIPS in the ability to
detect active variables, both when θ is fixed and when θ
is calibrated

I Our method exhibits comparable performance but
requires only one MCMC sample

I Savitsky et al. (2011) is hard to implement and tune

I f (x i ,θ) =
∑4

`=1
|4x`i−2|+θ`

1+θ`

I δ(x i) = sin(2πx1i · x5i) + x32i + (1− x6i)
3
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With θ calibrated:

x1 x2 x3 x4 x5 x6 x7 x8

RDVS
q5% 1.00 1.00 0.03 0.03 1.00 1.00 0.03 0.00
q10% 1.00 1.00 0.07 0.05 1.00 1.00 0.03 0.00
q15% 1.00 1.00 0.12 0.05 1.00 1.00 0.03 0.00

PIPS
th0.1 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00
th0.5 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00
th0.9 1.00 0.98 0.00 0.00 1.00 1.00 0.00 0.00

Table: Proportion of detection for a variable to be active when
using RDVS and PIPS methods when the parameters θ are
calibrated.
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Simulation studies

The paper includes idealized scenarios of computer model
validation where

I a variable is incorrectly modeled by the computer model

I a variable appears in the computer model but not in the
real phenomenon

I a variable appears in the real phenomenon but not in the
computer model

I the wrong input is modeled in the computer model
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Simulation studies

Scenarios:

f (x i ,θ) =
3∑
`=1

|4x`i − 2|+ θ`
1 + θ`

Real phenomenon is

1. ζ(x i ,θ) =
|4x21i−2|
1+θ1

+ |4x3i−2|+θ3
1+θ3

2. ζ(x i ,θ) =
|4x21i−2|
1+θ1

+
∑4

`=2
|4x`i−2|+θ`

1+θ`

3. ζ(x i ,θ) =
|4x21i−2|
1+θ1

+ |4x2i−2|+θ2
1+θ2

+ |4x5i−2|+θ5
1+θ5
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Figure: Boxplots of the probabilities of activeness over the 100
replications for cases 1 and 3. x3 and x5 are correlated in the
simulations.
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Example: Photovoltaic plant
12 photovoltaic panels connected together. f (x ,θ) is the
instantaneous power delivered by the plant, where

I x = (t, Ig , Id ,Te)>: t is the time since the beginning of
the year, Ig is the global irradiation of the sun, Id is the
diffuse irradiation of the sun, and Te is the ambient
temperature.

I θ = (θ1, . . . , θ6)> but only one is treated as unknown, the
module photo-conversion efficiency. A sensitivity analysis
has proven the other parameters to be of negligible
importance.
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A photovoltaic plant computer model

I Instantaneous power delivered by the 12 panels was
collected over a period of 2 months every 10 seconds

I x = (t, Ig , Id ,Te)>

I The temperature on the panel Tp was measured and is
tested as a potential active variable in δ(·)

I Considered measurements every 5 minutes

I Methodology is applied to each of the 60 days, between
99 and 178 data per day

I Boxplots of inclusion probabilities over the 60 days
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Figure: Boxplots of probabilities of activeness of the input variables
in the discrepancy computed for the 60 days of data. The column
(Te or Tp) corresponds to the fact that at least one of two
temperatures is active.
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Discussion

I Screening the discrepancy function may provide the
practitioner with a better understanding of the flaws of
the computer model

I Cast this problem into the more general problem of
variable selection for GaSP regression

I PIPS is computationally attractive as it relies on a single
MCMC sample

I Posterior inclusion probabilities are easy to interpret

I By relying on the joint distribution of δ(·) and θ there is
evidence that we alleviate the consequences of the
confounding

I Moderate p requires exploring the model space as in
Garcia-Donato and Martinez-Beneito (2013) — work in
progress


