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Make-up on Physics-based Ground motion simulation
m Hybrid models
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Make-up on Physics-based Ground motion simulation

m Seismic ground motion



Seismic ground motion
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Seismic ground motion

Simulation at Low frequency

m SEM3D: Spectral Finite Element, Domain
Decomposition, Random fields. Non-linear behavior,
extended source model L




Seismic ground motion
Validation
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Make-up on Physics-based Ground motion simulation

m The first hybrid model



Seismic ground motion

Simulation at High Frequency

m Mapping short period spectral amplitude Y on long

D. Clouteau

period ones X: Y =H(X;W)
SaA
High-Uncertainty I High-Fidelity
|
|
YBRID |
|
ANN
PBS \ -
T* T

H = hjohy hk(X) ZUk(WkX—I-bk)



Seismic ground motion

Simulation at High Frequency

] Training on Database (Xz', Yi)izl’m Paolucci, Gatti (BSSA) 2018
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Validation

m Kashiwazaki-Kariwa Nuclear Power Plant
(SINAPS project)
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Ground Motion simulation

Hybrid Physics-based/Databases signal processing
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Deep Make-up on physics-based simulation
m Supervised learning

Supervised



Deterministic view of machine learning

m Objective: Identify a function based on samples:

FindheH | y=h(x) knowing & = {(xi,¥:) }i=1,m

m Input: x € X a vector of size d (real or integer)
m Ouput: y € Y a vector of:

m Labels (y, € {"A”,”B”,...}) : Classification
Cumereieed ® Numbers (y; € R or Z): Regression

m Hypothesis: h a hypothetical function in class H

h(x) =0 (Wx +Db)

m Sample set: S of size m

m Deep Networks: h=h,o..oh;
m Convolution Networks: Whts,gts = Wpyg
m

Universal Approximation Theorem



Empirical risk minimisation

m Error/Risk/Loss function

I(y,h(x)) € R" with ly,y) =

m Classification [ = ), I}, with:
m [, =1 when y, # hi(x),
® [, =0 when y, = hi(x)
m Regression
I=lly —hx)[}

Supervised

m Empirical Risk
1
Lg(h) = — I(y;, h(x;
sth) = 22 321y ()

m Empirical Risk minimisation

hg = argmin Lg(h)
heH



Probabilistic approach

m Unknown probability P(X,Y) on D =X x Y
P(X)Y)
Px(X)
m Problem: Find the conditional probability knowing S
QYIX) ~ Pyjx s(Y[X,S)

Px(X) = /y IPXY),  Pyx(YX) =

m S being identically sampled: Ps,(X,Y) = w
1g 1 . Zl l{x:xqz}
QSo(Y|X) m PSo(X), Pso(x) = o
m Empirical error
DKL(QSOHQ) —E[-1nQ)]

LS(Q):/D <ch) PsodXdY = ZZan(mXi)



Probabilistic approach

Link with the deterministic case

m From empirical error to conditional probability

e_l(yvh(x))
Qylx) = T2

m Classification: I(y, h(x)) = Lysnx)

Supervised . o= L Avh0) L
QA [x) = T, Z(x) = Z e Liv'#nx)}

y'e{"A”,..}

m Lo Regression

ly = h(x)|*

Lo(h) = B(Ls(@)] = £ [IX22

] + Sy (h)



Deep neural network

From data to probability

m Converting scores to probability

m Softmax for multiple features output with individual
scores s;j(x) and total score s =3, s;

ef(sfsk) 1
Zj 6—(5—5j) - ZJ 55— Sk

m Discriminator D for an unique feature with score s(x)
of not having the feature:

Qly=klx) =

Supervised

D) = QUy="07) = 7=
Ls(D) "5 Byl Qylx)] = S(yX)
= Ex\y:”ﬂ” [_ In D] + Ex\y#”ﬂ” [_ ln(l - D)]
D(x) = argmin Lg(D)
D
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Deep Make-up on physics-based simulation

m Unsupervised Learning

Unsupervised|



Auto-encoders

And convolution networks

m Autoencoder
z = F(x), y = G(z), S ={xi,¥i = Xi}i=1m

Ls(F,G) = Z Ix; — F(G(x:))|*

(F, @) = argmin Lg(F,G)
F.G

e Z = F(X) is smaller than X
Noise is added to the input
Weights are linked when FF = G™1: Wp = W%
F and G can have several layers and be convolutional
B Remark: In the linear case
m Convolutional case: F' is any Wavelet transform
m full case: G is any Karhunen-Loeve or POD
m Weakness: Py is not simple



Ground Motion simulation

Hybrid Physics-based/Databases signal processing
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Deep Make-up on physics-based simulation

m Generative Adversarial Networks



Generative Adversarial Networks (GAN)

Conditional Entropy

m Mixture Probability of
m x; € X with distribution p;
m X, € X with distribution ps.
my € {717,72”} with respective probability o and 1 — «
m (x,y) with p(.ly ="17) = p1 and p(.|ly ="2") = p»
p(x) = ap1(x) + (1 — a)p2(x)
a D(x) = ply = "1 )
m Entropy
S(x,y) = S(xly)  +5(y) = S(ylx) + S(x)
N——
aS(x1)+(1—a)S(x2)

m Cross-Information
I(x,y) = S(y)—S(ylx)>0
Sylx) = aB,, (— In D) +(1— a)E,, (— In(1 — D))



Generative Adversarial Networks (GAN)

Jensen-Shannon Divergence

m Mixture Probability of
m x; € X with distribution p;

Xo € X with distribution ps.

y € {1,2} with respective probability o and 1 — «

(x,y) with p(x|y = 1) = p1(x) and p(x|y = 2) = pa(x)

p(x) = api(x) + (1 — a)pa(x)
= D(x) =p(y = 1|x)
m Jensen-Shannon Divergence as cross information:
Sly) = Sylx) = Skx)-Skly) =
Djs(x1|x2) = aFx, [ln I;ﬂ +(1- a)ExQ[ln pz]

p
= aDxki(p1llp) + (1 — «) Dk (p2||p)



Generative Adversarial Networks (GAN)

Empirical error I

m Finding the best model x,, for data x4

X = argmin Djs(Xq||xm,)
Xm

m Finding Djs(x4//%m) estimate based on empirical data
m Finding a minimum (Stochastic gradient).

m (—Djs) as the entropy of conditional probability *
p(ye{” d77 , ” m77 }‘X):

Sylx) = —Dis(xallxm) +S(Y)




Generative Adversarial Networks (GAN)

Empirical error II

m Djg as the conditional probability p(ye{”d”,”m” }|x)

S(ylx) = —Dis(xalxm) + Sa
» Find a discriminator D(x) such that D(x) = P(’d”|x):
S(y|x) = —aE [m f)} —(1-a)E [1n(1 - D)]

m Estimation of D as a discriminator with a
classification Neural Network (max Log Likelihood):

. 1
arglélax — ZZ: n D(x;)



Generative Adversarial Networks (GAN)

Implementation

A random unit-centered-Gaussian vector z

The generator: x,, = G(z)

m The Discriminator: D(x) € [0, 1]

The mixture sampler: S = {(x;,y;)}i=1,m with
x; € {x4,G(z)} with probability o and 1 — «

G = argmin max aFEq[In D(x4)]
G D

+ (1—-a)E:[In(1 - D(G(2))])

m Properties

= G minimise the distance (JS-Divergence) between the
modeled and the data distributions
m G maximise the conditional entropy S(Y]X)

Goodfellow 2014



Generative Adversarial Networks (GAN)

Strength and weakness

G = argmin max aFq[In D(x4)]
G D

+ (1 =a)En[In(l - D(G(zm))])

m Strength
m Identification of a representation model of sampled data
using independent unit random seeds z
m A Polynomial Chaos Expansion (PCE) can be built
when z is a unit Gaussian random vector

Xy = ijwj(z) , Xj = /G(Z)zpj(z)y(z)dz

m Weaknesses (same as PCE)
m Non uniqueness
m z is a collection of hidden features
m No encoding algorithm (z = F'(x))



Adversarial Encoder (GAN)

m Mixture between z; = F(x4) and unitary z,, with
D, =P ="m"|z)
-SY|Z) = (1-a)En(nD,)+ aE4(In(l — D,(F(.)))
= Dys(Pznllpzy) — S(Y)

~

F = argmin max aFEq[In(l — D,(F(xyq)))]
F z

+ (1—-a)E;[InD,]

m Weakness

m Marginals on x and z are equally distributed but their
joint probabilities are not. Hence:

xq# G(F(xa)) , z#F(G(2)

m No link between encoder and generator when learning.



Bidirectional GAN

argmax argmin Lg(D,,, F, Q)
F,G Do

LS(DZUZ?F)G) - 72 lnDJJZ ’L )) yi= " m?

+ln( - sz(th(Xi)))ﬂyi:”d”)
S(Y|X, 2)

Q

m Weakness
m Sample set does not cover all X x Z space

xq# G(F(xa)) , z#F(G(2)
m Need to better control S(X|Z) — 0 or x4 — G(F(x4).

Donahue, Dumoulin 2017,



Cycling GAN

ALICE

m D,.(x,2) = POm’|(x,2))

(ﬁ’, G,f)m) = argmax argmin Lg(Dg., F,G)
F:G Dzz

L5(Dez, F,G) = L§(Daz, F.G) + nllxqg — G(F(xa))l}

m Strength

m It works (!)

m Filtering [xq — G(F(xq)||} gives broadband output for
filtered inputs.

m Use of GAN to discriminate x4 # G(F(xq)).

Li et Al. 2017



Ground Motion simulation

Hybrid Physics-based/Databases signal processing
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Deep Make-up on physics-based simulation

m Adversarial Generative auto-encoders



Adversarial Generative auto-encoders

m Encoder: z; = F(x)

m Generator: z = (z;,2z2) with zo Gaussian
xXm = G(z)
m Optimisation

(F,@) = argmin  Lg(G,F)
N’

G,F
“n o i Ixi—Gl(=)l|?

m D discriminator between data x4 and model x,,:

(F,@) = argmin(Ls(G,F)
(GF)

+mgx (Eq[In D(xq)] + Ey, In D(G(2))])



Ground Motion simulation

Hybrid Physics-based/Databases Adversarial Generative auto-encoders
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Ground Motion simulation

Hybrid Physics-based/Databases Adversarial Generative auto-encoders
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Ground Motion simulation
Hybrid Physics-based/Databases signal processing: ALICE like

Z= [b37nz7nz]
z~ N [O’ l]
z~gq(z|x) z ~p(z)
c ICE R e MG N
¢ L
x ~ q(x) z~plz|z)

*E = [b.h 3,"(]




Ground Motion simulation

Hybrid Physics-based/Databases signal processing: ALICE like

Signal reconstruction
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Ground Motion simulation

Hybrid Physics-based /Databases signal processing: ALICE+

Signal generation from filtered input
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Ground Motion simulation

Hybrid Physics-based/Databases signal processing
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Questions
m Convergence

Convergence



Empirical risk minimisation

Discussion

m Empirical Risk minimisation .
flszargmin Lg(h), Lg(h)=— Iy, h(x;
guin L), L(h) = 3710y b))

m Difficulties
m Ill-posed: no-uniqueness, smoothness and convexity
are required for optimisation methods
m Under and Overfitting:
m Lp(h) the ”true error” ( to be defined)
®m hp the ”best hypothesis” on H ( to be defined)

hp = argmin Lp(h)
heH

Lp(hp) < Lp(hs), Ls(hs) < Ls(hp)

m Approximation and generalisation errors

Lo(hs) = Lo(hp) + (Lp(hs) = Lp(hp))

— 0
|H|—=+o0 <c | H]
=CV T

Convergence




Outline

Questions

m Stochastic gradient



Stochastic gradient

m Assumption: Lg(h) = Lg(W) is smooth and locally
convex (I = 3|y —h(x)[?)

VwLg = ZVWh Xz) vhl(}’zah( z))
—_——

A;=y;—h(x;)

th A valhl Xl) Al
=1

Vw, hy(x;) = g, (Wix; + by) x4
m Stochastic gradient

W+ — W) o Vwh(x;)A;

Learning rate



Probabilistic approach

Log-Likelihood

m Log-Likelihood of S
A 1 A
Lo(8) = ~Ls(@) = > MmQ(YilX;) - cst

m Log-Likelihood Maximisation

Qs = argmax Lq(S)
QeQ

m Generalisation error

Lp(Q) = E[DkuL(P|QFx)]
Entropy of Pyx

—
= E-mQYX)]- S(Pyx)

m Consistency

Lp(Q) = E[Ls(Q)]
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