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Abstract:

In natural sciences and engineering, one is often faced with the problem of reconstructing some
unknown function ug from indirect data that has been generated by a known physical process.
Here indirect means that we do not have access to the actual value of the function at some selected
points, but only to (for example) integrals, or other linear forms of the function. Such problems
are broadly known as inverse problems.

Inverse problems can be solved in a Bayesian way by putting a prior on the unknown ug (usually
gaussian process priors are used) and then using the conditional distribution to approximate the
unknown function. There is a rich litterature dedicated to such approaches [3].

Nevertheless, if one is not interested in a full reconstruction of the unknown function itself, but
only of implicit regions defined through it, the picture gets more complex. One might for example
be interested in regions where the unknown ug is above some threshold (excursion sets), or regions
where it varies sharply.

In this regard, this work aims at answering the following questions

e How can we estimate implicit sets that are defined through a function that is a solution to
an inverse problem.

e How can we quantify the uncertainty on those estimates (set UQ).

These two questions serve a longer term goal which is to develop algorithms to guide the data
collection process in order to optimally improve the reconstruction of the implicit region of inter-
est. Towards this end, we want to adapt the GP-based adaptive set estimation techniques first
pioneered in [1] to the inverse problem setting.

It turns out that transposing GP methods to the inverse problem world is not straightforward.
Indeed, when using GP priors to solve inverse problems, the size of the involved matrices grows
quadratically with the number of cells used to discretize the inversion region and one quickly
reaches a memory bottleneck even for problems of moderate sizes.

Hence, as a first step towards our longer term goals, we present Gaussian Process-based Bayesian
inversion techniques for linear inverse problems which are suited for fast inversion on large scale
grids (several hundreds of thousands cells). Those techniques bypass the memory bottleneck by
distributing the computations to multiple graphical processing units (GPUs) and by only access-
ing bigger-than-memory matrices through matrix-matrix products, in a fashion similar to [5]. The
result of this work is a full-fledged library for solving bayesian inverse problems on GPUs that is
generic and can be used on any linear inverse problem.
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Figure 1: GP-based inversion of Stromboli data (posterior mean).

We will demonstrate those techniques on a test case from volcano geophysics that aims at recon-
structing the mass density field inside the Stromboli island from gravimetric data [2].

Our whole Bayesian inversion machinery is distributed as an open source Python package [4] which
can be used on any linear inverse problem, the user only having to provide the forward operator
and the geometry of the inversion grid.

This presentation is based on joint work with David Ginsbourger and Niklas Linde.
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