

# OPTIMAL UNCERTAINTY QUANTIFICATION OF A RISK MEASUREMENT FROM A COMPUTER CODE

Jérôme Stenger

MASCOT-NUM - 17/09/2020

Fabrice Gamboa (IMT) Merlin Keller (EDF) - Bertrand looss (EDF)

📩 EDF R&D - 🕸 Université Paul Sabatier

# INTRODUCTION

Canonical Moments Parameterization 00000000 Illustration

# INDUSTRIAL CONTEXT

We study a mock-up of a water pressured nuclear reactor during an intermediate break loss of coolant accident in the primary loop.

700

600

200

100

100

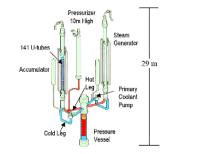


Figure – The replica of a water pressured reactor, with the hot and cold leg.

Figure – CATHARE temperature output for nominal parameters.

Line (a)

200 300

400 500

600

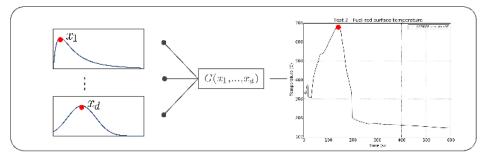
est 2 - Fael rod sarface temperature

Reduction Theorem 0000000000 Canonical Moments Parameterization 00000000

#### DETERMINISTIC METHOD

$$\underbrace{(x_1,\ldots,x_d)} \qquad \rightsquigarrow \qquad \textbf{COMPUTER MODEL} \qquad \rightsquigarrow \qquad y$$

uncertain input parameters

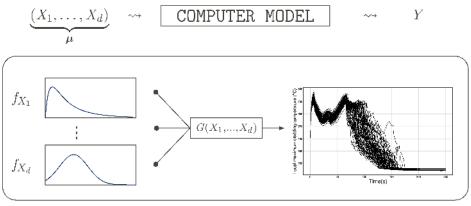


Our use-case is a thermal-hydraulic computer experiment (CATHARE), which simulates a intermediate break loss of coolant accident. The variable of interest is the peak cladding temperature.

#### MASCOT-NUM - 17/09/2020

Canonical Moments Parameterization 00000000 Illustration

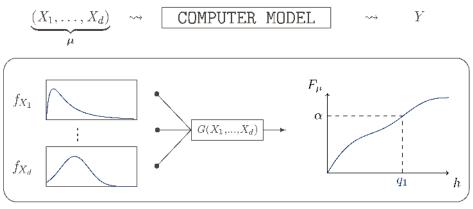
# PROBABILISTIC MODELIZATION



Let G be our computer code, the output distribution writes  $F_{\mu}(h) = \mathbb{P}_{\mu}(G(X) \leq h).$ 

Canonica. Moments Parameterization 00000000 Illustration
 oooooooo

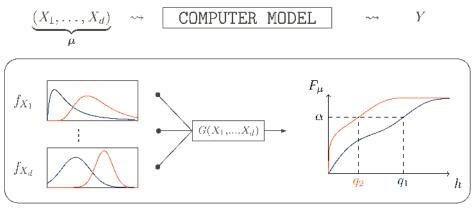
#### PROBABILISTIC MODELIZATION



Let G be our computer code, the output distribution writes  $F_{\mu}(h) = \mathbb{P}_{\mu}(G(X) \leq h).$ 

Canonica. Moments Parameterization 00000000 Illustration
 oooooooo

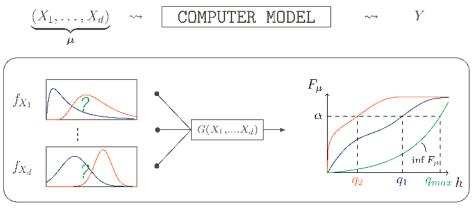
# PROBABILISTIC MODELIZATION



The quantity of interest (here a quantile) depends on the input distributions  $\mu$ .

Canonica. Moments Parameterization 00000000 Illustration
 oooooooo

#### PROBABILISTIC MODELIZATION



OUQ consists in finding the optimum of the quantity of interest over a set of input distribution  $\mu \in A$ .

Reduction Theorem. 0000000000 Canonical Moments Parameterization 00000000

Illustration

# UNCERTAINTY MODELIZATION

We consider robustness by finding bounds on a quantity of interest  $\phi$ 

 $\boldsymbol{\mu} \in \mathcal{P}(X) \mapsto \phi(\boldsymbol{\mu})$ 

 $\rightarrow~$  We optimize the quantity of interest over a measure space  ${\cal A}$ 

 $\sup_{\boldsymbol{\mu}\in\mathcal{A}}\phi(\boldsymbol{\mu})$ 

→ The measure space A should be compatible with the data, it should effectively represent the uncertainty on the distribution.

| Introduction | Reduction Theorem | Canonical Moments Parameterization | Illustration |  |  |  |
|--------------|-------------------|------------------------------------|--------------|--|--|--|
| 00000        | 00000000          | 0000000                            | 00000000     |  |  |  |
|              |                   |                                    |              |  |  |  |
|              |                   |                                    |              |  |  |  |

In this work we will focus on two different optimization space.

 $\rightarrow$  The moment class :

$$\mathcal{A}^* = \left\{ (\mu_1, \dots, \mu_d) \in \prod_{i=1}^d \mathcal{P}([l_i, u_i]) \mid \mathbb{E}_{\mu_i}[X^j] \le c_i^{(j)}, \ j = 1, \dots, N_i \right\},\$$

 $\rightarrow\,$  and the unimodal moment class

いい

$$\mathcal{A}^{\dagger} = \left\{ \mathsf{U}$$
nimodal  $oldsymbol{\mu} \in \prod_{i=1}^d \mathcal{P}([l_i, u_i]) \mid \mathbb{E}_{\mu_i}[X^j] \leq c_i^{(j)} \ , \ j=1,\ldots,N_i 
ight\} \, ,$ 

Problem : this is an optimization over an infinite non parametric space...

# **REDUCTION THEOREM**

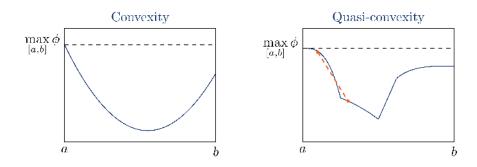
Reduction Theorem

Canonical Moments Parameterization 0000000 Illustration 00000000

#### QUASI-CONVEX FUNCTION

A function  $\phi$  is said to be quasi-convex if

 $\phi(\lambda x + (1 - \lambda)y) \le \max{\phi(x); \phi(y)}$ 

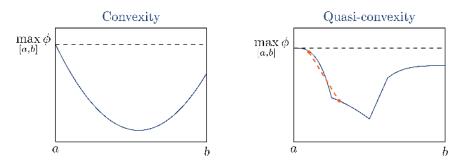


Reduction Theorem

Canonical Moments Parameterization 00000000 Illustration

# QUASI-CONVEX FUNCTION

From the Bauer maximum principle, a convex function on a compact convex set reaches its maximum on the extreme points



 $\leadsto$  The Bauer maximum principle remains true for quasi-convex function.

# **REDUCTION THEOREM**

# **Reduction theorem**

- → The (unimodal) moment class is compact convex.
- → The quantity of interest  $\phi$  is a quasi-convex lower semicontinuous function of the measure  $\mu \in \mathcal{A}$

Then,

$$\sup_{\mu \in \mathcal{A}} \phi(\mu) = \sup_{\mu \in \Delta} \phi(\mu) ,$$

where  $\Delta$  is the set of extreme points of  $\mathcal{A}$ .

 $\rightsquigarrow$  What are the extreme points of the (unimodal) moment class?

# **REDUCTION THEOREM**

# **Reduction theorem**

- → The (unimodal) moment class is compact convex.
- → The quantity of interest  $\phi$  is a quasi-convex lower semicontinuous function of the measure  $\mu \in \mathcal{A}$

Then,

$$\sup_{\mu \in \mathcal{A}} \phi(\mu) = \sup_{\mu \in \Delta} \phi(\mu) \; ,$$

where  $\Delta$  is the set of extreme points of A.

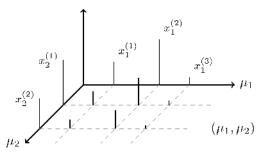
 $\rightsquigarrow$  What are the extreme points of the (unimodal) moment class?

# EXTREME POINTS CHARACTERIZATION (1/2)

#### Extreme points of the moment class

If you have  $N_i$  constraints on  $\mu_i$ , then  $\mu_i$  can be specified as a convex combination of at most  $N_i + 1$  Dirac masses

$$\Delta^* = \left\{ \mu \in \mathcal{A}^* \mid \mu_i = \sum_{k=1}^{N_i+1} \omega_k \delta_{x_k}, \,\, x_k \in [l_i, u_i] 
ight\}$$

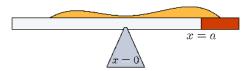


# PHYSICAL ILLUSTRATION

#### First approach

You are given 1kg of sand to arrange however you wish on a seesaw balanced around x = 0.

ightarrow How much mass can you pur on the region  $x \geq a$  ?

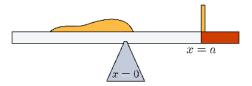


# PHYSICAL ILLUSTRATION

#### First approach

You are given 1kg of sand to arrange however you wish on a seesaw balanced around x = 0.

ightarrow How much mass can you pur on the region  $x \geq a$  ?

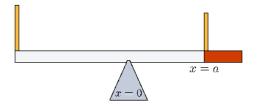


# PHYSICAL ILLUSTRATION

#### First approach

You are given 1kg of sand to arrange however you wish on a seesaw balanced around x = 0.

ightarrow How much mass can you pur on the region  $x \geq a$  ?



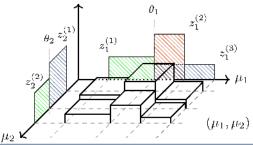
#### EXTREME POINTS CHARACTERIZATION (2/2)

#### Extreme points of the unimodal moment class

If you have  $N_i$  constraints on  $\mu_i$ , then  $\mu_i$  can be specified as a convex combination of at most  $N_i + 1$  uniform distributions

$$\Delta^{\dagger} = \left\{ \mu \in \mathcal{A}^{\dagger} \mid \mu_i = \sum_{k=1}^{N_i+1} \omega_k \, \mathcal{U}( heta_i, extsf{z}_k), \; extsf{z}_k \in [l_i, u_i] 
ight\}$$

where  $\theta_i$  denotes the mode of  $\mu_i$ .



# REDUCTION THEOREM FOR A PROBABILITY OF FAILURE

Consider the quantity of interest to be a probability of failure (PoF).

→→ it is a linear function of the input measure, thus is quasi-convex.

Over the moment class  $\mathcal{A}^\ast,$  the optimal PoF can be computed on the set of discrete finite input distributions :

$$\sup_{\mu \in \mathcal{A}^*} \phi(\mu) = \sup_{\mu \in \mathcal{A}^*} F_{\mu}(h) ,$$
  
= 
$$\sup_{\mu \in \Delta^*} \mathbb{P}_{\mu} \left( G(X_1, \dots, X_d) \le h \right) ,$$
  
= 
$$\sup_{\mu \in \Delta^*} \sum_{i_1 = 1}^{N_1 + 1} \dots \sum_{i_d = 1}^{N_d + 1} \omega_{i_1}^{(1)} \dots \omega_{i_d}^{(d)} \mathbb{1}_{\{G(x_{i_1}^{(1)}, \dots, x_{i_p}^{(p)}) \le h\}} .$$

| Introduction | Reduction Theorem | Canonica. Moments Parameterization | Illustration |
|--------------|-------------------|------------------------------------|--------------|
| 00000        |                   | 00000000                           | 00000000     |
|              |                   |                                    |              |

#### DISCRETE MEASURES

Let enforce N moment constraints on a measure  $\mathbb{E}_{\mu}[X^j] = c_j$ . OUQ theorem guaranties the optimal measure to be supported on at most N + 1 points :

$$u = \sum_{i=1}^{N+1} \omega_i \delta_{\mathbf{x}_i}$$

We have the following system of constraint equations :

$$\begin{cases} \omega_{1} + \dots + \omega_{N+1} = 1\\ \omega_{1}x_{1} + \dots + \omega_{N+1}x_{N+1} = c_{1}\\ \vdots & \vdots & \vdots\\ \omega_{1}x_{1}^{N} + \dots + \omega_{N+1}x_{N+1}^{N} = c_{N} \end{cases}$$

 $\rightsquigarrow$  The weights are uniquely determined by the positions.

| Introduction | Reduction Theorem | Canonical Moments Parameterization | Illustration |
|--------------|-------------------|------------------------------------|--------------|
| 00000        | 0000000000        | 0000000                            | 00000000     |
|              |                   |                                    |              |

#### DISCRETE MEASURES

Let enforce N moment constraints on a measure  $\mathbb{E}_{\mu}[X^j] = c_j$ . OUQ theorem guaranties the optimal measure to be supported on at most N + 1 points :

$$u = \sum_{i=1}^{N+1} \omega_i \delta_{\mathbf{x}_i}$$

We have the following system of constraint equations :

$$\begin{cases} \omega_{1} + \dots + \omega_{N+1} = 1\\ \omega_{1}x_{1} + \dots + \omega_{N+1}x_{N+1} = c_{1}\\ \vdots & \vdots & \vdots\\ \omega_{1}x_{1}^{N} + \dots + \omega_{N+1}x_{N+1}^{N} = c_{N}\\ 0 \le \omega_{i} \le 1 & \bigwedge \end{cases}$$

Reduction Theorem

Canonical Moments Parameterization 0000000

#### GEOMETRICAL INTERPRETATION OF THE PARAMETRIZATION

Example : Let  $\mu$  be supported on [0,1] such that  $\mathbb{E}_{\mu}[X] = 0.5$  and  $\mathbb{E}_{\mu}[X^2] = 0.3$ .

$$\Delta^* = \left\{ \mu = \sum_{i=1}^3 \omega_i \delta_{x_i} \in \mathcal{P}([0,1]) \mid \mathbb{E}_{\mu}[X] = 0.5, \ \mathbb{E}_{\mu}[X^2] = 0.3 \right\} ,$$

Reduction Theorem

Canonical Moments Parameterization 0000000 Illustration

# GEOMETRICAL INTERPRETATION OF THE PARAMETRIZATION

Example : Let  $\mu$  be supported on [0,1] such that  $\mathbb{E}_{\mu}[X] = 0.5$  and  $\mathbb{E}_{\mu}[X^2] = 0.3$ .

$$\begin{split} \Delta^* &= \left\{ \mu = \sum_{i=1}^3 \omega_i \delta_{x_i} \in \mathcal{P}([0,1]) \mid \mathbb{E}_{\mu}[X] = 0.5, \ \mathbb{E}_{\mu}[X^2] = 0.3 \right\} ,\\ \checkmark \quad \mathbf{x} &= (0.1, 0.4, 0.9) \text{ gives weights } \boldsymbol{\omega} = (0.05, 0.73, 0.22) \\ \varkappa \quad \mathbf{x} &= (0.1, 0.3, 0.9) \text{ gives weights } \boldsymbol{\omega} = (-0.19, 0.92, 0.27) \end{split}$$

Reduction Theorem

Canonica. Moments Parameterization 00000000 Illustration

#### GEOMETRICAL INTERPRETATION OF THE PARAMETRIZATION

*Example :* Let  $\mu$  be supported on [0, 1] such that  $\mathbb{E}_{\mu}[X] = 0.5$  and  $\mathbb{E}_{\mu}[X^2] = 0.3$ .

$$\Delta^* = \left\{ \mu = \sum_{i=1}^3 \omega_i \delta_{x_i} \in \mathcal{P}([0,1]) \mid \mathbb{E}_{\mu}[X] = 0.5, \ \mathbb{E}_{\mu}[X^2] = 0.3 \right\} ,$$
  

$$\checkmark \quad \mathbf{x} = (0.1, 0.4, 0.9) \text{ gives weights } \boldsymbol{\omega} = (0.05, 0.73, 0.22) \\ \times \quad \mathbf{x} = (0.1, 0.3, 0.9) \text{ gives weights } \boldsymbol{\omega} = (-0.19, 0.92, 0.27)$$
  

$$\mathcal{V}_{\Delta^*} = \left\{ \mathbf{x} = (x_1, x_2, x_3) \in [0, 1]^3 \mid \mu = \sum_{i=1}^3 \omega_i \delta_{x_i} \in \Delta^* \right\}$$

How to optimize over and explore the manifold  $\mathcal{V}_{\Delta}$ ?

#### POSSIBLE WAYS OF OPTIMIZING

- → Optimization under constraints : the position and the weight must satisfy the Vandermonde system.
- → Optimization by rewriting the objective function : changing the parameterization of the problem so that the constraint are naturally enforced in the objective function.

 $\longrightarrow$  Canonical moments allows to efficiently explore the set of optimization  $\Delta^*$ .

### POSSIBLE WAYS OF OPTIMIZING

- → Optimization under constraints : the position and the weight must satisfy the Vandermonde system.
- → Optimization by rewriting the objective function : changing the parameterization of the problem so that the constraint are naturally enforced in the objective function.
  - $\longrightarrow$  Canonical moments allows to efficiently explore the set of optimization  $\Delta^*$ .

CANONICAL MOMENTS PARAMETERIZATION

Reduction Theorem 000000000 Canonical Moments Parameterization •••••••• Illustration

#### CLASSICAL MOMENTS PROBLEM

$$\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right)$$

 $\rightsquigarrow$  Moment sequence of  $\,\mathcal{U}[0,1]$ 

$$\left(1, \frac{4}{3}, 2, \ldots\right)$$

 $\rightsquigarrow$  Moment sequence of  $\, \mathcal{U}[0,2]$ 

Conclusion : there is no relation between the classical moments and the intrinsic structure of the distribution.

Reduction Theorem 000000000 Canonical Moments Parameterization •0000000 Illustration

#### CLASSICAL MOMENTS PROBLEM

$$\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right)$$

 $\rightsquigarrow$  Moment sequence of  $\,\mathcal{U}[0,1]$ 

$$\left(1, \frac{4}{3}, 2, \ldots\right)$$

 $\rightsquigarrow$  Moment sequence of  $\mathcal{U}[0,2]$ 

Conclusion : there is no relation between the classical moments and the intrinsic structure of the distribution.

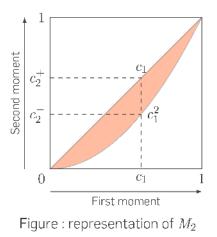
#### MOMENT SPACE

We define the moment space  $M_n = {\mathbf{c}_n(\mu) = (c_1, \dots, c_n) \mid \mu \in \mathcal{P}([0, 1])}$ 

Given  $\mathbf{c}_n \in \operatorname{int} M_n$ , we define the extreme values

$$c_{n+1}^{+} = \max \{ c : (c_1, \dots, c_n, c) \in M_{n+1} \}$$
  
$$c_{n+1} = \min \{ c : (c_1, \dots, c_n, c) \in M_{n+1} \}$$

They represent the maximum and minimum value of the (n + 1)th moment a measure can have, when its moments up to order n equal to  $c_n$ .



# CANONICAL MOMENTS

The nth canonical moment is defined as

$$p_n=p_n(\mathbf{c})=rac{c_n-c_n^-}{c_n^+-c_n^-}$$

#### Properties of canonical moments

 $\rightarrow p_n \in [0,1],$ 

→ The canonical moments are invariants by affine transformation. Which means we can always transform a measure supported on [a, b] to [0, 1]

#### LINK BETWEEN SUPPORT AND CANONICAL MOMENTS

Given a measure  $\mu = \sum_{i=1}^{n+1} \omega_i \delta_{x_i}$ , we have two representations of the same polynomial  $P_{n+1}^*$ :

 $\rightarrow~$  Its roots are the measure support points :

$$P_{n+1}^*(z) = \prod_{i=1}^{n+1} (z - x_i).$$

→ Its coefficients are function of a sequence of the measure canonical moments  $\mathbf{p} = (p_1, \dots, p_{2n+1})$ :

 $\mathcal{P}_{n+1}^*(z) = \varphi_0(\mathbf{p}) + \varphi_1(\mathbf{p})z + \dots + \varphi_{n+1}(\mathbf{p})z^{n+1} .$ 

#### LINK BETWEEN SUPPORT AND CANONICAL MOMENTS

Given a measure  $\mu = \sum_{i=1}^{n+1} \omega_i \delta_{x_i}$ , we have two representations of the same polynomial  $P_{n+1}^*$ :

 $\rightarrow~$  Its roots are the measure support points :

$$P_{n+1}^*(z) = \prod_{i=1}^{n+1} (z - x_i).$$

→ Its coefficients are function of a sequence of the measure canonical moments  $\mathbf{p} = (p_1, \dots, p_{2n+1})$ :

$$\mathcal{P}_{n+1}^*(z) = \varphi_0(\mathbf{p}) + \varphi_1(\mathbf{p})z + \dots + \varphi_{n+1}(\mathbf{p})z^{n+1}$$

Reduction Theorem 0000000000 Canonical Moments Parameterization 0000000

Illustration 00000000

#### EFFECTIVE PARAMETERIZATION

Let 
$$\mu \in \Delta^* = \left\{ \sum_{i=1}^{n+1} \omega_i \delta_{x_i} \in \mathcal{P}([a,b]) \mid \mathbb{E}_{\mu}[X^j] = c_j, 1 \le j \le n \right\}$$

Reduction Theorem 0000000000 Canonical Moments Parameterization 0000000

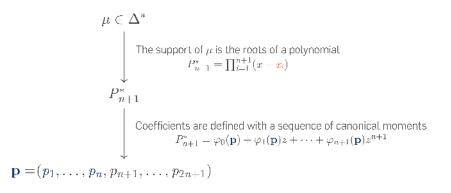
Illustration

$$\mu \in \Delta^*$$

$$\downarrow$$
The support of  $\mu$  is the roots of a polynomial
$$P_{n-1}^* = \prod_{i=1}^{n+1} (x - x_i)$$

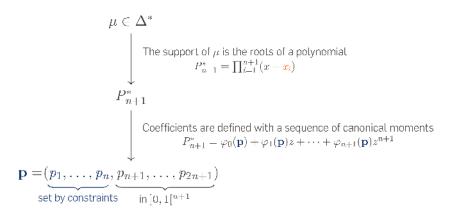
$$P_{n+1}^*$$

Reduction Theorem 0000000000 Canonical Moments Parameterization 0000000 Illustration

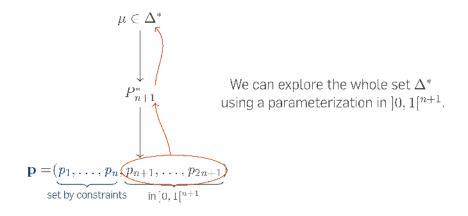


Reduction Theorem 0000000000 Canonical Moments Parameterization 0000000

Illustration



Reduction Theorem 0000000000 Canonical Moments Parameterization 0000000 Illustration



# GENERATION OF ADMISSIBLE MEASURES

#### Theorem

The manifold

$$\mathcal{V}_{\Delta^*} = igg\{ \mathbf{x} = (x_1, \dots, x_{n+1}) \in [0, 1]^{n+1} ext{ s.t.} \ \mu = \sum_{i=1}^{n+1} \omega_i \delta_{x_i} ext{ satisfies the constraints} igg\}$$

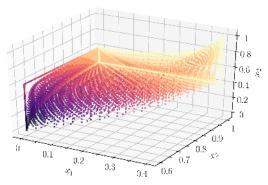
is an algebraic variety, it is the zero locus of the set of polynomials

$$\left( {{P_{n + 1}^*} \mid ({p_{n + 1}}, \ldots, {p_{2n + 1}}) \in [0, 1]^{n + 1}} 
ight)$$

leduction Theorem.

Canonical Moments Parameterization 0000000 Illustration

# SET OF ADMISSIBLE MEASURES

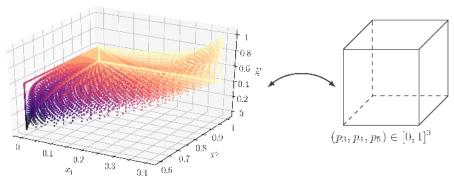


- → Consider  $\mu$  in [0, 1] and two moment constraints :  $c_1 = 0.5$  and  $c_2 = 0.3$  equivalent to  $p_1 = 0.5$  and  $p_2 = 0.2$ .
- → We generate randomly  $(p_3, p_4, p_5) \in [0, 1]^3$  and compute for every sequence  $P_3^*$  whose roots constitute the coordinates of the points.
- ightarrow The point coordinates correspond to the support of a discrete measure in  $\mathcal{A}.$

Reduction Theorem.

Canonical Moments Parameterization 0000000 Illustration

# SET OF ADMISSIBLE MEASURES



- → Consider  $\mu$  in [0, 1] and two moment constraints :  $c_1 = 0.5$  and  $c_2 = 0.3$  equivalent to  $p_1 = 0.5$  and  $p_2 = 0.2$ .
- → We generate randomly  $(p_3, p_4, p_5) \in [0, 1]^3$  and compute for every sequence  $P_3^*$  whose roots constitute the coordinates of the points.
- ightarrow The point coordinates correspond to the support of a discrete measure in  $\mathcal{A}.$

| Introduction | Reduction Theorem | Cononica. Moments Parameterization | Illustration |
|--------------|-------------------|------------------------------------|--------------|
| 00000        | 000000000         |                                    | 00000000     |
|              |                   |                                    |              |

#### Algorithm 1 : P.O.F COMPUTATION

Inputs : - lower bounds,  $\mathbf{l} = (l_1, \ldots, l_d)$ 

- upper bounds,  $\mathbf{u} = (u_1, \dots, u_d)$ 

- constraints sequences of moments,  $\mathbf{c}_i = (e_i^{(1)}, \ldots, e_i^{(N_i)})$  and its corresponding sequences of canonical moments,  $\mathbf{p}_i = (p_i^{(1)}, \ldots, p_i^{(N_i)})$  for  $1 \leq i \leq d$ .

# **ILLUSTRATION**

Canonical Moments Parameterization 0000000 Illustration ••••••

# INDUSTRIAL CONTEXT

Our use-case is a thermal-hydraulic computer experiment (CATHARE), which simulates a intermediate break loss Of coolant accident. The variable of interest is the peak cladding temperature.

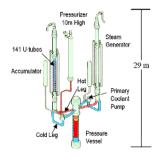


Figure – The replica of a water pressured reactor, with the hot and cold leg.

Figure – CATHARE temperature output for nominal parameters.

# MOMENT CONSTRAINTS FOR CATHARE

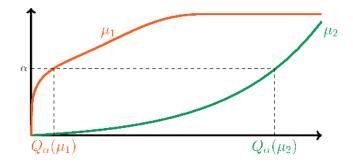
| Variable      | Bounds        | Initial distribution<br>(truncated) | Mean  | Second order<br>moment |
|---------------|---------------|-------------------------------------|-------|------------------------|
| $n^{\circ}10$ | [0.1, 10]     | LogNormal(0, 0.76)                  | 1.33  | 3.02                   |
| $n^{\circ}22$ | [0, 12.8]     | Normal(6.4, 4.27)                   | 6.4   | 45.39                  |
| $n^{\circ}25$ | [11.1, 16.57] | Normal(13.79)                       | 13.83 | 192.22                 |
| $n^{\circ}2$  | [-44.9, 63.5] | Uniform(-44.9, 63.5)                | 9.3   | 1065                   |
| $n^{\circ}12$ | [0.1, 10]     | LogNormal(0, 0.76)                  | 1.33  | 3.02                   |
| $n^{\circ}9$  | [0.1, 10]     | LogNormal(0, 0.76)                  | 1.33  | 3.02                   |
| $n^{\circ}14$ | [0.235, 3.45] | LogNormal(-0.1, 0.45)               | 0.99  | 1.19                   |
| $n^{\circ}15$ | [0.1, 3]      | LogNormal(-0.6, 0.57)               | 0.64  | 0.55                   |
| $n^{\circ}13$ | [0.1, 10]     | LogNormal(0, 0.76)                  | 1.33  | 3.02                   |

Table – Corresponding moment constraints of the 9 most influential inputs of the CATHARE model. Two moment constraints are enforced, that correspond to the mean and the variance of each input distribution.

# QUASI-CONVEXITY OF THE QUANTILE (HEURISTIC)

Why is the quantile a quasi-convex function of the measure?

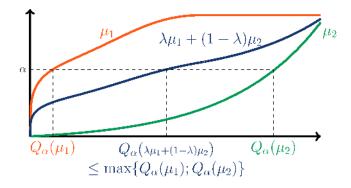
Let denote  $Q_p(\mu)$  the quantile of order p of a distribution  $\mu$ .



#### QUASI-CONVEXITY OF THE QUANTILE (HEURISTIC)

Why is the quantile a quasi-convex function of the measure?

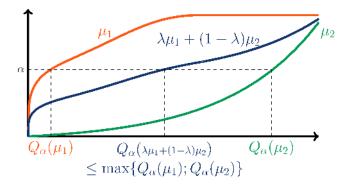
Let denote  $Q_p(\mu)$  the quantile of order p of a distribution  $\mu$ .



# QUASI-CONVEXITY OF THE QUANTILE (HEURISTIC)

Why is the quantile a quasi-convex function of the measure?

Let denote  $Q_p(\mu)$  the quantile of order p of a distribution  $\mu$ .

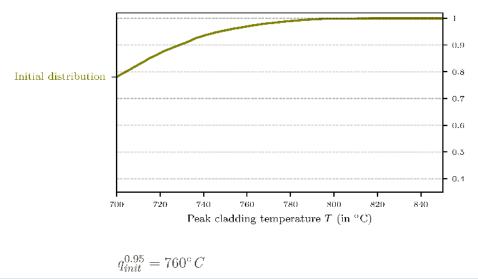


 $\rightsquigarrow$  For the same reason, the superquantile is a quasi-convex function of the measure.

Jöröme Stenger

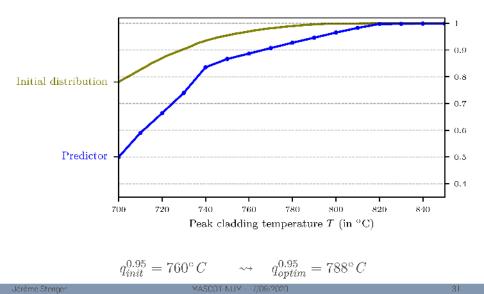
Reduction Theorem 000000000 Canonical Moments Parameterization 0000000 Illustration

#### OPTIMIZATION FOR CATHARE



Reduction Theorem 0000000000 Canonical Moments Parameterization 0000000 Illustration

#### OPTIMIZATION FOR CATHARE



#### UNCERTAINTY TAINTING THE METAMODEL (1/2)

We recall the probability of failure  $F_{\mu}(h)$  is computed as

$$\inf_{\mu \in \mathcal{A}} F_{\mu}(h) = \inf_{\mu \in \mathcal{A}} \mathbb{P}_{\mu} \left( G(X_1, \dots, X_d) \le h \right) ,$$
  
$$= \inf_{\mu \in \Delta} \sum_{i_1 = 1}^{N_1 + 1} \dots \sum_{i_d = 1}^{N_d + 1} \omega_{i_1}^{(1)} \dots \omega_{i_d}^{(d)} \mathbb{1}_{\{G(x_{i_1}^{(1)}, \dots, x_{i_p}^{(p)}) \le h\}} .$$

 $\rightsquigarrow$  The simple approach takes  $G(\mathbf{x})$  as the predictor of the kriging metamodel  $\mathscr{G}(\mathbf{x}, \boldsymbol{\theta})$ .

#### UNCERTAINTY TAINTING THE METAMODEL (2/2)

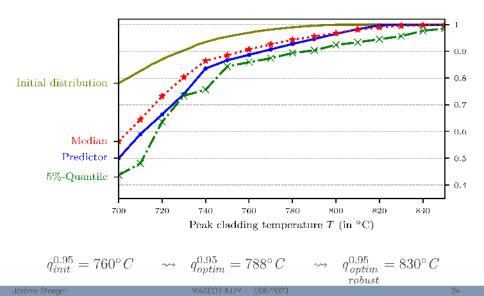
 $\rightsquigarrow$  We propose to compute  $F_{\mu}(h)$  for several trajectories of the metamodel, and minimize a quantile of the resulting sample.

$$\begin{split} \inf_{\mu \in \mathcal{A}} F_{\mu}(h, \boldsymbol{\theta}) &= \inf_{\mu \in \mathcal{A}} \mathbb{P}_{\mu} \big( \mathscr{G}(X_1, \dots, X_d, \boldsymbol{\theta}) \leq h \big) \;, \\ &= \inf_{\mu \in \Delta} \sum_{i_1 = 1}^{N_1 + 1} \dots \sum_{i_d = 1}^{N_d + 1} \omega_{i_1}^{(1)} \dots \omega_{i_d}^{(d)} \; \mathbb{1}_{\{\mathscr{G}(x_{i_1}^{(1)}, \dots, x_{i_p}^{(p)}, \boldsymbol{\theta}) \leq h\}} \;. \end{split}$$

get a sample for different realization of the gaussian process

Reduction Theorem 000000000 Canonical Moments Parameterization 00000000 Illustration

#### OPTIMIZATION FOR CATHARE



### CONCLUSION AND PERSPECTIVES

- → The reduction theorem gives the basis for numerical optimization of the quantity of interest.
- → The moment class and unimodal moment class have very interesting topological structure.
- → The canonical moment parameterization is well suited for exploring the extreme points, thus fastening the global optimization.
- → Inequality moment constraints can also be enforced.

## CONCLUSION AND PERSPECTIVES

- → The reduction theorem gives the basis for numerical optimization of the quantity of interest.
- → The moment class and unimodal moment class have very interesting topological structure.
- → The canonical moment parameterization is well suited for exploring the extreme points, thus fastening the global optimization.
- → Inequality moment constraints can also be enforced.
- → The framework is limited to *classical* moment constraints. The quantile class is also interesting for engineering applications.
- → The raw global optimization could be refine for instance by computing gradient of the quantity of interest.
- → The computation is subject to the curse of dimensionality. Reducing the input dimension is a mandatory first step.

| Introduction - |  |
|----------------|--|
| 00000          |  |

# SOME REFERENCES

- J. Stenger, F. Gamboa, M. Keller, B. looss, *Optimal Uncertainty* Quantification of a risk measurement from a thermal-hydraulic code using canonical moments, International Journal of Uncertainty Quantification (2019).
- [2] J. Stenger, F. Gamboa, M. Keller, *Optimization Of Quasi-convex Function Over Product Measure Sets*, preprint (2019).
- [3] H. Owhadi, C. Scovel, T.J. Sullivan, M. McKerns, M. Ortiz. Optimal Uncertainty Quantification, SIAM Rev. 55(2), p.271–345, (2013).
- [4] G. Winkler, Extreme Points of Moment Sets, Math. Oper. Res. 13, p.581, (1988).
- [5] H. Dette, W.J. Student, The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis, Wiley-Blackwell, (1997).
- B. looss, A. Marrel, Advanced methodology for uncertainty propagation in computer experiments with large number of inputs, Nuclear Technology, pp. 1–19, (2019).

# THANK YOU FOR YOUR ATTENTION!