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Calibration problem



Computer code and inverse problem

Input e & Control parameter
o : Environmental variables (fixed and known)

Output e M(#,v): Quantity to be compared to observations

Environmental variables
v € 1 fixed

Control variable ; l -
heco 4’{ Direct Simulation }—) M. u)
l
l I Inverse Problem }(7 yobs




Data assimilation framework

Let v c TN

s 1 I
fl = arg min J(&') = arg min — |JM(H, U) _ lehh”z
HZO forel=] 2

— Deterministic optimization problem
— Possibly add regularization

— Classical methods: Adjoint gradient and Gradient-descent
BUT

e What if v does not reflect accurately the observations?

e Does § compensate the errors brought by this random
misspecification? (~overfitting)



e The friction # of the ocean bed has an influence on the water
circulation

o Depends on the type and/or characteristic length of the
asperities

e Subgrid phenomenon

e i parametrizes the BC

Fu) |—




Different types of uncertainties

Epistemic or aleatoric uncertainties? [WHR™03]
e Epistemic uncertainties: From a lack of knowledge, that can
be reduced with more research/exploration

e Aleatoric uncertainties: From the inherent variability of the

system studied, operating conditions

— But where to draw the line?

Qur goal is to take into account the aleatoric uncertainties in the

estimation of our parameter.



Aleatoric uncertainties

Instead of considering v fixed, we consider that v ~ U r.v. (with
known pdf w(u)), and the cutput of the model depends on its

realization.

Environmental variables
v € T fixed

Control variable ; l -
heco 4’{ Direct Simulation }—’ M0, u)

|
T I Inverse Problem }<— yobs




Aleatoric uncertainties

Instead of considering v fixed, we consider that v ~ U r.v. (with
known pdf w(u)), and the cutput of the model depends on its

realization.

Environmental variables

U/ random

Control variabl l
on ;ogvgrla ¢ 4’{ Direct Simulation }—’ M8, U)
‘ |

! I Inverse Problem }‘7 yobs




The cost function as a random variable

e The computer code is deterministic, and takes f and v as
input:
M(A, )

e The deterministic quadratic error is now

J‘(l(;], U) = %”J\/[((}‘ U) _ yobsHQ

" = argmin J(6. u}" but what can we do about u?
o]



Misspecification of u: twin experiment setup

Minimization performed on 0 — J (., u), for different w:
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Misspecification of u: twin experiment setup

Minimization performed on 6 — J(#, u), for different u:

Well-specified model

Estimated #

Deviation from the truth
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Misspecification of u: twin experiment setup

Minimization performed on 6 — J(#, u), for different u:

1% error on the amplitude of the M2 tide

Estimated # Deviation from the truth

. P L - PO LT WS -}
Al b i ‘U ;",;_%‘:T\I_L—x'

e

I HES AT
Ao

20-03

&.1e-03
sapnl0°N

el

6 Le-02) gong

Eiie-lik

10



Misspecification of u: twin experiment setup

Minimization performed on 6 — J(#, u), for different u:

1% error on the amplitude of the M2 tide

Estimated # Deviation from the truth
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Robustness and estimation of parameters

Robustness: get good performances when the environmental

parameter varies

o Define criteria of robustness, based on J(f. u), that will

depend on the final application

» Be able to compute them in a reasonable time
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Robust minimization

Criteria of robustness



Non-exhaustive list of “Robust” Objectives

e Worst case [MWP13]:

min {ma_x J(#, u)}
Ac@ | uel
M-robustness [LSNO4]:

minEy [J(6, U)]

V-robustness [LSNO4]:

in Var .
min Vary [J(6, U)]

Multiobjective [Baul2]:

Pareto frontier

Best performance acheivable given v ~ U/

12



“Most Probable Estimate”, and relaxation

Given v ~ U, the optimal value is J*(u), attained at
A" (u) = argmingg J(A, u).
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“Most Probable Estimate”, and relaxation

Given v ~ U, the optimal value is J*(u), attained at
A" (u) = argmingg J(A, u).

The minimizer can be seen as a random variable;

0 (U) = arg min J(0, U)
0

— estimate its density (how often is the value ¢ a minimizer)

po+(8) = "Py [J(8. U) = J(U)]"
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“Most Probable Estimate”, and relaxation

Given v ~ U, the optimal value is J*(u), attained at
A" (u) = argmingg J(A, u).

The minimizer can be seen as a random variable;

0 (U) = arg min J(0, U)
0

— estimate its density (how often is the value ¢ a minimizer)
po+(6) = "Py [J(0. U) = JS(U)]"

How to take into account values not optimal, but not too far either

— relaxation of the equality with o > 1:

rr.r(é'.) - TP:U [J((}J, U) < "TJ*(U)]
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Hlustration

Canditional min misers

e Sample v ~ U, and solve

G (u) = argming.g J(f, u)
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Hlustration

Set of conditianal minintisars

e Sample v ~ U, and solve
G (u) = argming.g J(f, u)
¢ Set of conditional minimisers:

(0" (u),0) | w € T}
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lHlustration

Helzwation of the canstraint, n = 1.5

e Sample v ~ U, and solve
G (u) = argming.g J(f, u)

¢ Set of conditional minimisers:
{(#*(uv),u) | ueU}

e Seta > 1
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Hlustration

Reyivn K. (8]

Sample 4 ~ U, and solve

G (u) = argming.g J(f, u)

¢ Set of conditional minimisers:

(0" (u),0) | w € T}

e Setx > 1
o R(0)={u|J(0,u) < at*(u)}
o 1 I 4 5 - rm(ﬁ) =Py [U = R{_’t(ﬂ)]
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Getting an estimator

I.(#): probability that the cost (thus #) is c-acceptable

o If o known, maximize the probability that 0 gives acceptable

values:

— ™ <= ¥ =
max M.(6) = g’l&agL v [0, U} < ad(U)] (1)
e Set a target probability 1 — 7, and find the smallest .
inf{a max Ma(?)>1-n} (2)
More generally, let us define the RR family

{Uﬂ |0 = argmax Ty (0), o > 1} (3)
7
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Why the relative regret 7

Suelel it regrent et e rogrer

» Relative regret
e «-acceptability regions large for flat and bad situations {J*(u)
large)
o Conversely, puts high confidence when J*(v) is small
e No units — ratio of costs
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Surrogates

How to compute g in a reasonable time?



Surrogates, and cost function

¢ Replace expensive model by a computationally cheap
metamodel (~ plug-in approach)

¢ Adapted sequential procedures e g. EGO

» Kriging (Gaussian Process Regression) [Mat62, Krib1]

17



Surrogates, and cost function

¢ Replace expensive model by a computationally cheap
metamodel (~ plug-in approach)

¢ Adapted sequential procedures e g. EGO

» Kriging (Gaussian Process Regression) [Mat62, Krib1]
Y ~ GP(my(-). Cy(-,-)) GP regression of J on © x U, using an
initial design & = {((0;, v;). J(0;, u;)}}
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Estimation of

Estimation of J*(u)} and ¢(u): Enrich the design according to PEI
criterion [GBCT14].
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GP of the “penalized” cost function

What about J(#, u) — ad*(u) 7

Y ~GP(my(-); Cy(-.-)) on @ x U (4)
Ap—Y —aY* (5)

Still a GP
A(_‘E(O-, U) ~ GP (mﬂ:('); Cﬂi("- )) (6)
mu (0, u) = my (0, u) — amy (u) (7)

ColB, 1) = 05(8. 1) + 0% (1) — 2aCy (6, u), (8% (v). 1)) (8)

Estimate the “probability of failure” [BGLT12, EGL11]
Py[HO.U) —at (V) < 0] = Py [Py [A, < 0]

19



GP of the “penalized” cost function

What about J(#, u) — ad*(u) 7

Y ~GP(my(-); Cy(-.-)) on @ x U (4)
Ap—Y —aY* (5)
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A(_‘E(O-, U) ~ GP (mﬂ:('); Cﬂi("- )) (6)
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Estimate the “probability of failure” [BGLT12, EGL11]
Py[HO.U) —at (V) < 0] = Py [Py [A, < 0]

19



Joint space or objective-oriented exploration

Because of J*(u), it is often not enough to select the point where
the uncertainty is high. Generally, two main approaches can be

considered

e Estimate the region {(#. v} | J(f, u) < aJ*(u)}, then use the
surrogate as a plug-in estimate to compute and maximize [,
—+ reduce uncertainty on the whole space

e Select a candidate 7, such that uncertainty on the estimation
of [, (#) is reduced
— reduce uncertainty on {1} x U, with # well-chosen.
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Application to CROCO: Dimension reduction
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Ad-hoc segmentation according to the depth, and sensitivity
analysis: only the shallow coastal regions seem to have an influence.
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Robust optimization

o U ~ U[-1,1] uniform r.v. that models the percentage of error
on the amplitude of the M2 component of the tide

e The “truth” ranges from 8mm to 13mm.

e 11.0mm leads to a cost which deviates less than 1% from the

optimal value with probability 0.77
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Conclusion




Conclusion

Wrapping up

¢ Problem of a good definition of robustness
e Tuning a or 1 reflects risk-seeking or risk-adverse strategies

e Strategies rely heavily on surrogate models, to embed aleatoric

uncertainties directly in the modelling

Perspectives

e Cost of computer evaluations — limited number of runs?
e In low dimension, CROCO very well-behaved.

e Dimensionality of the input space — reduction of the input

space?
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Notions of regret

Let J*(u) = mingco J(f, u) and #*(u) = argming.g J(#, tt). The

regret r:

a—J(f.0)
r(8,u) = HB. u}— S (u) = —log (—) (9)

maxg{ e (6]}

:—|og(—‘cm-’”) ) (10)

mMaXg-o ﬁ(ﬁ', U)

—+ linked to misspecified LRT: maximize the probability of keeping
Ho: A valid instead of arg max L.



PEI criterion

Y ~ GP(my(). Cy(-,-)) on © x U
PEI(A. u) = By [[fuin(u) — Y (8. )], ] (11)

where frin(4} = max {min; J(#;, u;), mingco my (8, u})
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