

OPTIMAL UNCERTAINTY QUANTIFICATION OF A RISK MEASUREMENT FROM A COMPUTER CODE

Jérôme Stenger

MASCOT-NUM - 17/09/2020

Fabrice Gamboa (IMT) Merlin Keller (EDF) - Bertrand looss (EDF)

📩 EDF R&D - 🕸 Université Paul Sabatier

INTRODUCTION

Canonical Moments Parameterization 00000000 Illustration

INDUSTRIAL CONTEXT

We study a mock-up of a water pressured nuclear reactor during an intermediate break loss of coolant accident in the primary loop.

700

600

200

100

100

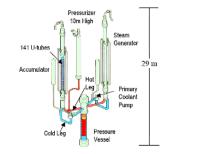


Figure – The replica of a water pressured reactor, with the hot and cold leg.

Figure – CATHARE temperature output for nominal parameters.

Line (a)

200 300

400 500

600

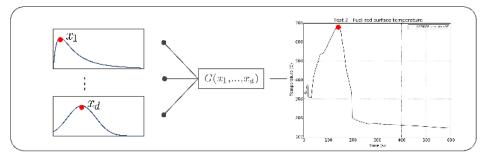
est 2 - Fael rod sarface temperature

Reduction Theorem 0000000000 Canonical Moments Parameterization 00000000

DETERMINISTIC METHOD

$$\underbrace{(x_1,\ldots,x_d)} \qquad \rightsquigarrow \qquad \textbf{COMPUTER MODEL} \qquad \rightsquigarrow \qquad y$$

uncertain input parameters

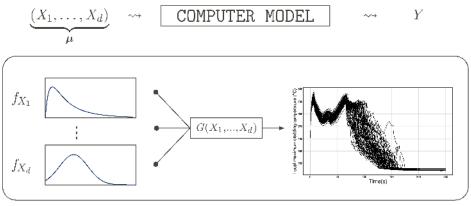


Our use-case is a thermal-hydraulic computer experiment (CATHARE), which simulates a intermediate break loss of coolant accident. The variable of interest is the peak cladding temperature.

MASCOT-NUM - 17/09/2020

Canonical Moments Parameterization 00000000 Illustration

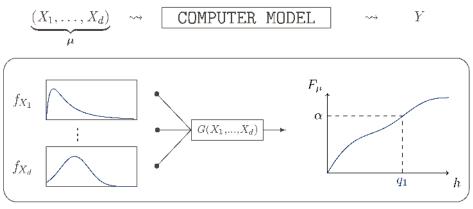
PROBABILISTIC MODELIZATION



Let G be our computer code, the output distribution writes $F_{\mu}(h) = \mathbb{P}_{\mu}(G(X) \leq h).$

Canonica. Moments Parameterization 00000000 Illustration
 oooooooo

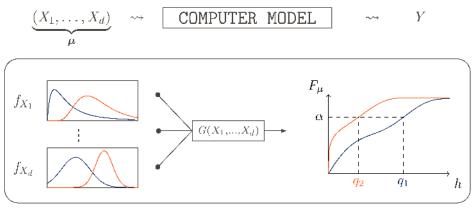
PROBABILISTIC MODELIZATION



Let G be our computer code, the output distribution writes $F_{\mu}(h) = \mathbb{P}_{\mu}(G(X) \leq h).$

Canonica. Moments Parameterization 00000000 Illustration
 oooooooo

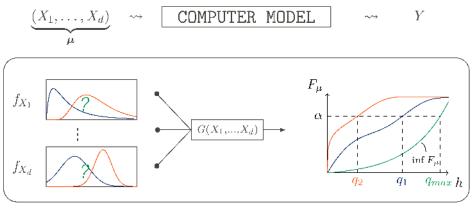
PROBABILISTIC MODELIZATION



The quantity of interest (here a quantile) depends on the input distributions μ .

Canonica. Moments Parameterization 00000000 Illustration
 oooooooo

PROBABILISTIC MODELIZATION



OUQ consists in finding the optimum of the quantity of interest over a set of input distribution $\mu \in A$.

Reduction Theorem. 0000000000 Canonical Moments Parameterization 00000000

Illustration

UNCERTAINTY MODELIZATION

We consider robustness by finding bounds on a quantity of interest ϕ

 $\boldsymbol{\mu} \in \mathcal{P}(X) \mapsto \phi(\boldsymbol{\mu})$

 $\rightarrow~$ We optimize the quantity of interest over a measure space ${\cal A}$

 $\sup_{\boldsymbol{\mu}\in\mathcal{A}}\phi(\boldsymbol{\mu})$

→ The measure space A should be compatible with the data, it should effectively represent the uncertainty on the distribution.

Introduction	Reduction Theorem	Canonical Moments Parameterization	Illustration			
00000	00000000	0000000	00000000			

In this work we will focus on two different optimization space.

 \rightarrow The moment class :

$$\mathcal{A}^* = \left\{ (\mu_1, \dots, \mu_d) \in \prod_{i=1}^d \mathcal{P}([l_i, u_i]) \mid \mathbb{E}_{\mu_i}[X^j] \le c_i^{(j)}, \ j = 1, \dots, N_i \right\},\$$

 $\rightarrow\,$ and the unimodal moment class

いい

$$\mathcal{A}^{\dagger} = \left\{ \mathsf{U}$$
nimodal $oldsymbol{\mu} \in \prod_{i=1}^d \mathcal{P}([l_i, u_i]) \mid \mathbb{E}_{\mu_i}[X^j] \leq c_i^{(j)} \ , \ j=1,\ldots,N_i
ight\} \, ,$

Problem : this is an optimization over an infinite non parametric space...

REDUCTION THEOREM

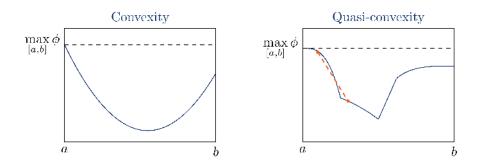
Reduction Theorem

Canonical Moments Parameterization 0000000 Illustration 00000000

QUASI-CONVEX FUNCTION

A function ϕ is said to be quasi-convex if

 $\phi(\lambda x + (1 - \lambda)y) \le \max{\phi(x); \phi(y)}$

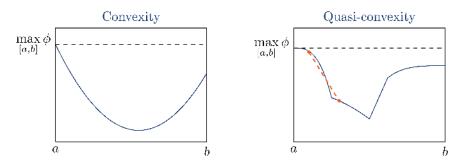


Reduction Theorem

Canonical Moments Parameterization 00000000 Illustration

QUASI-CONVEX FUNCTION

From the Bauer maximum principle, a convex function on a compact convex set reaches its maximum on the extreme points



 \leadsto The Bauer maximum principle remains true for quasi-convex function.

REDUCTION THEOREM

Reduction theorem

- → The (unimodal) moment class is compact convex.
- → The quantity of interest ϕ is a quasi-convex lower semicontinuous function of the measure $\mu \in \mathcal{A}$

Then,

$$\sup_{\mu \in \mathcal{A}} \phi(\mu) = \sup_{\mu \in \Delta} \phi(\mu) ,$$

where Δ is the set of extreme points of \mathcal{A} .

 \rightsquigarrow What are the extreme points of the (unimodal) moment class?

REDUCTION THEOREM

Reduction theorem

- → The (unimodal) moment class is compact convex.
- → The quantity of interest ϕ is a quasi-convex lower semicontinuous function of the measure $\mu \in \mathcal{A}$

Then,

$$\sup_{\mu \in \mathcal{A}} \phi(\mu) = \sup_{\mu \in \Delta} \phi(\mu) \; ,$$

where Δ is the set of extreme points of A.

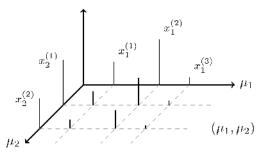
 \rightsquigarrow What are the extreme points of the (unimodal) moment class?

EXTREME POINTS CHARACTERIZATION (1/2)

Extreme points of the moment class

If you have N_i constraints on μ_i , then μ_i can be specified as a convex combination of at most $N_i + 1$ Dirac masses

$$\Delta^* = \left\{ \mu \in \mathcal{A}^* \mid \mu_i = \sum_{k=1}^{N_i+1} \omega_k \delta_{x_k}, \,\, x_k \in [l_i, u_i]
ight\}$$

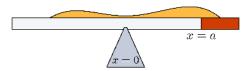


PHYSICAL ILLUSTRATION

First approach

You are given 1kg of sand to arrange however you wish on a seesaw balanced around x = 0.

ightarrow How much mass can you pur on the region $x \geq a$?

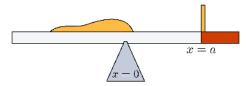


PHYSICAL ILLUSTRATION

First approach

You are given 1kg of sand to arrange however you wish on a seesaw balanced around x = 0.

ightarrow How much mass can you pur on the region $x \geq a$?

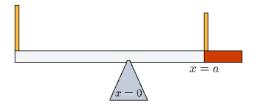


PHYSICAL ILLUSTRATION

First approach

You are given 1kg of sand to arrange however you wish on a seesaw balanced around x = 0.

ightarrow How much mass can you pur on the region $x \geq a$?



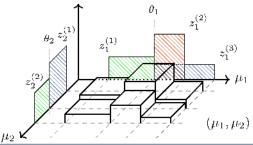
EXTREME POINTS CHARACTERIZATION (2/2)

Extreme points of the unimodal moment class

If you have N_i constraints on μ_i , then μ_i can be specified as a convex combination of at most $N_i + 1$ uniform distributions

$$\Delta^{\dagger} = \left\{ \mu \in \mathcal{A}^{\dagger} \mid \mu_i = \sum_{k=1}^{N_i+1} \omega_k \, \mathcal{U}(heta_i, extsf{z}_k), \; extsf{z}_k \in [l_i, u_i]
ight\}$$

where θ_i denotes the mode of μ_i .



REDUCTION THEOREM FOR A PROBABILITY OF FAILURE

Consider the quantity of interest to be a probability of failure (PoF).

→→ it is a linear function of the input measure, thus is quasi-convex.

Over the moment class $\mathcal{A}^\ast,$ the optimal PoF can be computed on the set of discrete finite input distributions :

$$\sup_{\mu \in \mathcal{A}^*} \phi(\mu) = \sup_{\mu \in \mathcal{A}^*} F_{\mu}(h) ,$$

=
$$\sup_{\mu \in \Delta^*} \mathbb{P}_{\mu} \left(G(X_1, \dots, X_d) \le h \right) ,$$

=
$$\sup_{\mu \in \Delta^*} \sum_{i_1 = 1}^{N_1 + 1} \dots \sum_{i_d = 1}^{N_d + 1} \omega_{i_1}^{(1)} \dots \omega_{i_d}^{(d)} \mathbb{1}_{\{G(x_{i_1}^{(1)}, \dots, x_{i_p}^{(p)}) \le h\}} .$$

Introduction	Reduction Theorem	Canonica. Moments Parameterization	Illustration
00000		00000000	00000000

DISCRETE MEASURES

Let enforce N moment constraints on a measure $\mathbb{E}_{\mu}[X^j] = c_j$. OUQ theorem guaranties the optimal measure to be supported on at most N + 1 points :

$$u = \sum_{i=1}^{N+1} \omega_i \delta_{\mathbf{x}_i}$$

We have the following system of constraint equations :

$$\begin{cases} \omega_{1} + \dots + \omega_{N+1} = 1\\ \omega_{1}x_{1} + \dots + \omega_{N+1}x_{N+1} = c_{1}\\ \vdots & \vdots & \vdots\\ \omega_{1}x_{1}^{N} + \dots + \omega_{N+1}x_{N+1}^{N} = c_{N} \end{cases}$$

 \rightsquigarrow The weights are uniquely determined by the positions.

Introduction	Reduction Theorem	Canonical Moments Parameterization	Illustration
00000	0000000000	0000000	00000000

DISCRETE MEASURES

Let enforce N moment constraints on a measure $\mathbb{E}_{\mu}[X^j] = c_j$. OUQ theorem guaranties the optimal measure to be supported on at most N + 1 points :

$$u = \sum_{i=1}^{N+1} \omega_i \delta_{\mathbf{x}_i}$$

We have the following system of constraint equations :

$$\begin{cases} \omega_{1} + \dots + \omega_{N+1} = 1\\ \omega_{1}x_{1} + \dots + \omega_{N+1}x_{N+1} = c_{1}\\ \vdots & \vdots & \vdots\\ \omega_{1}x_{1}^{N} + \dots + \omega_{N+1}x_{N+1}^{N} = c_{N}\\ 0 \le \omega_{i} \le 1 & \bigwedge \end{cases}$$

Reduction Theorem

Canonical Moments Parameterization 0000000

GEOMETRICAL INTERPRETATION OF THE PARAMETRIZATION

Example : Let μ be supported on [0,1] such that $\mathbb{E}_{\mu}[X] = 0.5$ and $\mathbb{E}_{\mu}[X^2] = 0.3$.

$$\Delta^* = \left\{ \mu = \sum_{i=1}^3 \omega_i \delta_{x_i} \in \mathcal{P}([0,1]) \mid \mathbb{E}_{\mu}[X] = 0.5, \ \mathbb{E}_{\mu}[X^2] = 0.3 \right\} ,$$

Reduction Theorem

Canonical Moments Parameterization 0000000 Illustration

GEOMETRICAL INTERPRETATION OF THE PARAMETRIZATION

Example : Let μ be supported on [0,1] such that $\mathbb{E}_{\mu}[X] = 0.5$ and $\mathbb{E}_{\mu}[X^2] = 0.3$.

$$\begin{split} \Delta^* &= \left\{ \mu = \sum_{i=1}^3 \omega_i \delta_{x_i} \in \mathcal{P}([0,1]) \mid \mathbb{E}_{\mu}[X] = 0.5, \ \mathbb{E}_{\mu}[X^2] = 0.3 \right\} ,\\ \checkmark \quad \mathbf{x} &= (0.1, 0.4, 0.9) \text{ gives weights } \boldsymbol{\omega} = (0.05, 0.73, 0.22) \\ \varkappa \quad \mathbf{x} &= (0.1, 0.3, 0.9) \text{ gives weights } \boldsymbol{\omega} = (-0.19, 0.92, 0.27) \end{split}$$

Reduction Theorem

Canonica. Moments Parameterization 00000000 Illustration

GEOMETRICAL INTERPRETATION OF THE PARAMETRIZATION

Example : Let μ be supported on [0, 1] such that $\mathbb{E}_{\mu}[X] = 0.5$ and $\mathbb{E}_{\mu}[X^2] = 0.3$.

$$\Delta^* = \left\{ \mu = \sum_{i=1}^3 \omega_i \delta_{x_i} \in \mathcal{P}([0,1]) \mid \mathbb{E}_{\mu}[X] = 0.5, \ \mathbb{E}_{\mu}[X^2] = 0.3 \right\} ,$$

$$\checkmark \quad \mathbf{x} = (0.1, 0.4, 0.9) \text{ gives weights } \boldsymbol{\omega} = (0.05, 0.73, 0.22) \\ \times \quad \mathbf{x} = (0.1, 0.3, 0.9) \text{ gives weights } \boldsymbol{\omega} = (-0.19, 0.92, 0.27)$$

$$\mathcal{V}_{\Delta^*} = \left\{ \mathbf{x} = (x_1, x_2, x_3) \in [0, 1]^3 \mid \mu = \sum_{i=1}^3 \omega_i \delta_{x_i} \in \Delta^* \right\}$$

How to optimize over and explore the manifold \mathcal{V}_{Δ} ?

POSSIBLE WAYS OF OPTIMIZING

- → Optimization under constraints : the position and the weight must satisfy the Vandermonde system.
- → Optimization by rewriting the objective function : changing the parameterization of the problem so that the constraint are naturally enforced in the objective function.

 \longrightarrow Canonical moments allows to efficiently explore the set of optimization Δ^* .

POSSIBLE WAYS OF OPTIMIZING

- → Optimization under constraints : the position and the weight must satisfy the Vandermonde system.
- → Optimization by rewriting the objective function : changing the parameterization of the problem so that the constraint are naturally enforced in the objective function.
 - \longrightarrow Canonical moments allows to efficiently explore the set of optimization Δ^* .

CANONICAL MOMENTS PARAMETERIZATION

Reduction Theorem 000000000 Canonical Moments Parameterization •••••••• Illustration

CLASSICAL MOMENTS PROBLEM

$$\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right)$$

 \rightsquigarrow Moment sequence of $\,\mathcal{U}[0,1]$

$$\left(1, \frac{4}{3}, 2, \ldots\right)$$

 \rightsquigarrow Moment sequence of $\, \mathcal{U}[0,2]$

Conclusion : there is no relation between the classical moments and the intrinsic structure of the distribution.

Reduction Theorem 000000000 Canonical Moments Parameterization •0000000 Illustration

CLASSICAL MOMENTS PROBLEM

$$\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right)$$

 \rightsquigarrow Moment sequence of $\,\mathcal{U}[0,1]$

$$\left(1, \frac{4}{3}, 2, \ldots\right)$$

 \rightsquigarrow Moment sequence of $\mathcal{U}[0,2]$

Conclusion : there is no relation between the classical moments and the intrinsic structure of the distribution.

MOMENT SPACE

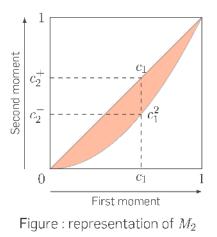
We define the moment space $M_n = {\mathbf{c}_n(\mu) = (c_1, \dots, c_n) \mid \mu \in \mathcal{P}([0, 1])}$

Given $\mathbf{c}_n \in \operatorname{int} M_n$, we define the extreme values

$$c_{n+1}^{+} = \max \{ c : (c_1, \dots, c_n, c) \in M_{n+1} \}$$

$$c_{n+1} = \min \{ c : (c_1, \dots, c_n, c) \in M_{n+1} \}$$

They represent the maximum and minimum value of the (n + 1)th moment a measure can have, when its moments up to order n equal to c_n .



CANONICAL MOMENTS

The nth canonical moment is defined as

$$p_n=p_n(\mathbf{c})=rac{c_n-c_n^-}{c_n^+-c_n^-}$$

Properties of canonical moments

 $\rightarrow p_n \in [0,1],$

→ The canonical moments are invariants by affine transformation. Which means we can always transform a measure supported on [a, b] to [0, 1]

LINK BETWEEN SUPPORT AND CANONICAL MOMENTS

Given a measure $\mu = \sum_{i=1}^{n+1} \omega_i \delta_{x_i}$, we have two representations of the same polynomial P_{n+1}^* :

 $\rightarrow~$ Its roots are the measure support points :

$$P_{n+1}^*(z) = \prod_{i=1}^{n+1} (z - x_i).$$

→ Its coefficients are function of a sequence of the measure canonical moments $\mathbf{p} = (p_1, \dots, p_{2n+1})$:

 $\mathcal{P}_{n+1}^*(z) = \varphi_0(\mathbf{p}) + \varphi_1(\mathbf{p})z + \dots + \varphi_{n+1}(\mathbf{p})z^{n+1} .$

LINK BETWEEN SUPPORT AND CANONICAL MOMENTS

Given a measure $\mu = \sum_{i=1}^{n+1} \omega_i \delta_{x_i}$, we have two representations of the same polynomial P_{n+1}^* :

 $\rightarrow~$ Its roots are the measure support points :

$$P_{n+1}^*(z) = \prod_{i=1}^{n+1} (z - x_i).$$

→ Its coefficients are function of a sequence of the measure canonical moments $\mathbf{p} = (p_1, \dots, p_{2n+1})$:

$$\mathcal{P}_{n+1}^*(z) = \varphi_0(\mathbf{p}) + \varphi_1(\mathbf{p})z + \dots + \varphi_{n+1}(\mathbf{p})z^{n+1}$$

Reduction Theorem 0000000000 Canonical Moments Parameterization 0000000

Illustration 00000000

EFFECTIVE PARAMETERIZATION

Let
$$\mu \in \Delta^* = \left\{ \sum_{i=1}^{n+1} \omega_i \delta_{x_i} \in \mathcal{P}([a,b]) \mid \mathbb{E}_{\mu}[X^j] = c_j, 1 \le j \le n \right\}$$

Reduction Theorem 0000000000 Canonical Moments Parameterization 0000000

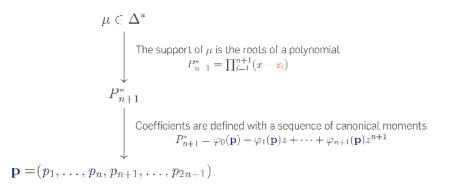
Illustration

$$\mu \in \Delta^*$$

$$\downarrow$$
The support of μ is the roots of a polynomial
$$P_{n-1}^* = \prod_{i=1}^{n+1} (x - x_i)$$

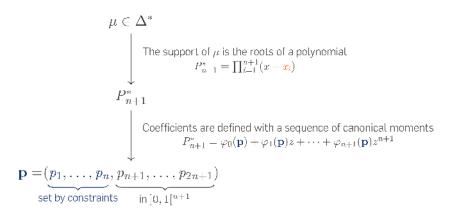
$$P_{n+1}^*$$

Reduction Theorem 0000000000 Canonical Moments Parameterization 0000000 Illustration

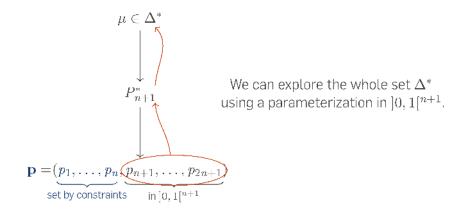


Reduction Theorem 0000000000 Canonical Moments Parameterization 0000000

Illustration



Reduction Theorem 0000000000 Canonical Moments Parameterization 0000000 Illustration



GENERATION OF ADMISSIBLE MEASURES

Theorem

The manifold

$$\mathcal{V}_{\Delta^*} = igg\{ \mathbf{x} = (x_1, \dots, x_{n+1}) \in [0, 1]^{n+1} ext{ s.t.} \ \mu = \sum_{i=1}^{n+1} \omega_i \delta_{x_i} ext{ satisfies the constraints} igg\}$$

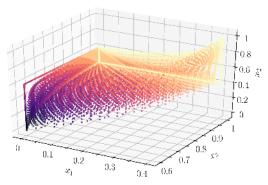
is an algebraic variety, it is the zero locus of the set of polynomials

$$\left({{P_{n + 1}^*} \mid ({p_{n + 1}}, \ldots, {p_{2n + 1}}) \in [0, 1]^{n + 1}}
ight)$$

leduction Theorem.

Canonical Moments Parameterization 0000000 Illustration

SET OF ADMISSIBLE MEASURES

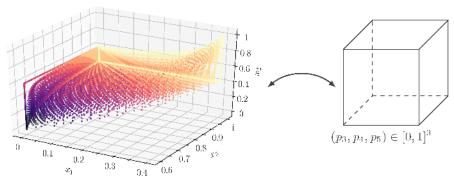


- → Consider μ in [0, 1] and two moment constraints : $c_1 = 0.5$ and $c_2 = 0.3$ equivalent to $p_1 = 0.5$ and $p_2 = 0.2$.
- → We generate randomly $(p_3, p_4, p_5) \in [0, 1]^3$ and compute for every sequence P_3^* whose roots constitute the coordinates of the points.
- ightarrow The point coordinates correspond to the support of a discrete measure in $\mathcal{A}.$

Reduction Theorem.

Canonical Moments Parameterization 0000000 Illustration

SET OF ADMISSIBLE MEASURES



- → Consider μ in [0, 1] and two moment constraints : $c_1 = 0.5$ and $c_2 = 0.3$ equivalent to $p_1 = 0.5$ and $p_2 = 0.2$.
- → We generate randomly $(p_3, p_4, p_5) \in [0, 1]^3$ and compute for every sequence P_3^* whose roots constitute the coordinates of the points.
- ightarrow The point coordinates correspond to the support of a discrete measure in $\mathcal{A}.$

Introduction	Reduction Theorem	Cononica. Moments Parameterization	Illustration
00000	000000000		00000000

Algorithm 1 : P.O.F COMPUTATION

Inputs : - lower bounds, $\mathbf{l} = (l_1, \ldots, l_d)$

- upper bounds, $\mathbf{u} = (u_1, \dots, u_d)$

- constraints sequences of moments, $\mathbf{c}_i = (e_i^{(1)}, \ldots, e_i^{(N_i)})$ and its corresponding sequences of canonical moments, $\mathbf{p}_i = (p_i^{(1)}, \ldots, p_i^{(N_i)})$ for $1 \leq i \leq d$.

ILLUSTRATION

Canonical Moments Parameterization 0000000 Illustration ••••••

INDUSTRIAL CONTEXT

Our use-case is a thermal-hydraulic computer experiment (CATHARE), which simulates a intermediate break loss Of coolant accident. The variable of interest is the peak cladding temperature.

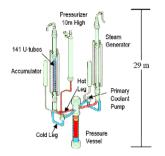


Figure – The replica of a water pressured reactor, with the hot and cold leg.

Figure – CATHARE temperature output for nominal parameters.

MOMENT CONSTRAINTS FOR CATHARE

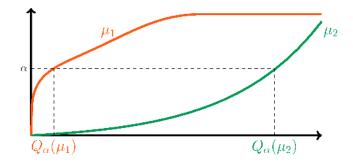
Variable	Bounds	Initial distribution (truncated)	Mean	Second order moment
$n^{\circ}10$	[0.1, 10]	LogNormal(0, 0.76)	1.33	3.02
$n^{\circ}22$	[0, 12.8]	Normal(6.4, 4.27)	6.4	45.39
$n^{\circ}25$	[11.1, 16.57]	Normal(13.79)	13.83	192.22
$n^{\circ}2$	[-44.9, 63.5]	Uniform(-44.9, 63.5)	9.3	1065
$n^{\circ}12$	[0.1, 10]	LogNormal(0, 0.76)	1.33	3.02
$n^{\circ}9$	[0.1, 10]	LogNormal(0, 0.76)	1.33	3.02
$n^{\circ}14$	[0.235, 3.45]	LogNormal(-0.1, 0.45)	0.99	1.19
$n^{\circ}15$	[0.1, 3]	LogNormal(-0.6, 0.57)	0.64	0.55
$n^{\circ}13$	[0.1, 10]	LogNormal(0, 0.76)	1.33	3.02

Table – Corresponding moment constraints of the 9 most influential inputs of the CATHARE model. Two moment constraints are enforced, that correspond to the mean and the variance of each input distribution.

QUASI-CONVEXITY OF THE QUANTILE (HEURISTIC)

Why is the quantile a quasi-convex function of the measure?

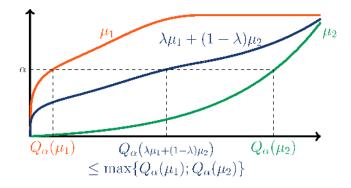
Let denote $Q_p(\mu)$ the quantile of order p of a distribution μ .



QUASI-CONVEXITY OF THE QUANTILE (HEURISTIC)

Why is the quantile a quasi-convex function of the measure?

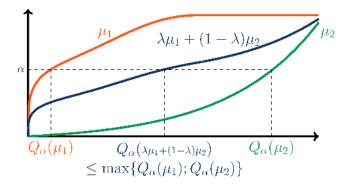
Let denote $Q_p(\mu)$ the quantile of order p of a distribution μ .



QUASI-CONVEXITY OF THE QUANTILE (HEURISTIC)

Why is the quantile a quasi-convex function of the measure?

Let denote $Q_p(\mu)$ the quantile of order p of a distribution μ .

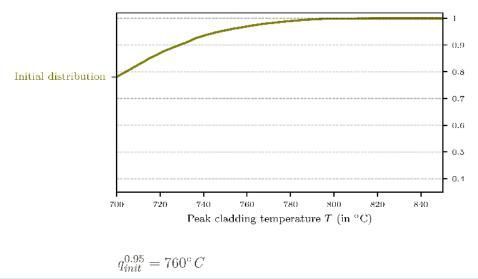


 \rightsquigarrow For the same reason, the superquantile is a quasi-convex function of the measure.

Jöröme Stenger

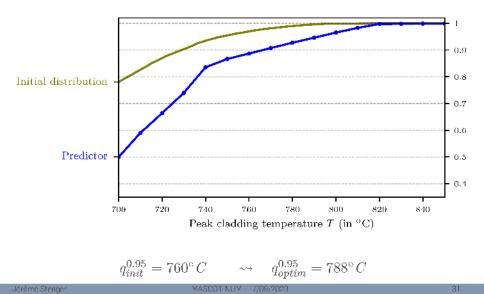
Reduction Theorem 000000000 Canonical Moments Parameterization 0000000 Illustration

OPTIMIZATION FOR CATHARE



Reduction Theorem 0000000000 Canonical Moments Parameterization 0000000 Illustration

OPTIMIZATION FOR CATHARE



UNCERTAINTY TAINTING THE METAMODEL (1/2)

We recall the probability of failure $F_{\mu}(h)$ is computed as

$$\inf_{\mu \in \mathcal{A}} F_{\mu}(h) = \inf_{\mu \in \mathcal{A}} \mathbb{P}_{\mu} \left(G(X_1, \dots, X_d) \le h \right) ,$$

$$= \inf_{\mu \in \Delta} \sum_{i_1 = 1}^{N_1 + 1} \dots \sum_{i_d = 1}^{N_d + 1} \omega_{i_1}^{(1)} \dots \omega_{i_d}^{(d)} \mathbb{1}_{\{G(x_{i_1}^{(1)}, \dots, x_{i_p}^{(p)}) \le h\}} .$$

 \rightsquigarrow The simple approach takes $G(\mathbf{x})$ as the predictor of the kriging metamodel $\mathscr{G}(\mathbf{x}, \boldsymbol{\theta})$.

UNCERTAINTY TAINTING THE METAMODEL (2/2)

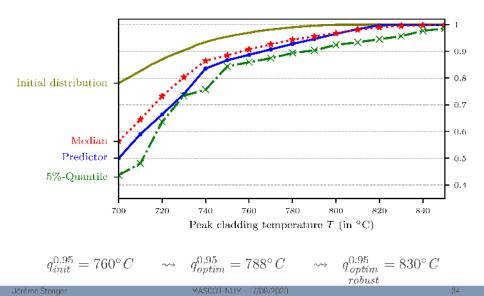
 \rightsquigarrow We propose to compute $F_{\mu}(h)$ for several trajectories of the metamodel, and minimize a quantile of the resulting sample.

$$\begin{split} \inf_{\mu \in \mathcal{A}} F_{\mu}(h, \boldsymbol{\theta}) &= \inf_{\mu \in \mathcal{A}} \mathbb{P}_{\mu} \big(\mathscr{G}(X_1, \dots, X_d, \boldsymbol{\theta}) \leq h \big) \;, \\ &= \inf_{\mu \in \Delta} \sum_{i_1 = 1}^{N_1 + 1} \dots \sum_{i_d = 1}^{N_d + 1} \omega_{i_1}^{(1)} \dots \omega_{i_d}^{(d)} \; \mathbb{1}_{\{\mathscr{G}(x_{i_1}^{(1)}, \dots, x_{i_p}^{(p)}, \boldsymbol{\theta}) \leq h\}} \;. \end{split}$$

get a sample for different realization of the gaussian process

Reduction Theorem 000000000 Canonical Moments Parameterization 00000000 Illustration

OPTIMIZATION FOR CATHARE



CONCLUSION AND PERSPECTIVES

- → The reduction theorem gives the basis for numerical optimization of the quantity of interest.
- → The moment class and unimodal moment class have very interesting topological structure.
- → The canonical moment parameterization is well suited for exploring the extreme points, thus fastening the global optimization.
- → Inequality moment constraints can also be enforced.

CONCLUSION AND PERSPECTIVES

- → The reduction theorem gives the basis for numerical optimization of the quantity of interest.
- → The moment class and unimodal moment class have very interesting topological structure.
- → The canonical moment parameterization is well suited for exploring the extreme points, thus fastening the global optimization.
- → Inequality moment constraints can also be enforced.
- → The framework is limited to *classical* moment constraints. The quantile class is also interesting for engineering applications.
- → The raw global optimization could be refine for instance by computing gradient of the quantity of interest.
- → The computation is subject to the curse of dimensionality. Reducing the input dimension is a mandatory first step.

Introduction -	
00000	

SOME REFERENCES

- J. Stenger, F. Gamboa, M. Keller, B. looss, *Optimal Uncertainty* Quantification of a risk measurement from a thermal-hydraulic code using canonical moments, International Journal of Uncertainty Quantification (2019).
- [2] J. Stenger, F. Gamboa, M. Keller, *Optimization Of Quasi-convex Function Over Product Measure Sets*, preprint (2019).
- [3] H. Owhadi, C. Scovel, T.J. Sullivan, M. McKerns, M. Ortiz. Optimal Uncertainty Quantification, SIAM Rev. 55(2), p.271–345, (2013).
- [4] G. Winkler, Extreme Points of Moment Sets, Math. Oper. Res. 13, p.581, (1988).
- [5] H. Dette, W.J. Student, The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis, Wiley-Blackwell, (1997).
- B. looss, A. Marrel, Advanced methodology for uncertainty propagation in computer experiments with large number of inputs, Nuclear Technology, pp. 1–19, (2019).

THANK YOU FOR YOUR ATTENTION!