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Seismic ground motion
Simulation at Low frequency

SEM3D: Spectral Finite Element, Domain
Decomposition, Random fields, Non-linear behavior,
extended source model



D. Clouteau

Make-up

Hybrid
models

Seismic
ground
motion

The first
hybrid
model

Deep
Learning

Supervised

Unsupervised

GAN

Adversarial
Generative
auto-
encoders

Questions

Convergence

Stochastic
gradient

Seismic ground motion
Validation



D. Clouteau

Make-up

Hybrid
models

Seismic
ground
motion

The first
hybrid
model

Deep
Learning

Supervised

Unsupervised

GAN

Adversarial
Generative
auto-
encoders

Questions

Convergence

Stochastic
gradient

Outline

1 Make-up on Physics-based Ground motion simulation
Hybrid models
Seismic ground motion
The first hybrid model

2 Deep Make-up on physics-based simulation
Supervised learning
Unsupervised Learning
Generative Adversarial Networks
Adversarial Generative auto-encoders

3 Questions
Convergence
Stochastic gradient



D. Clouteau

Make-up

Hybrid
models

Seismic
ground
motion

The first
hybrid
model

Deep
Learning

Supervised

Unsupervised

GAN

Adversarial
Generative
auto-
encoders

Questions

Convergence

Stochastic
gradient

Seismic ground motion
Simulation at High Frequency

Mapping short period spectral amplitude Y on long
period ones X: Y = H(X;W )

H = h1 ◦ h2 hk(X) = σk(WkX + bk)
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Seismic ground motion
Simulation at High Frequency

Training on Database (Xi, Yi)i=1,m Paolucci, Gatti (BSSA) 2018

W ∗ = argmin
W

1

m

∑
i

‖Yi −H(Xi;W )‖2
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Kashiwazaki-Kariwa Nuclear Power Plant
(SINAPS project)

Gatti et Al. (GJI) 2018
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Hybrid Physics-based/Databases signal processing
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Deterministic view of machine learning

Objective: Identify a function based on samples:

Find h ∈ H | y ≈ h(x) knowing S = {(xi,yi)}i=1,m

Input: x ∈ X a vector of size d (real or integer)
Ouput: y ∈ Y a vector of:

Labels (yk ∈ {”A”, ”B”, ...}) : Classification
Numbers (yk ∈ R or Z): Regression

Hypothesis: h a hypothetical function in class H

h(x) = σ (Wx + b)

Sample set: S of size m
Deep Networks: h = hn ◦ ... ◦ h1

Convolution Networks: Wp+s,q+s = Wp,q

Universal Approximation Theorem
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Empirical risk minimisation

Error/Risk/Loss function

l(y,h(x)) ∈ R+ with l(y,y) = 0

Classification l =
∑

k lk with:
lk = 1 when yk 6= hk(x),
lk = 0 when yk = hk(x)

Regression
l = ‖y − h(x)‖pp

Empirical Risk

LS(h) =
1

m

∑
i

l(yi,h(xi))

Empirical Risk minimisation

ĥS = argmin
h∈H

LS(h)
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Probabilistic approach

Unknown probability P (X,Y) on D = X × Y

PX(X) =

∫
Y
dP (X,Y), PY|X(Y|X) =

P (X,Y)

PX(X)

Problem: Find the conditional probability knowing S

Q̂(Y|X) ≈ PY|X,S(Y|X,S)

S being identically sampled: PSo(X,Y) = 1S(X,Y)
m

QSo(Y|X) =
1S

m

1

PSo(X)
, PSo(x) =

∑
i 1{x=xi}

m

Empirical error

LS(Q̂) =

DKL(QSo‖Q̂)︷ ︸︸ ︷∫
D

ln

(
QSo

Q̂

)
PSodXdY =

→E[− ln Q̂]︷ ︸︸ ︷
−1

m

∑
i

ln Q̂(Yi|Xi)
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Probabilistic approach
Link with the deterministic case

From empirical error to conditional probability

Q(y|x) =
e−l(y,h(x))

Z(x)
, Z(x) =

∫
Y
e−l(y,h(x))dy

Classification: l(y,h(x)) = 1y 6=h(x)

Q(”A”|x) =
e−1{”A”6=h(x)}

Z(x)
, Z(x) =

∑
y′∈{”A”,...}

e−1{y′ 6=h(x)}

L2 Regression

LD(h) = E [LS(Q)] = E

[
‖y − h(x)‖2

2σ2

]
+ SX(h)
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Deep neural network
From data to probability

Converting scores to probability
Softmax for multiple features output with individual
scores sj(x) and total score s =

∑
j sj

Q(y = k|x) =
e−(s−sk)∑
j e
−(s−sj)

=
1∑

j e
sj−sk

Discriminator D for an unique feature with score s(x)
of not having the feature:

D(x) = Q(y = ”0”|x) =
1

1 + e−s

LS(D)
m→+∞→ Eyx[− lnQ(y|x)] = S(y|X)

= Ex|y=”0”[− lnD] + Ex|y 6=”0”[− ln(1−D)]

D̂(x) = argmin
D

LS(D)
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Auto-encoders
And convolution networks

Autoencoder

z = F (x), y = G(z), S = {xi,yi = xi}i=1,m

LS(F,G) =
∑
i

‖xi − F (G(xi))‖2

(F̂ , Ĝ) = argmin
F,G

LS(F,G)

Z = F (X ) is smaller than X
Noise is added to the input
Weights are linked when F = G−1: WF = WT

G

F and G can have several layers and be convolutional

Remark: In the linear case
Convolutional case: F is any Wavelet transform
full case: G is any Karhunen-Loeve or POD
Weakness: PZ is not simple
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Ground Motion simulation
Hybrid Physics-based/Databases signal processing
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Generative Adversarial Networks (GAN)
Conditional Entropy

Mixture Probability of
x1 ∈ X with distribution p1
x2 ∈ X with distribution p2.
y ∈ {”1”, ”2”} with respective probability α and 1− α
(x,y) with p(.|y = ”1”) = p1 and p(.|y = ”2”) = p2

p(x) = αp1(x) + (1− α)p2(x)

D̂(x) = p(y = ”1”|x)

Entropy

S(x,y) = S(x|y)︸ ︷︷ ︸
αS(x1)+(1−α)S(x2)

+S(y) = S(y|x) + S(x)

Cross-Information

I(x,y) = S(y)− S(y|x) ≥ 0

S(y|x) = αEx1

(
− ln D̂

)
+ (1− α)Ex2

(
− ln(1− D̂)

)
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Generative Adversarial Networks (GAN)
Jensen-Shannon Divergence

Mixture Probability of

x1 ∈ X with distribution p1
x2 ∈ X with distribution p2.
y ∈ {1, 2} with respective probability α and 1− α
(x,y) with p(x|y = 1) = p1(x) and p(x|y = 2) = p2(x)

p(x) = αp1(x) + (1− α)p2(x)

D(x) = p(y = 1|x)

Jensen-Shannon Divergence as cross information:

S(y)− S(y|x) = S(x)− S(x|y) =

DJS(x1‖x2) = αEx1

[
ln
p1

p

]
+ (1− α)Ex2

[
ln
p2

p

]
= αDKL(p1‖p) + (1− α)DKL(p2‖p)
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Generative Adversarial Networks (GAN)
Empirical error I

Finding the best model xm for data xd

x̂m = argmin
xm

DJS(xd‖xm)

Finding DJS(xd‖xm) estimate based on empirical data
Finding a minimum (Stochastic gradient).

(−DJS) as the entropy of conditional probability 1

p(y∈{”d”, ”m”}|x):

S(y|x) = −DJS(xd‖xm) + S(Y )

1

p(y|x) =
p(x|y)p(y)

p(x)
= α

p(xd)

p(x)
or (1− α)

p(xm)

p(x)
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Generative Adversarial Networks (GAN)
Empirical error II

DJS as the conditional probability p(y∈{”d”, ”m”}|x)

S(y|x) = −DJS(xd‖xm) + Sα

Find a discriminator D̂(x) such that D̂(x) = P (”d”|x):

S(y|x) = −αE
[
ln D̂

]
− (1− α)E

[
ln(1− D̂)

]
Estimation of D as a discriminator with a
classification Neural Network (max Log Likelihood):

D̂ = argmax
D

1

m

∑
i

lnD(xi)
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Generative Adversarial Networks (GAN)
Implementation

A random unit-centered-Gaussian vector z

The generator: xm = G(z)

The Discriminator: D(x) ∈ [0, 1]

The mixture sampler: S = {(xi,yi)}i=1,m with
xi ∈ {xd, G(z)} with probability α and 1− α

Ĝ = argmin
G

max
D

αEd [lnD(xd)]

+ (1− α)Ez [ln(1−D(G(z))])

Properties

Ĝ minimise the distance (JS-Divergence) between the
modeled and the data distributions
Ĝ maximise the conditional entropy S(Y |X)

Goodfellow 2014
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Generative Adversarial Networks (GAN)
Strength and weakness

Ĝ = argmin
G

max
D

αEd [lnD(xd)]

+ (1− α)Em [ln(1−D(G(zm))])

Strength
Identification of a representation model of sampled data
using independent unit random seeds z
A Polynomial Chaos Expansion (PCE) can be built
when z is a unit Gaussian random vector

xm =
∑
j

xjψj(z) , xj =

∫
G(z)ψj(z)ν(z)dz

Weaknesses (same as PCE)
Non uniqueness
z is a collection of hidden features
No encoding algorithm (z = F (x))
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Adversarial Encoder (GAN)

Mixture between zd = F (xd) and unitary zm with
Dz = P (Y = ”m”|z)

−S(Y |Z) = (1− α)Em(lnDz) + αEd(ln(1−Dz(F (.)))

= DJS(pzm ||pzd)− S(Y )

F̂ = argmin
F

max
Dz

αEd [ln(1−Dz(F (xd)))]

+ (1− α)Ez [lnDz]

Weakness
Marginals on x and z are equally distributed but their
joint probabilities are not. Hence:

xd 6= G(F (xd)) , z 6= F (G(z))

No link between encoder and generator when learning.
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Bidirectional GAN

biGAN: D̂xz(x, z) ≈ P (”m”|(x, z))

(F̂ , Ĝ, D̂xz) = argmax
F,G

argmin
Dxz

LS(Dxz, F,G)

LS(Dxz, F,G) =
−1

m

∑
i

(lnDxz(G(zi), zi))1yi=”m”

+ ln(1−Dxz(xi, F (xi)))1yi=”d”)

≈ S(Y |X,Z)

Weakness

Sample set does not cover all X × Z space

xd 6= G(F (xd)) , z 6= F (G(z))

Need to better control S(X|Z)→ 0 or xd −G(F (xd).

Donahue, Dumoulin 2017
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Cycling GAN
ALICE

D̂xz(x, z) ≈ P (”m”|(x, z))

(F̂ , Ĝ, D̂xz) = argmax
F,G

argmin
Dxz

L∗S(Dxz, F,G)

L∗S(Dxz, F,G) = LS(Dxz, F,G) + η‖xd −G(F (xd))‖pp

Strength

It works (!)
Filtering ‖xd −G(F (xd)‖pp gives broadband output for
filtered inputs.
Use of GAN to discriminate xd 6= G(F (xd)).

Li et Al. 2017
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Adversarial Generative auto-encoders

Encoder: z1 = F (x)

Generator: z = (z1, z2) with z2 Gaussian

xm = G(z)

Optimisation

(F̂ , Ĝ) = argmin
(G,F )

LS(G,F )︸ ︷︷ ︸
1
m

∑
i ‖xi−G(zi)‖2

D discriminator between data xd and model xm:

(F̂ , Ĝ) = argmin
(G,F )

(LS(G,F )

+max
D

(Ed [lnD(xd)] + Em [lnD(G(z))])
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Ground Motion simulation
Hybrid Physics-based/Databases signal processing: ALICE like

Signal reconstruction
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Ground Motion simulation
Hybrid Physics-based/Databases signal processing: ALICE+

Signal generation from filtered input
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Thank you !
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Empirical risk minimisation
Discussion

Empirical Risk minimisation

ĥS = argmin
h∈H

LS(h), LS(h) =
1

m

∑
i

l(yi,h(xi))

Difficulties
Ill-posed: no-uniqueness, smoothness and convexity
are required for optimisation methods
Under and Overfitting:

LD(h) the ”true error” ( to be defined)
hD the ”best hypothesis” on H ( to be defined)

hD = argmin
h∈H

LD(h)

LD(hD) ≤ LD(ĥS), LS(ĥS) ≤ LS(hD)

Approximation and generalisation errors

LD(ĥS) = LD(hD)︸ ︷︷ ︸
→

|H|→+∞
0

+
(
LD(ĥS)− LD(hD)

)
︸ ︷︷ ︸

≤c
√

|H|
m
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Stochastic gradient

Assumption: LS(h) = LS(W) is smooth and locally
convex (l = 1

2‖y − h(x)‖2)

∇WLS =
1

m

∑
i

∇Wh(xi) · ∇hl(yi,h(xi))︸ ︷︷ ︸
∆i=yi−h(xi)

∇Wh(x)∆ =

n∏
l=1

∇Wl
hl(xl) ·∆l

∇Wl
hl(xl) = g′l (Wlxl + bl) xl∆l

Stochastic gradient

W(j+1) = W(j) + α︸︷︷︸
Learning rate

∇Wh(xi)∆i
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Probabilistic approach
Log-Likelihood

Log-Likelihood of S

LQ̂(S) = −LS(Q̂) =
1

m

∑
i

ln Q̂(Yi|Xi)− cst

Log-Likelihood Maximisation

Q̂S = argmax
Q∈Q

LQ(S)

Generalisation error

LD(Q) = E [DKL(P‖QPX)]

= E [− lnQ(Y|X)]−

Entropy of PY|X︷ ︸︸ ︷
S(PY|X)

Consistency
LD(Q) = E [LS(Q)]
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